ValueTracking.cpp revision 70d3bebc8bc857fcf3d7fac44bda884d5e2a7040
1//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Constants.h"
19#include "llvm/DataLayout.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/LLVMContext.h"
25#include "llvm/Metadata.h"
26#include "llvm/Operator.h"
27#include "llvm/Support/ConstantRange.h"
28#include "llvm/Support/GetElementPtrTypeIterator.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/PatternMatch.h"
31#include <cstring>
32using namespace llvm;
33using namespace llvm::PatternMatch;
34
35const unsigned MaxDepth = 6;
36
37/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
38/// unknown returns 0).  For vector types, returns the element type's bitwidth.
39static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
40  if (unsigned BitWidth = Ty->getScalarSizeInBits())
41    return BitWidth;
42  assert(isa<PointerType>(Ty) && "Expected a pointer type!");
43  return TD ? TD->getPointerSizeInBits() : 0;
44}
45
46static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
47                                    APInt &KnownZero, APInt &KnownOne,
48                                    APInt &KnownZero2, APInt &KnownOne2,
49                                    const DataLayout *TD, unsigned Depth) {
50  if (!Add) {
51    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
52      // We know that the top bits of C-X are clear if X contains less bits
53      // than C (i.e. no wrap-around can happen).  For example, 20-X is
54      // positive if we can prove that X is >= 0 and < 16.
55      if (!CLHS->getValue().isNegative()) {
56        unsigned BitWidth = KnownZero.getBitWidth();
57        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
58        // NLZ can't be BitWidth with no sign bit
59        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
60        llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
61
62        // If all of the MaskV bits are known to be zero, then we know the
63        // output top bits are zero, because we now know that the output is
64        // from [0-C].
65        if ((KnownZero2 & MaskV) == MaskV) {
66          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
67          // Top bits known zero.
68          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
69        }
70      }
71    }
72  }
73
74  unsigned BitWidth = KnownZero.getBitWidth();
75
76  // If one of the operands has trailing zeros, then the bits that the
77  // other operand has in those bit positions will be preserved in the
78  // result. For an add, this works with either operand. For a subtract,
79  // this only works if the known zeros are in the right operand.
80  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
81  llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
82  assert((LHSKnownZero & LHSKnownOne) == 0 &&
83         "Bits known to be one AND zero?");
84  unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
85
86  llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
87  assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
88  unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
89
90  // Determine which operand has more trailing zeros, and use that
91  // many bits from the other operand.
92  if (LHSKnownZeroOut > RHSKnownZeroOut) {
93    if (Add) {
94      APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
95      KnownZero |= KnownZero2 & Mask;
96      KnownOne  |= KnownOne2 & Mask;
97    } else {
98      // If the known zeros are in the left operand for a subtract,
99      // fall back to the minimum known zeros in both operands.
100      KnownZero |= APInt::getLowBitsSet(BitWidth,
101                                        std::min(LHSKnownZeroOut,
102                                                 RHSKnownZeroOut));
103    }
104  } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
105    APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
106    KnownZero |= LHSKnownZero & Mask;
107    KnownOne  |= LHSKnownOne & Mask;
108  }
109
110  // Are we still trying to solve for the sign bit?
111  if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
112    if (NSW) {
113      if (Add) {
114        // Adding two positive numbers can't wrap into negative
115        if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
116          KnownZero |= APInt::getSignBit(BitWidth);
117        // and adding two negative numbers can't wrap into positive.
118        else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
119          KnownOne |= APInt::getSignBit(BitWidth);
120      } else {
121        // Subtracting a negative number from a positive one can't wrap
122        if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
123          KnownZero |= APInt::getSignBit(BitWidth);
124        // neither can subtracting a positive number from a negative one.
125        else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
126          KnownOne |= APInt::getSignBit(BitWidth);
127      }
128    }
129  }
130}
131
132static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
133                                 APInt &KnownZero, APInt &KnownOne,
134                                 APInt &KnownZero2, APInt &KnownOne2,
135                                 const DataLayout *TD, unsigned Depth) {
136  unsigned BitWidth = KnownZero.getBitWidth();
137  ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
138  ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
139  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
140  assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
141
142  bool isKnownNegative = false;
143  bool isKnownNonNegative = false;
144  // If the multiplication is known not to overflow, compute the sign bit.
145  if (NSW) {
146    if (Op0 == Op1) {
147      // The product of a number with itself is non-negative.
148      isKnownNonNegative = true;
149    } else {
150      bool isKnownNonNegativeOp1 = KnownZero.isNegative();
151      bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
152      bool isKnownNegativeOp1 = KnownOne.isNegative();
153      bool isKnownNegativeOp0 = KnownOne2.isNegative();
154      // The product of two numbers with the same sign is non-negative.
155      isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
156        (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
157      // The product of a negative number and a non-negative number is either
158      // negative or zero.
159      if (!isKnownNonNegative)
160        isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
161                           isKnownNonZero(Op0, TD, Depth)) ||
162                          (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
163                           isKnownNonZero(Op1, TD, Depth));
164    }
165  }
166
167  // If low bits are zero in either operand, output low known-0 bits.
168  // Also compute a conserative estimate for high known-0 bits.
169  // More trickiness is possible, but this is sufficient for the
170  // interesting case of alignment computation.
171  KnownOne.clearAllBits();
172  unsigned TrailZ = KnownZero.countTrailingOnes() +
173                    KnownZero2.countTrailingOnes();
174  unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
175                             KnownZero2.countLeadingOnes(),
176                             BitWidth) - BitWidth;
177
178  TrailZ = std::min(TrailZ, BitWidth);
179  LeadZ = std::min(LeadZ, BitWidth);
180  KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
181              APInt::getHighBitsSet(BitWidth, LeadZ);
182
183  // Only make use of no-wrap flags if we failed to compute the sign bit
184  // directly.  This matters if the multiplication always overflows, in
185  // which case we prefer to follow the result of the direct computation,
186  // though as the program is invoking undefined behaviour we can choose
187  // whatever we like here.
188  if (isKnownNonNegative && !KnownOne.isNegative())
189    KnownZero.setBit(BitWidth - 1);
190  else if (isKnownNegative && !KnownZero.isNegative())
191    KnownOne.setBit(BitWidth - 1);
192}
193
194void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
195  unsigned BitWidth = KnownZero.getBitWidth();
196  unsigned NumRanges = Ranges.getNumOperands() / 2;
197  assert(NumRanges >= 1);
198
199  // Use the high end of the ranges to find leading zeros.
200  unsigned MinLeadingZeros = BitWidth;
201  for (unsigned i = 0; i < NumRanges; ++i) {
202    ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
203    ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
204    ConstantRange Range(Lower->getValue(), Upper->getValue());
205    if (Range.isWrappedSet())
206      MinLeadingZeros = 0; // -1 has no zeros
207    unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
208    MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
209  }
210
211  KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
212}
213/// ComputeMaskedBits - Determine which of the bits are known to be either zero
214/// or one and return them in the KnownZero/KnownOne bit sets.
215///
216/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
217/// we cannot optimize based on the assumption that it is zero without changing
218/// it to be an explicit zero.  If we don't change it to zero, other code could
219/// optimized based on the contradictory assumption that it is non-zero.
220/// Because instcombine aggressively folds operations with undef args anyway,
221/// this won't lose us code quality.
222///
223/// This function is defined on values with integer type, values with pointer
224/// type (but only if TD is non-null), and vectors of integers.  In the case
225/// where V is a vector, known zero, and known one values are the
226/// same width as the vector element, and the bit is set only if it is true
227/// for all of the elements in the vector.
228void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
229                             const DataLayout *TD, unsigned Depth) {
230  assert(V && "No Value?");
231  assert(Depth <= MaxDepth && "Limit Search Depth");
232  unsigned BitWidth = KnownZero.getBitWidth();
233
234  assert((V->getType()->isIntOrIntVectorTy() ||
235          V->getType()->getScalarType()->isPointerTy()) &&
236         "Not integer or pointer type!");
237  assert((!TD ||
238          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
239         (!V->getType()->isIntOrIntVectorTy() ||
240          V->getType()->getScalarSizeInBits() == BitWidth) &&
241         KnownZero.getBitWidth() == BitWidth &&
242         KnownOne.getBitWidth() == BitWidth &&
243         "V, Mask, KnownOne and KnownZero should have same BitWidth");
244
245  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
246    // We know all of the bits for a constant!
247    KnownOne = CI->getValue();
248    KnownZero = ~KnownOne;
249    return;
250  }
251  // Null and aggregate-zero are all-zeros.
252  if (isa<ConstantPointerNull>(V) ||
253      isa<ConstantAggregateZero>(V)) {
254    KnownOne.clearAllBits();
255    KnownZero = APInt::getAllOnesValue(BitWidth);
256    return;
257  }
258  // Handle a constant vector by taking the intersection of the known bits of
259  // each element.  There is no real need to handle ConstantVector here, because
260  // we don't handle undef in any particularly useful way.
261  if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
262    // We know that CDS must be a vector of integers. Take the intersection of
263    // each element.
264    KnownZero.setAllBits(); KnownOne.setAllBits();
265    APInt Elt(KnownZero.getBitWidth(), 0);
266    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
267      Elt = CDS->getElementAsInteger(i);
268      KnownZero &= ~Elt;
269      KnownOne &= Elt;
270    }
271    return;
272  }
273
274  // The address of an aligned GlobalValue has trailing zeros.
275  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
276    unsigned Align = GV->getAlignment();
277    if (Align == 0 && TD) {
278      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
279        Type *ObjectType = GVar->getType()->getElementType();
280        if (ObjectType->isSized()) {
281          // If the object is defined in the current Module, we'll be giving
282          // it the preferred alignment. Otherwise, we have to assume that it
283          // may only have the minimum ABI alignment.
284          if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
285            Align = TD->getPreferredAlignment(GVar);
286          else
287            Align = TD->getABITypeAlignment(ObjectType);
288        }
289      }
290    }
291    if (Align > 0)
292      KnownZero = APInt::getLowBitsSet(BitWidth,
293                                       CountTrailingZeros_32(Align));
294    else
295      KnownZero.clearAllBits();
296    KnownOne.clearAllBits();
297    return;
298  }
299  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
300  // the bits of its aliasee.
301  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
302    if (GA->mayBeOverridden()) {
303      KnownZero.clearAllBits(); KnownOne.clearAllBits();
304    } else {
305      ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
306    }
307    return;
308  }
309
310  if (Argument *A = dyn_cast<Argument>(V)) {
311    unsigned Align = 0;
312
313    if (A->hasByValAttr()) {
314      // Get alignment information off byval arguments if specified in the IR.
315      Align = A->getParamAlignment();
316    } else if (TD && A->hasStructRetAttr()) {
317      // An sret parameter has at least the ABI alignment of the return type.
318      Type *EltTy = cast<PointerType>(A->getType())->getElementType();
319      if (EltTy->isSized())
320        Align = TD->getABITypeAlignment(EltTy);
321    }
322
323    if (Align)
324      KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
325    return;
326  }
327
328  // Start out not knowing anything.
329  KnownZero.clearAllBits(); KnownOne.clearAllBits();
330
331  if (Depth == MaxDepth)
332    return;  // Limit search depth.
333
334  Operator *I = dyn_cast<Operator>(V);
335  if (!I) return;
336
337  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
338  switch (I->getOpcode()) {
339  default: break;
340  case Instruction::Load:
341    if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
342      computeMaskedBitsLoad(*MD, KnownZero);
343    return;
344  case Instruction::And: {
345    // If either the LHS or the RHS are Zero, the result is zero.
346    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
347    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
348    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
349    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
350
351    // Output known-1 bits are only known if set in both the LHS & RHS.
352    KnownOne &= KnownOne2;
353    // Output known-0 are known to be clear if zero in either the LHS | RHS.
354    KnownZero |= KnownZero2;
355    return;
356  }
357  case Instruction::Or: {
358    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
359    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
360    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
361    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
362
363    // Output known-0 bits are only known if clear in both the LHS & RHS.
364    KnownZero &= KnownZero2;
365    // Output known-1 are known to be set if set in either the LHS | RHS.
366    KnownOne |= KnownOne2;
367    return;
368  }
369  case Instruction::Xor: {
370    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
371    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
372    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
373    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
374
375    // Output known-0 bits are known if clear or set in both the LHS & RHS.
376    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
377    // Output known-1 are known to be set if set in only one of the LHS, RHS.
378    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
379    KnownZero = KnownZeroOut;
380    return;
381  }
382  case Instruction::Mul: {
383    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
384    ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
385                         KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
386    break;
387  }
388  case Instruction::UDiv: {
389    // For the purposes of computing leading zeros we can conservatively
390    // treat a udiv as a logical right shift by the power of 2 known to
391    // be less than the denominator.
392    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
393    unsigned LeadZ = KnownZero2.countLeadingOnes();
394
395    KnownOne2.clearAllBits();
396    KnownZero2.clearAllBits();
397    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
398    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
399    if (RHSUnknownLeadingOnes != BitWidth)
400      LeadZ = std::min(BitWidth,
401                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
402
403    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
404    return;
405  }
406  case Instruction::Select:
407    ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
408    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
409                      Depth+1);
410    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
411    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
412
413    // Only known if known in both the LHS and RHS.
414    KnownOne &= KnownOne2;
415    KnownZero &= KnownZero2;
416    return;
417  case Instruction::FPTrunc:
418  case Instruction::FPExt:
419  case Instruction::FPToUI:
420  case Instruction::FPToSI:
421  case Instruction::SIToFP:
422  case Instruction::UIToFP:
423    return; // Can't work with floating point.
424  case Instruction::PtrToInt:
425  case Instruction::IntToPtr:
426    // We can't handle these if we don't know the pointer size.
427    if (!TD) return;
428    // FALL THROUGH and handle them the same as zext/trunc.
429  case Instruction::ZExt:
430  case Instruction::Trunc: {
431    Type *SrcTy = I->getOperand(0)->getType();
432
433    unsigned SrcBitWidth;
434    // Note that we handle pointer operands here because of inttoptr/ptrtoint
435    // which fall through here.
436    SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
437
438    assert(SrcBitWidth && "SrcBitWidth can't be zero");
439    KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
440    KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
441    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
442    KnownZero = KnownZero.zextOrTrunc(BitWidth);
443    KnownOne = KnownOne.zextOrTrunc(BitWidth);
444    // Any top bits are known to be zero.
445    if (BitWidth > SrcBitWidth)
446      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
447    return;
448  }
449  case Instruction::BitCast: {
450    Type *SrcTy = I->getOperand(0)->getType();
451    if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
452        // TODO: For now, not handling conversions like:
453        // (bitcast i64 %x to <2 x i32>)
454        !I->getType()->isVectorTy()) {
455      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
456      return;
457    }
458    break;
459  }
460  case Instruction::SExt: {
461    // Compute the bits in the result that are not present in the input.
462    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
463
464    KnownZero = KnownZero.trunc(SrcBitWidth);
465    KnownOne = KnownOne.trunc(SrcBitWidth);
466    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
467    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
468    KnownZero = KnownZero.zext(BitWidth);
469    KnownOne = KnownOne.zext(BitWidth);
470
471    // If the sign bit of the input is known set or clear, then we know the
472    // top bits of the result.
473    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
474      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
475    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
476      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
477    return;
478  }
479  case Instruction::Shl:
480    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
481    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
482      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
483      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
484      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
485      KnownZero <<= ShiftAmt;
486      KnownOne  <<= ShiftAmt;
487      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
488      return;
489    }
490    break;
491  case Instruction::LShr:
492    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
493    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
494      // Compute the new bits that are at the top now.
495      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
496
497      // Unsigned shift right.
498      ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
499      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
500      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
501      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
502      // high bits known zero.
503      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
504      return;
505    }
506    break;
507  case Instruction::AShr:
508    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
509    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
510      // Compute the new bits that are at the top now.
511      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
512
513      // Signed shift right.
514      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
515      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
516      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
517      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
518
519      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
520      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
521        KnownZero |= HighBits;
522      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
523        KnownOne |= HighBits;
524      return;
525    }
526    break;
527  case Instruction::Sub: {
528    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
529    ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
530                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
531                            Depth);
532    break;
533  }
534  case Instruction::Add: {
535    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
536    ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
537                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
538                            Depth);
539    break;
540  }
541  case Instruction::SRem:
542    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
543      APInt RA = Rem->getValue().abs();
544      if (RA.isPowerOf2()) {
545        APInt LowBits = RA - 1;
546        ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
547
548        // The low bits of the first operand are unchanged by the srem.
549        KnownZero = KnownZero2 & LowBits;
550        KnownOne = KnownOne2 & LowBits;
551
552        // If the first operand is non-negative or has all low bits zero, then
553        // the upper bits are all zero.
554        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
555          KnownZero |= ~LowBits;
556
557        // If the first operand is negative and not all low bits are zero, then
558        // the upper bits are all one.
559        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
560          KnownOne |= ~LowBits;
561
562        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
563      }
564    }
565
566    // The sign bit is the LHS's sign bit, except when the result of the
567    // remainder is zero.
568    if (KnownZero.isNonNegative()) {
569      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
570      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
571                        Depth+1);
572      // If it's known zero, our sign bit is also zero.
573      if (LHSKnownZero.isNegative())
574        KnownZero.setBit(BitWidth - 1);
575    }
576
577    break;
578  case Instruction::URem: {
579    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
580      APInt RA = Rem->getValue();
581      if (RA.isPowerOf2()) {
582        APInt LowBits = (RA - 1);
583        ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
584                          Depth+1);
585        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
586        KnownZero |= ~LowBits;
587        KnownOne &= LowBits;
588        break;
589      }
590    }
591
592    // Since the result is less than or equal to either operand, any leading
593    // zero bits in either operand must also exist in the result.
594    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
595    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
596
597    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
598                                KnownZero2.countLeadingOnes());
599    KnownOne.clearAllBits();
600    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
601    break;
602  }
603
604  case Instruction::Alloca: {
605    AllocaInst *AI = cast<AllocaInst>(V);
606    unsigned Align = AI->getAlignment();
607    if (Align == 0 && TD)
608      Align = TD->getABITypeAlignment(AI->getType()->getElementType());
609
610    if (Align > 0)
611      KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
612    break;
613  }
614  case Instruction::GetElementPtr: {
615    // Analyze all of the subscripts of this getelementptr instruction
616    // to determine if we can prove known low zero bits.
617    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
618    ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
619                      Depth+1);
620    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
621
622    gep_type_iterator GTI = gep_type_begin(I);
623    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
624      Value *Index = I->getOperand(i);
625      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
626        // Handle struct member offset arithmetic.
627        if (!TD) return;
628        const StructLayout *SL = TD->getStructLayout(STy);
629        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
630        uint64_t Offset = SL->getElementOffset(Idx);
631        TrailZ = std::min(TrailZ,
632                          CountTrailingZeros_64(Offset));
633      } else {
634        // Handle array index arithmetic.
635        Type *IndexedTy = GTI.getIndexedType();
636        if (!IndexedTy->isSized()) return;
637        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
638        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
639        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
640        ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
641        TrailZ = std::min(TrailZ,
642                          unsigned(CountTrailingZeros_64(TypeSize) +
643                                   LocalKnownZero.countTrailingOnes()));
644      }
645    }
646
647    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
648    break;
649  }
650  case Instruction::PHI: {
651    PHINode *P = cast<PHINode>(I);
652    // Handle the case of a simple two-predecessor recurrence PHI.
653    // There's a lot more that could theoretically be done here, but
654    // this is sufficient to catch some interesting cases.
655    if (P->getNumIncomingValues() == 2) {
656      for (unsigned i = 0; i != 2; ++i) {
657        Value *L = P->getIncomingValue(i);
658        Value *R = P->getIncomingValue(!i);
659        Operator *LU = dyn_cast<Operator>(L);
660        if (!LU)
661          continue;
662        unsigned Opcode = LU->getOpcode();
663        // Check for operations that have the property that if
664        // both their operands have low zero bits, the result
665        // will have low zero bits.
666        if (Opcode == Instruction::Add ||
667            Opcode == Instruction::Sub ||
668            Opcode == Instruction::And ||
669            Opcode == Instruction::Or ||
670            Opcode == Instruction::Mul) {
671          Value *LL = LU->getOperand(0);
672          Value *LR = LU->getOperand(1);
673          // Find a recurrence.
674          if (LL == I)
675            L = LR;
676          else if (LR == I)
677            L = LL;
678          else
679            break;
680          // Ok, we have a PHI of the form L op= R. Check for low
681          // zero bits.
682          ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
683
684          // We need to take the minimum number of known bits
685          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
686          ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
687
688          KnownZero = APInt::getLowBitsSet(BitWidth,
689                                           std::min(KnownZero2.countTrailingOnes(),
690                                                    KnownZero3.countTrailingOnes()));
691          break;
692        }
693      }
694    }
695
696    // Unreachable blocks may have zero-operand PHI nodes.
697    if (P->getNumIncomingValues() == 0)
698      return;
699
700    // Otherwise take the unions of the known bit sets of the operands,
701    // taking conservative care to avoid excessive recursion.
702    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
703      // Skip if every incoming value references to ourself.
704      if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
705        break;
706
707      KnownZero = APInt::getAllOnesValue(BitWidth);
708      KnownOne = APInt::getAllOnesValue(BitWidth);
709      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
710        // Skip direct self references.
711        if (P->getIncomingValue(i) == P) continue;
712
713        KnownZero2 = APInt(BitWidth, 0);
714        KnownOne2 = APInt(BitWidth, 0);
715        // Recurse, but cap the recursion to one level, because we don't
716        // want to waste time spinning around in loops.
717        ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
718                          MaxDepth-1);
719        KnownZero &= KnownZero2;
720        KnownOne &= KnownOne2;
721        // If all bits have been ruled out, there's no need to check
722        // more operands.
723        if (!KnownZero && !KnownOne)
724          break;
725      }
726    }
727    break;
728  }
729  case Instruction::Call:
730    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
731      switch (II->getIntrinsicID()) {
732      default: break;
733      case Intrinsic::ctlz:
734      case Intrinsic::cttz: {
735        unsigned LowBits = Log2_32(BitWidth)+1;
736        // If this call is undefined for 0, the result will be less than 2^n.
737        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
738          LowBits -= 1;
739        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
740        break;
741      }
742      case Intrinsic::ctpop: {
743        unsigned LowBits = Log2_32(BitWidth)+1;
744        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
745        break;
746      }
747      case Intrinsic::x86_sse42_crc32_64_8:
748      case Intrinsic::x86_sse42_crc32_64_64:
749        KnownZero = APInt::getHighBitsSet(64, 32);
750        break;
751      }
752    }
753    break;
754  case Instruction::ExtractValue:
755    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
756      ExtractValueInst *EVI = cast<ExtractValueInst>(I);
757      if (EVI->getNumIndices() != 1) break;
758      if (EVI->getIndices()[0] == 0) {
759        switch (II->getIntrinsicID()) {
760        default: break;
761        case Intrinsic::uadd_with_overflow:
762        case Intrinsic::sadd_with_overflow:
763          ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
764                                  II->getArgOperand(1), false, KnownZero,
765                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
766          break;
767        case Intrinsic::usub_with_overflow:
768        case Intrinsic::ssub_with_overflow:
769          ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
770                                  II->getArgOperand(1), false, KnownZero,
771                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
772          break;
773        case Intrinsic::umul_with_overflow:
774        case Intrinsic::smul_with_overflow:
775          ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
776                               false, KnownZero, KnownOne,
777                               KnownZero2, KnownOne2, TD, Depth);
778          break;
779        }
780      }
781    }
782  }
783}
784
785/// ComputeSignBit - Determine whether the sign bit is known to be zero or
786/// one.  Convenience wrapper around ComputeMaskedBits.
787void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
788                          const DataLayout *TD, unsigned Depth) {
789  unsigned BitWidth = getBitWidth(V->getType(), TD);
790  if (!BitWidth) {
791    KnownZero = false;
792    KnownOne = false;
793    return;
794  }
795  APInt ZeroBits(BitWidth, 0);
796  APInt OneBits(BitWidth, 0);
797  ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
798  KnownOne = OneBits[BitWidth - 1];
799  KnownZero = ZeroBits[BitWidth - 1];
800}
801
802/// isPowerOfTwo - Return true if the given value is known to have exactly one
803/// bit set when defined. For vectors return true if every element is known to
804/// be a power of two when defined.  Supports values with integer or pointer
805/// types and vectors of integers.
806bool llvm::isPowerOfTwo(Value *V, const DataLayout *TD, bool OrZero,
807                        unsigned Depth) {
808  if (Constant *C = dyn_cast<Constant>(V)) {
809    if (C->isNullValue())
810      return OrZero;
811    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
812      return CI->getValue().isPowerOf2();
813    // TODO: Handle vector constants.
814  }
815
816  // 1 << X is clearly a power of two if the one is not shifted off the end.  If
817  // it is shifted off the end then the result is undefined.
818  if (match(V, m_Shl(m_One(), m_Value())))
819    return true;
820
821  // (signbit) >>l X is clearly a power of two if the one is not shifted off the
822  // bottom.  If it is shifted off the bottom then the result is undefined.
823  if (match(V, m_LShr(m_SignBit(), m_Value())))
824    return true;
825
826  // The remaining tests are all recursive, so bail out if we hit the limit.
827  if (Depth++ == MaxDepth)
828    return false;
829
830  Value *X = 0, *Y = 0;
831  // A shift of a power of two is a power of two or zero.
832  if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
833                 match(V, m_Shr(m_Value(X), m_Value()))))
834    return isPowerOfTwo(X, TD, /*OrZero*/true, Depth);
835
836  if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
837    return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth);
838
839  if (SelectInst *SI = dyn_cast<SelectInst>(V))
840    return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) &&
841      isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth);
842
843  if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
844    // A power of two and'd with anything is a power of two or zero.
845    if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) ||
846        isPowerOfTwo(Y, TD, /*OrZero*/true, Depth))
847      return true;
848    // X & (-X) is always a power of two or zero.
849    if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
850      return true;
851    return false;
852  }
853
854  // An exact divide or right shift can only shift off zero bits, so the result
855  // is a power of two only if the first operand is a power of two and not
856  // copying a sign bit (sdiv int_min, 2).
857  if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
858      match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
859    return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth);
860  }
861
862  return false;
863}
864
865/// \brief Test whether a GEP's result is known to be non-null.
866///
867/// Uses properties inherent in a GEP to try to determine whether it is known
868/// to be non-null.
869///
870/// Currently this routine does not support vector GEPs.
871static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
872                              unsigned Depth) {
873  if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
874    return false;
875
876  // FIXME: Support vector-GEPs.
877  assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
878
879  // If the base pointer is non-null, we cannot walk to a null address with an
880  // inbounds GEP in address space zero.
881  if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
882    return true;
883
884  // Past this, if we don't have DataLayout, we can't do much.
885  if (!DL)
886    return false;
887
888  // Walk the GEP operands and see if any operand introduces a non-zero offset.
889  // If so, then the GEP cannot produce a null pointer, as doing so would
890  // inherently violate the inbounds contract within address space zero.
891  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
892       GTI != GTE; ++GTI) {
893    // Struct types are easy -- they must always be indexed by a constant.
894    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
895      ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
896      unsigned ElementIdx = OpC->getZExtValue();
897      const StructLayout *SL = DL->getStructLayout(STy);
898      uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
899      if (ElementOffset > 0)
900        return true;
901      continue;
902    }
903
904    // If we have a zero-sized type, the index doesn't matter. Keep looping.
905    if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
906      continue;
907
908    // Fast path the constant operand case both for efficiency and so we don't
909    // increment Depth when just zipping down an all-constant GEP.
910    if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
911      if (!OpC->isZero())
912        return true;
913      continue;
914    }
915
916    // We post-increment Depth here because while isKnownNonZero increments it
917    // as well, when we pop back up that increment won't persist. We don't want
918    // to recurse 10k times just because we have 10k GEP operands. We don't
919    // bail completely out because we want to handle constant GEPs regardless
920    // of depth.
921    if (Depth++ >= MaxDepth)
922      continue;
923
924    if (isKnownNonZero(GTI.getOperand(), DL, Depth))
925      return true;
926  }
927
928  return false;
929}
930
931/// isKnownNonZero - Return true if the given value is known to be non-zero
932/// when defined.  For vectors return true if every element is known to be
933/// non-zero when defined.  Supports values with integer or pointer type and
934/// vectors of integers.
935bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
936  if (Constant *C = dyn_cast<Constant>(V)) {
937    if (C->isNullValue())
938      return false;
939    if (isa<ConstantInt>(C))
940      // Must be non-zero due to null test above.
941      return true;
942    // TODO: Handle vectors
943    return false;
944  }
945
946  // The remaining tests are all recursive, so bail out if we hit the limit.
947  if (Depth++ >= MaxDepth)
948    return false;
949
950  // Check for pointer simplifications.
951  if (V->getType()->isPointerTy()) {
952    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
953      if (isGEPKnownNonNull(GEP, TD, Depth))
954        return true;
955  }
956
957  unsigned BitWidth = getBitWidth(V->getType(), TD);
958
959  // X | Y != 0 if X != 0 or Y != 0.
960  Value *X = 0, *Y = 0;
961  if (match(V, m_Or(m_Value(X), m_Value(Y))))
962    return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
963
964  // ext X != 0 if X != 0.
965  if (isa<SExtInst>(V) || isa<ZExtInst>(V))
966    return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
967
968  // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
969  // if the lowest bit is shifted off the end.
970  if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
971    // shl nuw can't remove any non-zero bits.
972    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
973    if (BO->hasNoUnsignedWrap())
974      return isKnownNonZero(X, TD, Depth);
975
976    APInt KnownZero(BitWidth, 0);
977    APInt KnownOne(BitWidth, 0);
978    ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
979    if (KnownOne[0])
980      return true;
981  }
982  // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
983  // defined if the sign bit is shifted off the end.
984  else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
985    // shr exact can only shift out zero bits.
986    PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
987    if (BO->isExact())
988      return isKnownNonZero(X, TD, Depth);
989
990    bool XKnownNonNegative, XKnownNegative;
991    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
992    if (XKnownNegative)
993      return true;
994  }
995  // div exact can only produce a zero if the dividend is zero.
996  else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
997    return isKnownNonZero(X, TD, Depth);
998  }
999  // X + Y.
1000  else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1001    bool XKnownNonNegative, XKnownNegative;
1002    bool YKnownNonNegative, YKnownNegative;
1003    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1004    ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
1005
1006    // If X and Y are both non-negative (as signed values) then their sum is not
1007    // zero unless both X and Y are zero.
1008    if (XKnownNonNegative && YKnownNonNegative)
1009      if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
1010        return true;
1011
1012    // If X and Y are both negative (as signed values) then their sum is not
1013    // zero unless both X and Y equal INT_MIN.
1014    if (BitWidth && XKnownNegative && YKnownNegative) {
1015      APInt KnownZero(BitWidth, 0);
1016      APInt KnownOne(BitWidth, 0);
1017      APInt Mask = APInt::getSignedMaxValue(BitWidth);
1018      // The sign bit of X is set.  If some other bit is set then X is not equal
1019      // to INT_MIN.
1020      ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
1021      if ((KnownOne & Mask) != 0)
1022        return true;
1023      // The sign bit of Y is set.  If some other bit is set then Y is not equal
1024      // to INT_MIN.
1025      ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
1026      if ((KnownOne & Mask) != 0)
1027        return true;
1028    }
1029
1030    // The sum of a non-negative number and a power of two is not zero.
1031    if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth))
1032      return true;
1033    if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth))
1034      return true;
1035  }
1036  // X * Y.
1037  else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1038    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1039    // If X and Y are non-zero then so is X * Y as long as the multiplication
1040    // does not overflow.
1041    if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1042        isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
1043      return true;
1044  }
1045  // (C ? X : Y) != 0 if X != 0 and Y != 0.
1046  else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1047    if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
1048        isKnownNonZero(SI->getFalseValue(), TD, Depth))
1049      return true;
1050  }
1051
1052  if (!BitWidth) return false;
1053  APInt KnownZero(BitWidth, 0);
1054  APInt KnownOne(BitWidth, 0);
1055  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1056  return KnownOne != 0;
1057}
1058
1059/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1060/// this predicate to simplify operations downstream.  Mask is known to be zero
1061/// for bits that V cannot have.
1062///
1063/// This function is defined on values with integer type, values with pointer
1064/// type (but only if TD is non-null), and vectors of integers.  In the case
1065/// where V is a vector, the mask, known zero, and known one values are the
1066/// same width as the vector element, and the bit is set only if it is true
1067/// for all of the elements in the vector.
1068bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
1069                             const DataLayout *TD, unsigned Depth) {
1070  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1071  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1072  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1073  return (KnownZero & Mask) == Mask;
1074}
1075
1076
1077
1078/// ComputeNumSignBits - Return the number of times the sign bit of the
1079/// register is replicated into the other bits.  We know that at least 1 bit
1080/// is always equal to the sign bit (itself), but other cases can give us
1081/// information.  For example, immediately after an "ashr X, 2", we know that
1082/// the top 3 bits are all equal to each other, so we return 3.
1083///
1084/// 'Op' must have a scalar integer type.
1085///
1086unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
1087                                  unsigned Depth) {
1088  assert((TD || V->getType()->isIntOrIntVectorTy()) &&
1089         "ComputeNumSignBits requires a DataLayout object to operate "
1090         "on non-integer values!");
1091  Type *Ty = V->getType();
1092  unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1093                         Ty->getScalarSizeInBits();
1094  unsigned Tmp, Tmp2;
1095  unsigned FirstAnswer = 1;
1096
1097  // Note that ConstantInt is handled by the general ComputeMaskedBits case
1098  // below.
1099
1100  if (Depth == 6)
1101    return 1;  // Limit search depth.
1102
1103  Operator *U = dyn_cast<Operator>(V);
1104  switch (Operator::getOpcode(V)) {
1105  default: break;
1106  case Instruction::SExt:
1107    Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1108    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
1109
1110  case Instruction::AShr: {
1111    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1112    // ashr X, C   -> adds C sign bits.  Vectors too.
1113    const APInt *ShAmt;
1114    if (match(U->getOperand(1), m_APInt(ShAmt))) {
1115      Tmp += ShAmt->getZExtValue();
1116      if (Tmp > TyBits) Tmp = TyBits;
1117    }
1118    return Tmp;
1119  }
1120  case Instruction::Shl: {
1121    const APInt *ShAmt;
1122    if (match(U->getOperand(1), m_APInt(ShAmt))) {
1123      // shl destroys sign bits.
1124      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1125      Tmp2 = ShAmt->getZExtValue();
1126      if (Tmp2 >= TyBits ||      // Bad shift.
1127          Tmp2 >= Tmp) break;    // Shifted all sign bits out.
1128      return Tmp - Tmp2;
1129    }
1130    break;
1131  }
1132  case Instruction::And:
1133  case Instruction::Or:
1134  case Instruction::Xor:    // NOT is handled here.
1135    // Logical binary ops preserve the number of sign bits at the worst.
1136    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1137    if (Tmp != 1) {
1138      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1139      FirstAnswer = std::min(Tmp, Tmp2);
1140      // We computed what we know about the sign bits as our first
1141      // answer. Now proceed to the generic code that uses
1142      // ComputeMaskedBits, and pick whichever answer is better.
1143    }
1144    break;
1145
1146  case Instruction::Select:
1147    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1148    if (Tmp == 1) return 1;  // Early out.
1149    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1150    return std::min(Tmp, Tmp2);
1151
1152  case Instruction::Add:
1153    // Add can have at most one carry bit.  Thus we know that the output
1154    // is, at worst, one more bit than the inputs.
1155    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1156    if (Tmp == 1) return 1;  // Early out.
1157
1158    // Special case decrementing a value (ADD X, -1):
1159    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
1160      if (CRHS->isAllOnesValue()) {
1161        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1162        ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
1163
1164        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1165        // sign bits set.
1166        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1167          return TyBits;
1168
1169        // If we are subtracting one from a positive number, there is no carry
1170        // out of the result.
1171        if (KnownZero.isNegative())
1172          return Tmp;
1173      }
1174
1175    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1176    if (Tmp2 == 1) return 1;
1177    return std::min(Tmp, Tmp2)-1;
1178
1179  case Instruction::Sub:
1180    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1181    if (Tmp2 == 1) return 1;
1182
1183    // Handle NEG.
1184    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1185      if (CLHS->isNullValue()) {
1186        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1187        ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
1188        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1189        // sign bits set.
1190        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1191          return TyBits;
1192
1193        // If the input is known to be positive (the sign bit is known clear),
1194        // the output of the NEG has the same number of sign bits as the input.
1195        if (KnownZero.isNegative())
1196          return Tmp2;
1197
1198        // Otherwise, we treat this like a SUB.
1199      }
1200
1201    // Sub can have at most one carry bit.  Thus we know that the output
1202    // is, at worst, one more bit than the inputs.
1203    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1204    if (Tmp == 1) return 1;  // Early out.
1205    return std::min(Tmp, Tmp2)-1;
1206
1207  case Instruction::PHI: {
1208    PHINode *PN = cast<PHINode>(U);
1209    // Don't analyze large in-degree PHIs.
1210    if (PN->getNumIncomingValues() > 4) break;
1211
1212    // Take the minimum of all incoming values.  This can't infinitely loop
1213    // because of our depth threshold.
1214    Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1215    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1216      if (Tmp == 1) return Tmp;
1217      Tmp = std::min(Tmp,
1218                     ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
1219    }
1220    return Tmp;
1221  }
1222
1223  case Instruction::Trunc:
1224    // FIXME: it's tricky to do anything useful for this, but it is an important
1225    // case for targets like X86.
1226    break;
1227  }
1228
1229  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1230  // use this information.
1231  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1232  APInt Mask;
1233  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1234
1235  if (KnownZero.isNegative()) {        // sign bit is 0
1236    Mask = KnownZero;
1237  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1238    Mask = KnownOne;
1239  } else {
1240    // Nothing known.
1241    return FirstAnswer;
1242  }
1243
1244  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1245  // the number of identical bits in the top of the input value.
1246  Mask = ~Mask;
1247  Mask <<= Mask.getBitWidth()-TyBits;
1248  // Return # leading zeros.  We use 'min' here in case Val was zero before
1249  // shifting.  We don't want to return '64' as for an i32 "0".
1250  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1251}
1252
1253/// ComputeMultiple - This function computes the integer multiple of Base that
1254/// equals V.  If successful, it returns true and returns the multiple in
1255/// Multiple.  If unsuccessful, it returns false. It looks
1256/// through SExt instructions only if LookThroughSExt is true.
1257bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
1258                           bool LookThroughSExt, unsigned Depth) {
1259  const unsigned MaxDepth = 6;
1260
1261  assert(V && "No Value?");
1262  assert(Depth <= MaxDepth && "Limit Search Depth");
1263  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
1264
1265  Type *T = V->getType();
1266
1267  ConstantInt *CI = dyn_cast<ConstantInt>(V);
1268
1269  if (Base == 0)
1270    return false;
1271
1272  if (Base == 1) {
1273    Multiple = V;
1274    return true;
1275  }
1276
1277  ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1278  Constant *BaseVal = ConstantInt::get(T, Base);
1279  if (CO && CO == BaseVal) {
1280    // Multiple is 1.
1281    Multiple = ConstantInt::get(T, 1);
1282    return true;
1283  }
1284
1285  if (CI && CI->getZExtValue() % Base == 0) {
1286    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1287    return true;
1288  }
1289
1290  if (Depth == MaxDepth) return false;  // Limit search depth.
1291
1292  Operator *I = dyn_cast<Operator>(V);
1293  if (!I) return false;
1294
1295  switch (I->getOpcode()) {
1296  default: break;
1297  case Instruction::SExt:
1298    if (!LookThroughSExt) return false;
1299    // otherwise fall through to ZExt
1300  case Instruction::ZExt:
1301    return ComputeMultiple(I->getOperand(0), Base, Multiple,
1302                           LookThroughSExt, Depth+1);
1303  case Instruction::Shl:
1304  case Instruction::Mul: {
1305    Value *Op0 = I->getOperand(0);
1306    Value *Op1 = I->getOperand(1);
1307
1308    if (I->getOpcode() == Instruction::Shl) {
1309      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1310      if (!Op1CI) return false;
1311      // Turn Op0 << Op1 into Op0 * 2^Op1
1312      APInt Op1Int = Op1CI->getValue();
1313      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1314      APInt API(Op1Int.getBitWidth(), 0);
1315      API.setBit(BitToSet);
1316      Op1 = ConstantInt::get(V->getContext(), API);
1317    }
1318
1319    Value *Mul0 = NULL;
1320    if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1321      if (Constant *Op1C = dyn_cast<Constant>(Op1))
1322        if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1323          if (Op1C->getType()->getPrimitiveSizeInBits() <
1324              MulC->getType()->getPrimitiveSizeInBits())
1325            Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1326          if (Op1C->getType()->getPrimitiveSizeInBits() >
1327              MulC->getType()->getPrimitiveSizeInBits())
1328            MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1329
1330          // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1331          Multiple = ConstantExpr::getMul(MulC, Op1C);
1332          return true;
1333        }
1334
1335      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1336        if (Mul0CI->getValue() == 1) {
1337          // V == Base * Op1, so return Op1
1338          Multiple = Op1;
1339          return true;
1340        }
1341    }
1342
1343    Value *Mul1 = NULL;
1344    if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1345      if (Constant *Op0C = dyn_cast<Constant>(Op0))
1346        if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1347          if (Op0C->getType()->getPrimitiveSizeInBits() <
1348              MulC->getType()->getPrimitiveSizeInBits())
1349            Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1350          if (Op0C->getType()->getPrimitiveSizeInBits() >
1351              MulC->getType()->getPrimitiveSizeInBits())
1352            MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1353
1354          // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1355          Multiple = ConstantExpr::getMul(MulC, Op0C);
1356          return true;
1357        }
1358
1359      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1360        if (Mul1CI->getValue() == 1) {
1361          // V == Base * Op0, so return Op0
1362          Multiple = Op0;
1363          return true;
1364        }
1365    }
1366  }
1367  }
1368
1369  // We could not determine if V is a multiple of Base.
1370  return false;
1371}
1372
1373/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1374/// value is never equal to -0.0.
1375///
1376/// NOTE: this function will need to be revisited when we support non-default
1377/// rounding modes!
1378///
1379bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1380  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1381    return !CFP->getValueAPF().isNegZero();
1382
1383  if (Depth == 6)
1384    return 1;  // Limit search depth.
1385
1386  const Operator *I = dyn_cast<Operator>(V);
1387  if (I == 0) return false;
1388
1389  // Check if the nsz fast-math flag is set
1390  if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
1391    if (FPO->hasNoSignedZeros())
1392      return true;
1393
1394  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1395  if (I->getOpcode() == Instruction::FAdd &&
1396      isa<ConstantFP>(I->getOperand(1)) &&
1397      cast<ConstantFP>(I->getOperand(1))->isNullValue())
1398    return true;
1399
1400  // sitofp and uitofp turn into +0.0 for zero.
1401  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1402    return true;
1403
1404  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1405    // sqrt(-0.0) = -0.0, no other negative results are possible.
1406    if (II->getIntrinsicID() == Intrinsic::sqrt)
1407      return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1408
1409  if (const CallInst *CI = dyn_cast<CallInst>(I))
1410    if (const Function *F = CI->getCalledFunction()) {
1411      if (F->isDeclaration()) {
1412        // abs(x) != -0.0
1413        if (F->getName() == "abs") return true;
1414        // fabs[lf](x) != -0.0
1415        if (F->getName() == "fabs") return true;
1416        if (F->getName() == "fabsf") return true;
1417        if (F->getName() == "fabsl") return true;
1418        if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1419            F->getName() == "sqrtl")
1420          return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1421      }
1422    }
1423
1424  return false;
1425}
1426
1427/// isBytewiseValue - If the specified value can be set by repeating the same
1428/// byte in memory, return the i8 value that it is represented with.  This is
1429/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1430/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
1431/// byte store (e.g. i16 0x1234), return null.
1432Value *llvm::isBytewiseValue(Value *V) {
1433  // All byte-wide stores are splatable, even of arbitrary variables.
1434  if (V->getType()->isIntegerTy(8)) return V;
1435
1436  // Handle 'null' ConstantArrayZero etc.
1437  if (Constant *C = dyn_cast<Constant>(V))
1438    if (C->isNullValue())
1439      return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1440
1441  // Constant float and double values can be handled as integer values if the
1442  // corresponding integer value is "byteable".  An important case is 0.0.
1443  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1444    if (CFP->getType()->isFloatTy())
1445      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1446    if (CFP->getType()->isDoubleTy())
1447      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1448    // Don't handle long double formats, which have strange constraints.
1449  }
1450
1451  // We can handle constant integers that are power of two in size and a
1452  // multiple of 8 bits.
1453  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1454    unsigned Width = CI->getBitWidth();
1455    if (isPowerOf2_32(Width) && Width > 8) {
1456      // We can handle this value if the recursive binary decomposition is the
1457      // same at all levels.
1458      APInt Val = CI->getValue();
1459      APInt Val2;
1460      while (Val.getBitWidth() != 8) {
1461        unsigned NextWidth = Val.getBitWidth()/2;
1462        Val2  = Val.lshr(NextWidth);
1463        Val2 = Val2.trunc(Val.getBitWidth()/2);
1464        Val = Val.trunc(Val.getBitWidth()/2);
1465
1466        // If the top/bottom halves aren't the same, reject it.
1467        if (Val != Val2)
1468          return 0;
1469      }
1470      return ConstantInt::get(V->getContext(), Val);
1471    }
1472  }
1473
1474  // A ConstantDataArray/Vector is splatable if all its members are equal and
1475  // also splatable.
1476  if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1477    Value *Elt = CA->getElementAsConstant(0);
1478    Value *Val = isBytewiseValue(Elt);
1479    if (!Val)
1480      return 0;
1481
1482    for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1483      if (CA->getElementAsConstant(I) != Elt)
1484        return 0;
1485
1486    return Val;
1487  }
1488
1489  // Conceptually, we could handle things like:
1490  //   %a = zext i8 %X to i16
1491  //   %b = shl i16 %a, 8
1492  //   %c = or i16 %a, %b
1493  // but until there is an example that actually needs this, it doesn't seem
1494  // worth worrying about.
1495  return 0;
1496}
1497
1498
1499// This is the recursive version of BuildSubAggregate. It takes a few different
1500// arguments. Idxs is the index within the nested struct From that we are
1501// looking at now (which is of type IndexedType). IdxSkip is the number of
1502// indices from Idxs that should be left out when inserting into the resulting
1503// struct. To is the result struct built so far, new insertvalue instructions
1504// build on that.
1505static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
1506                                SmallVector<unsigned, 10> &Idxs,
1507                                unsigned IdxSkip,
1508                                Instruction *InsertBefore) {
1509  llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
1510  if (STy) {
1511    // Save the original To argument so we can modify it
1512    Value *OrigTo = To;
1513    // General case, the type indexed by Idxs is a struct
1514    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1515      // Process each struct element recursively
1516      Idxs.push_back(i);
1517      Value *PrevTo = To;
1518      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1519                             InsertBefore);
1520      Idxs.pop_back();
1521      if (!To) {
1522        // Couldn't find any inserted value for this index? Cleanup
1523        while (PrevTo != OrigTo) {
1524          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1525          PrevTo = Del->getAggregateOperand();
1526          Del->eraseFromParent();
1527        }
1528        // Stop processing elements
1529        break;
1530      }
1531    }
1532    // If we successfully found a value for each of our subaggregates
1533    if (To)
1534      return To;
1535  }
1536  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1537  // the struct's elements had a value that was inserted directly. In the latter
1538  // case, perhaps we can't determine each of the subelements individually, but
1539  // we might be able to find the complete struct somewhere.
1540
1541  // Find the value that is at that particular spot
1542  Value *V = FindInsertedValue(From, Idxs);
1543
1544  if (!V)
1545    return NULL;
1546
1547  // Insert the value in the new (sub) aggregrate
1548  return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
1549                                       "tmp", InsertBefore);
1550}
1551
1552// This helper takes a nested struct and extracts a part of it (which is again a
1553// struct) into a new value. For example, given the struct:
1554// { a, { b, { c, d }, e } }
1555// and the indices "1, 1" this returns
1556// { c, d }.
1557//
1558// It does this by inserting an insertvalue for each element in the resulting
1559// struct, as opposed to just inserting a single struct. This will only work if
1560// each of the elements of the substruct are known (ie, inserted into From by an
1561// insertvalue instruction somewhere).
1562//
1563// All inserted insertvalue instructions are inserted before InsertBefore
1564static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
1565                                Instruction *InsertBefore) {
1566  assert(InsertBefore && "Must have someplace to insert!");
1567  Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1568                                                             idx_range);
1569  Value *To = UndefValue::get(IndexedType);
1570  SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
1571  unsigned IdxSkip = Idxs.size();
1572
1573  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1574}
1575
1576/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1577/// the scalar value indexed is already around as a register, for example if it
1578/// were inserted directly into the aggregrate.
1579///
1580/// If InsertBefore is not null, this function will duplicate (modified)
1581/// insertvalues when a part of a nested struct is extracted.
1582Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1583                               Instruction *InsertBefore) {
1584  // Nothing to index? Just return V then (this is useful at the end of our
1585  // recursion).
1586  if (idx_range.empty())
1587    return V;
1588  // We have indices, so V should have an indexable type.
1589  assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1590         "Not looking at a struct or array?");
1591  assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1592         "Invalid indices for type?");
1593
1594  if (Constant *C = dyn_cast<Constant>(V)) {
1595    C = C->getAggregateElement(idx_range[0]);
1596    if (C == 0) return 0;
1597    return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1598  }
1599
1600  if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1601    // Loop the indices for the insertvalue instruction in parallel with the
1602    // requested indices
1603    const unsigned *req_idx = idx_range.begin();
1604    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1605         i != e; ++i, ++req_idx) {
1606      if (req_idx == idx_range.end()) {
1607        // We can't handle this without inserting insertvalues
1608        if (!InsertBefore)
1609          return 0;
1610
1611        // The requested index identifies a part of a nested aggregate. Handle
1612        // this specially. For example,
1613        // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1614        // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1615        // %C = extractvalue {i32, { i32, i32 } } %B, 1
1616        // This can be changed into
1617        // %A = insertvalue {i32, i32 } undef, i32 10, 0
1618        // %C = insertvalue {i32, i32 } %A, i32 11, 1
1619        // which allows the unused 0,0 element from the nested struct to be
1620        // removed.
1621        return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1622                                 InsertBefore);
1623      }
1624
1625      // This insert value inserts something else than what we are looking for.
1626      // See if the (aggregrate) value inserted into has the value we are
1627      // looking for, then.
1628      if (*req_idx != *i)
1629        return FindInsertedValue(I->getAggregateOperand(), idx_range,
1630                                 InsertBefore);
1631    }
1632    // If we end up here, the indices of the insertvalue match with those
1633    // requested (though possibly only partially). Now we recursively look at
1634    // the inserted value, passing any remaining indices.
1635    return FindInsertedValue(I->getInsertedValueOperand(),
1636                             makeArrayRef(req_idx, idx_range.end()),
1637                             InsertBefore);
1638  }
1639
1640  if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1641    // If we're extracting a value from an aggregrate that was extracted from
1642    // something else, we can extract from that something else directly instead.
1643    // However, we will need to chain I's indices with the requested indices.
1644
1645    // Calculate the number of indices required
1646    unsigned size = I->getNumIndices() + idx_range.size();
1647    // Allocate some space to put the new indices in
1648    SmallVector<unsigned, 5> Idxs;
1649    Idxs.reserve(size);
1650    // Add indices from the extract value instruction
1651    Idxs.append(I->idx_begin(), I->idx_end());
1652
1653    // Add requested indices
1654    Idxs.append(idx_range.begin(), idx_range.end());
1655
1656    assert(Idxs.size() == size
1657           && "Number of indices added not correct?");
1658
1659    return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
1660  }
1661  // Otherwise, we don't know (such as, extracting from a function return value
1662  // or load instruction)
1663  return 0;
1664}
1665
1666/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1667/// it can be expressed as a base pointer plus a constant offset.  Return the
1668/// base and offset to the caller.
1669Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1670                                              const DataLayout &TD) {
1671  Operator *PtrOp = dyn_cast<Operator>(Ptr);
1672  if (PtrOp == 0 || Ptr->getType()->isVectorTy())
1673    return Ptr;
1674
1675  // Just look through bitcasts.
1676  if (PtrOp->getOpcode() == Instruction::BitCast)
1677    return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1678
1679  // If this is a GEP with constant indices, we can look through it.
1680  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1681  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1682
1683  gep_type_iterator GTI = gep_type_begin(GEP);
1684  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1685       ++I, ++GTI) {
1686    ConstantInt *OpC = cast<ConstantInt>(*I);
1687    if (OpC->isZero()) continue;
1688
1689    // Handle a struct and array indices which add their offset to the pointer.
1690    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1691      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1692    } else {
1693      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1694      Offset += OpC->getSExtValue()*Size;
1695    }
1696  }
1697
1698  // Re-sign extend from the pointer size if needed to get overflow edge cases
1699  // right.
1700  unsigned PtrSize = TD.getPointerSizeInBits();
1701  if (PtrSize < 64)
1702    Offset = SignExtend64(Offset, PtrSize);
1703
1704  return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1705}
1706
1707
1708/// getConstantStringInfo - This function computes the length of a
1709/// null-terminated C string pointed to by V.  If successful, it returns true
1710/// and returns the string in Str.  If unsuccessful, it returns false.
1711bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1712                                 uint64_t Offset, bool TrimAtNul) {
1713  assert(V);
1714
1715  // Look through bitcast instructions and geps.
1716  V = V->stripPointerCasts();
1717
1718  // If the value is a GEP instructionor  constant expression, treat it as an
1719  // offset.
1720  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1721    // Make sure the GEP has exactly three arguments.
1722    if (GEP->getNumOperands() != 3)
1723      return false;
1724
1725    // Make sure the index-ee is a pointer to array of i8.
1726    PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1727    ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1728    if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
1729      return false;
1730
1731    // Check to make sure that the first operand of the GEP is an integer and
1732    // has value 0 so that we are sure we're indexing into the initializer.
1733    const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1734    if (FirstIdx == 0 || !FirstIdx->isZero())
1735      return false;
1736
1737    // If the second index isn't a ConstantInt, then this is a variable index
1738    // into the array.  If this occurs, we can't say anything meaningful about
1739    // the string.
1740    uint64_t StartIdx = 0;
1741    if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1742      StartIdx = CI->getZExtValue();
1743    else
1744      return false;
1745    return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
1746  }
1747
1748  // The GEP instruction, constant or instruction, must reference a global
1749  // variable that is a constant and is initialized. The referenced constant
1750  // initializer is the array that we'll use for optimization.
1751  const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
1752  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1753    return false;
1754
1755  // Handle the all-zeros case
1756  if (GV->getInitializer()->isNullValue()) {
1757    // This is a degenerate case. The initializer is constant zero so the
1758    // length of the string must be zero.
1759    Str = "";
1760    return true;
1761  }
1762
1763  // Must be a Constant Array
1764  const ConstantDataArray *Array =
1765    dyn_cast<ConstantDataArray>(GV->getInitializer());
1766  if (Array == 0 || !Array->isString())
1767    return false;
1768
1769  // Get the number of elements in the array
1770  uint64_t NumElts = Array->getType()->getArrayNumElements();
1771
1772  // Start out with the entire array in the StringRef.
1773  Str = Array->getAsString();
1774
1775  if (Offset > NumElts)
1776    return false;
1777
1778  // Skip over 'offset' bytes.
1779  Str = Str.substr(Offset);
1780
1781  if (TrimAtNul) {
1782    // Trim off the \0 and anything after it.  If the array is not nul
1783    // terminated, we just return the whole end of string.  The client may know
1784    // some other way that the string is length-bound.
1785    Str = Str.substr(0, Str.find('\0'));
1786  }
1787  return true;
1788}
1789
1790// These next two are very similar to the above, but also look through PHI
1791// nodes.
1792// TODO: See if we can integrate these two together.
1793
1794/// GetStringLengthH - If we can compute the length of the string pointed to by
1795/// the specified pointer, return 'len+1'.  If we can't, return 0.
1796static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1797  // Look through noop bitcast instructions.
1798  V = V->stripPointerCasts();
1799
1800  // If this is a PHI node, there are two cases: either we have already seen it
1801  // or we haven't.
1802  if (PHINode *PN = dyn_cast<PHINode>(V)) {
1803    if (!PHIs.insert(PN))
1804      return ~0ULL;  // already in the set.
1805
1806    // If it was new, see if all the input strings are the same length.
1807    uint64_t LenSoFar = ~0ULL;
1808    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1809      uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1810      if (Len == 0) return 0; // Unknown length -> unknown.
1811
1812      if (Len == ~0ULL) continue;
1813
1814      if (Len != LenSoFar && LenSoFar != ~0ULL)
1815        return 0;    // Disagree -> unknown.
1816      LenSoFar = Len;
1817    }
1818
1819    // Success, all agree.
1820    return LenSoFar;
1821  }
1822
1823  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1824  if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1825    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1826    if (Len1 == 0) return 0;
1827    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1828    if (Len2 == 0) return 0;
1829    if (Len1 == ~0ULL) return Len2;
1830    if (Len2 == ~0ULL) return Len1;
1831    if (Len1 != Len2) return 0;
1832    return Len1;
1833  }
1834
1835  // Otherwise, see if we can read the string.
1836  StringRef StrData;
1837  if (!getConstantStringInfo(V, StrData))
1838    return 0;
1839
1840  return StrData.size()+1;
1841}
1842
1843/// GetStringLength - If we can compute the length of the string pointed to by
1844/// the specified pointer, return 'len+1'.  If we can't, return 0.
1845uint64_t llvm::GetStringLength(Value *V) {
1846  if (!V->getType()->isPointerTy()) return 0;
1847
1848  SmallPtrSet<PHINode*, 32> PHIs;
1849  uint64_t Len = GetStringLengthH(V, PHIs);
1850  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1851  // an empty string as a length.
1852  return Len == ~0ULL ? 1 : Len;
1853}
1854
1855Value *
1856llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
1857  if (!V->getType()->isPointerTy())
1858    return V;
1859  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1860    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1861      V = GEP->getPointerOperand();
1862    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1863      V = cast<Operator>(V)->getOperand(0);
1864    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1865      if (GA->mayBeOverridden())
1866        return V;
1867      V = GA->getAliasee();
1868    } else {
1869      // See if InstructionSimplify knows any relevant tricks.
1870      if (Instruction *I = dyn_cast<Instruction>(V))
1871        // TODO: Acquire a DominatorTree and use it.
1872        if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
1873          V = Simplified;
1874          continue;
1875        }
1876
1877      return V;
1878    }
1879    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1880  }
1881  return V;
1882}
1883
1884void
1885llvm::GetUnderlyingObjects(Value *V,
1886                           SmallVectorImpl<Value *> &Objects,
1887                           const DataLayout *TD,
1888                           unsigned MaxLookup) {
1889  SmallPtrSet<Value *, 4> Visited;
1890  SmallVector<Value *, 4> Worklist;
1891  Worklist.push_back(V);
1892  do {
1893    Value *P = Worklist.pop_back_val();
1894    P = GetUnderlyingObject(P, TD, MaxLookup);
1895
1896    if (!Visited.insert(P))
1897      continue;
1898
1899    if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1900      Worklist.push_back(SI->getTrueValue());
1901      Worklist.push_back(SI->getFalseValue());
1902      continue;
1903    }
1904
1905    if (PHINode *PN = dyn_cast<PHINode>(P)) {
1906      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1907        Worklist.push_back(PN->getIncomingValue(i));
1908      continue;
1909    }
1910
1911    Objects.push_back(P);
1912  } while (!Worklist.empty());
1913}
1914
1915/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1916/// are lifetime markers.
1917///
1918bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1919  for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1920       UI != UE; ++UI) {
1921    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
1922    if (!II) return false;
1923
1924    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1925        II->getIntrinsicID() != Intrinsic::lifetime_end)
1926      return false;
1927  }
1928  return true;
1929}
1930
1931bool llvm::isSafeToSpeculativelyExecute(const Value *V,
1932                                        const DataLayout *TD) {
1933  const Operator *Inst = dyn_cast<Operator>(V);
1934  if (!Inst)
1935    return false;
1936
1937  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1938    if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1939      if (C->canTrap())
1940        return false;
1941
1942  switch (Inst->getOpcode()) {
1943  default:
1944    return true;
1945  case Instruction::UDiv:
1946  case Instruction::URem:
1947    // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
1948    return isKnownNonZero(Inst->getOperand(1), TD);
1949  case Instruction::SDiv:
1950  case Instruction::SRem: {
1951    Value *Op = Inst->getOperand(1);
1952    // x / y is undefined if y == 0
1953    if (!isKnownNonZero(Op, TD))
1954      return false;
1955    // x / y might be undefined if y == -1
1956    unsigned BitWidth = getBitWidth(Op->getType(), TD);
1957    if (BitWidth == 0)
1958      return false;
1959    APInt KnownZero(BitWidth, 0);
1960    APInt KnownOne(BitWidth, 0);
1961    ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
1962    return !!KnownZero;
1963  }
1964  case Instruction::Load: {
1965    const LoadInst *LI = cast<LoadInst>(Inst);
1966    if (!LI->isUnordered())
1967      return false;
1968    return LI->getPointerOperand()->isDereferenceablePointer();
1969  }
1970  case Instruction::Call: {
1971   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
1972     switch (II->getIntrinsicID()) {
1973       // These synthetic intrinsics have no side-effects, and just mark
1974       // information about their operands.
1975       // FIXME: There are other no-op synthetic instructions that potentially
1976       // should be considered at least *safe* to speculate...
1977       case Intrinsic::dbg_declare:
1978       case Intrinsic::dbg_value:
1979         return true;
1980
1981       case Intrinsic::bswap:
1982       case Intrinsic::ctlz:
1983       case Intrinsic::ctpop:
1984       case Intrinsic::cttz:
1985       case Intrinsic::objectsize:
1986       case Intrinsic::sadd_with_overflow:
1987       case Intrinsic::smul_with_overflow:
1988       case Intrinsic::ssub_with_overflow:
1989       case Intrinsic::uadd_with_overflow:
1990       case Intrinsic::umul_with_overflow:
1991       case Intrinsic::usub_with_overflow:
1992         return true;
1993       // TODO: some fp intrinsics are marked as having the same error handling
1994       // as libm. They're safe to speculate when they won't error.
1995       // TODO: are convert_{from,to}_fp16 safe?
1996       // TODO: can we list target-specific intrinsics here?
1997       default: break;
1998     }
1999   }
2000    return false; // The called function could have undefined behavior or
2001                  // side-effects, even if marked readnone nounwind.
2002  }
2003  case Instruction::VAArg:
2004  case Instruction::Alloca:
2005  case Instruction::Invoke:
2006  case Instruction::PHI:
2007  case Instruction::Store:
2008  case Instruction::Ret:
2009  case Instruction::Br:
2010  case Instruction::IndirectBr:
2011  case Instruction::Switch:
2012  case Instruction::Unreachable:
2013  case Instruction::Fence:
2014  case Instruction::LandingPad:
2015  case Instruction::AtomicRMW:
2016  case Instruction::AtomicCmpXchg:
2017  case Instruction::Resume:
2018    return false; // Misc instructions which have effects
2019  }
2020}
2021