RegisterCoalescer.cpp revision e0bd8c3a2608f39f341eb3440df723dc48d435a5
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "regalloc"
17#include "RegisterCoalescer.h"
18#include "LiveDebugVariables.h"
19#include "RegisterClassInfo.h"
20#include "VirtRegMap.h"
21
22#include "llvm/Pass.h"
23#include "llvm/Value.h"
24#include "llvm/CodeGen/LiveIntervalAnalysis.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/CodeGen/LiveIntervalAnalysis.h"
30#include "llvm/Analysis/AliasAnalysis.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstr.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/Passes.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/ADT/OwningPtr.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
47#include <algorithm>
48#include <cmath>
49using namespace llvm;
50
51STATISTIC(numJoins    , "Number of interval joins performed");
52STATISTIC(numCrossRCs , "Number of cross class joins performed");
53STATISTIC(numCommutes , "Number of instruction commuting performed");
54STATISTIC(numExtends  , "Number of copies extended");
55STATISTIC(NumReMats   , "Number of instructions re-materialized");
56STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
57STATISTIC(numAborts   , "Number of times interval joining aborted");
58STATISTIC(NumInflated , "Number of register classes inflated");
59
60static cl::opt<bool>
61EnableJoining("join-liveintervals",
62              cl::desc("Coalesce copies (default=true)"),
63              cl::init(true));
64
65static cl::opt<bool>
66DisableCrossClassJoin("disable-cross-class-join",
67               cl::desc("Avoid coalescing cross register class copies"),
68               cl::init(false), cl::Hidden);
69
70static cl::opt<bool>
71EnablePhysicalJoin("join-physregs",
72                   cl::desc("Join physical register copies"),
73                   cl::init(false), cl::Hidden);
74
75static cl::opt<bool>
76VerifyCoalescing("verify-coalescing",
77         cl::desc("Verify machine instrs before and after register coalescing"),
78         cl::Hidden);
79
80namespace {
81  class RegisterCoalescer : public MachineFunctionPass {
82    MachineFunction* MF;
83    MachineRegisterInfo* MRI;
84    const TargetMachine* TM;
85    const TargetRegisterInfo* TRI;
86    const TargetInstrInfo* TII;
87    LiveIntervals *LIS;
88    LiveDebugVariables *LDV;
89    const MachineLoopInfo* Loops;
90    AliasAnalysis *AA;
91    RegisterClassInfo RegClassInfo;
92
93    /// JoinedCopies - Keep track of copies eliminated due to coalescing.
94    ///
95    SmallPtrSet<MachineInstr*, 32> JoinedCopies;
96
97    /// ReMatCopies - Keep track of copies eliminated due to remat.
98    ///
99    SmallPtrSet<MachineInstr*, 32> ReMatCopies;
100
101    /// ReMatDefs - Keep track of definition instructions which have
102    /// been remat'ed.
103    SmallPtrSet<MachineInstr*, 8> ReMatDefs;
104
105    /// joinIntervals - join compatible live intervals
106    void joinIntervals();
107
108    /// CopyCoalesceInMBB - Coalesce copies in the specified MBB, putting
109    /// copies that cannot yet be coalesced into the "TryAgain" list.
110    void CopyCoalesceInMBB(MachineBasicBlock *MBB,
111                           std::vector<MachineInstr*> &TryAgain);
112
113    /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
114    /// which are the src/dst of the copy instruction CopyMI.  This returns
115    /// true if the copy was successfully coalesced away. If it is not
116    /// currently possible to coalesce this interval, but it may be possible if
117    /// other things get coalesced, then it returns true by reference in
118    /// 'Again'.
119    bool JoinCopy(MachineInstr *TheCopy, bool &Again);
120
121    /// JoinIntervals - Attempt to join these two intervals.  On failure, this
122    /// returns false.  The output "SrcInt" will not have been modified, so we
123    /// can use this information below to update aliases.
124    bool JoinIntervals(CoalescerPair &CP);
125
126    /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
127    /// the source value number is defined by a copy from the destination reg
128    /// see if we can merge these two destination reg valno# into a single
129    /// value number, eliminating a copy.
130    bool AdjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
131
132    /// HasOtherReachingDefs - Return true if there are definitions of IntB
133    /// other than BValNo val# that can reach uses of AValno val# of IntA.
134    bool HasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
135                              VNInfo *AValNo, VNInfo *BValNo);
136
137    /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy.
138    /// If the source value number is defined by a commutable instruction and
139    /// its other operand is coalesced to the copy dest register, see if we
140    /// can transform the copy into a noop by commuting the definition.
141    bool RemoveCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
142
143    /// ReMaterializeTrivialDef - If the source of a copy is defined by a
144    /// trivial computation, replace the copy by rematerialize the definition.
145    /// If PreserveSrcInt is true, make sure SrcInt is valid after the call.
146    bool ReMaterializeTrivialDef(LiveInterval &SrcInt, bool PreserveSrcInt,
147                                 unsigned DstReg, MachineInstr *CopyMI);
148
149    /// shouldJoinPhys - Return true if a physreg copy should be joined.
150    bool shouldJoinPhys(CoalescerPair &CP);
151
152    /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
153    /// two virtual registers from different register classes.
154    bool isWinToJoinCrossClass(unsigned SrcReg,
155                               unsigned DstReg,
156                               const TargetRegisterClass *SrcRC,
157                               const TargetRegisterClass *DstRC,
158                               const TargetRegisterClass *NewRC);
159
160    /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
161    /// update the subregister number if it is not zero. If DstReg is a
162    /// physical register and the existing subregister number of the def / use
163    /// being updated is not zero, make sure to set it to the correct physical
164    /// subregister.
165    void UpdateRegDefsUses(const CoalescerPair &CP);
166
167    /// RemoveDeadDef - If a def of a live interval is now determined dead,
168    /// remove the val# it defines. If the live interval becomes empty, remove
169    /// it as well.
170    bool RemoveDeadDef(LiveInterval &li, MachineInstr *DefMI);
171
172    /// RemoveCopyFlag - If DstReg is no longer defined by CopyMI, clear the
173    /// VNInfo copy flag for DstReg and all aliases.
174    void RemoveCopyFlag(unsigned DstReg, const MachineInstr *CopyMI);
175
176    /// markAsJoined - Remember that CopyMI has already been joined.
177    void markAsJoined(MachineInstr *CopyMI);
178
179    /// eliminateUndefCopy - Handle copies of undef values.
180    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
181
182  public:
183    static char ID; // Class identification, replacement for typeinfo
184    RegisterCoalescer() : MachineFunctionPass(ID) {
185      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
186    }
187
188    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
189
190    virtual void releaseMemory();
191
192    /// runOnMachineFunction - pass entry point
193    virtual bool runOnMachineFunction(MachineFunction&);
194
195    /// print - Implement the dump method.
196    virtual void print(raw_ostream &O, const Module* = 0) const;
197  };
198} /// end anonymous namespace
199
200char &llvm::RegisterCoalescerPassID = RegisterCoalescer::ID;
201
202INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
203                      "Simple Register Coalescing", false, false)
204INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
205INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
206INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
207INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
208INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
209INITIALIZE_PASS_DEPENDENCY(PHIElimination)
210INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass)
211INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
212INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
213                    "Simple Register Coalescing", false, false)
214
215char RegisterCoalescer::ID = 0;
216
217static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
218  if (!a) return b;
219  if (!b) return a;
220  return tri.composeSubRegIndices(a, b);
221}
222
223static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
224                        unsigned &Src, unsigned &Dst,
225                        unsigned &SrcSub, unsigned &DstSub) {
226  if (MI->isCopy()) {
227    Dst = MI->getOperand(0).getReg();
228    DstSub = MI->getOperand(0).getSubReg();
229    Src = MI->getOperand(1).getReg();
230    SrcSub = MI->getOperand(1).getSubReg();
231  } else if (MI->isSubregToReg()) {
232    Dst = MI->getOperand(0).getReg();
233    DstSub = compose(tri, MI->getOperand(0).getSubReg(),
234                     MI->getOperand(3).getImm());
235    Src = MI->getOperand(2).getReg();
236    SrcSub = MI->getOperand(2).getSubReg();
237  } else
238    return false;
239  return true;
240}
241
242bool CoalescerPair::setRegisters(const MachineInstr *MI) {
243  SrcReg = DstReg = SubIdx = 0;
244  NewRC = 0;
245  Flipped = CrossClass = false;
246
247  unsigned Src, Dst, SrcSub, DstSub;
248  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
249    return false;
250  Partial = SrcSub || DstSub;
251
252  // If one register is a physreg, it must be Dst.
253  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
254    if (TargetRegisterInfo::isPhysicalRegister(Dst))
255      return false;
256    std::swap(Src, Dst);
257    std::swap(SrcSub, DstSub);
258    Flipped = true;
259  }
260
261  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
262
263  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
264    // Eliminate DstSub on a physreg.
265    if (DstSub) {
266      Dst = TRI.getSubReg(Dst, DstSub);
267      if (!Dst) return false;
268      DstSub = 0;
269    }
270
271    // Eliminate SrcSub by picking a corresponding Dst superregister.
272    if (SrcSub) {
273      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
274      if (!Dst) return false;
275      SrcSub = 0;
276    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
277      return false;
278    }
279  } else {
280    // Both registers are virtual.
281
282    // Both registers have subreg indices.
283    if (SrcSub && DstSub) {
284      // For now we only handle the case of identical indices in commensurate
285      // registers: Dreg:ssub_1 + Dreg:ssub_1 -> Dreg
286      // FIXME: Handle Qreg:ssub_3 + Dreg:ssub_1 as QReg:dsub_1 + Dreg.
287      if (SrcSub != DstSub)
288        return false;
289      const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
290      const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
291      if (!TRI.getCommonSubClass(DstRC, SrcRC))
292        return false;
293      SrcSub = DstSub = 0;
294    }
295
296    // There can be no SrcSub.
297    if (SrcSub) {
298      std::swap(Src, Dst);
299      DstSub = SrcSub;
300      SrcSub = 0;
301      assert(!Flipped && "Unexpected flip");
302      Flipped = true;
303    }
304
305    // Find the new register class.
306    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
307    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
308    if (DstSub)
309      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
310    else
311      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
312    if (!NewRC)
313      return false;
314    CrossClass = NewRC != DstRC || NewRC != SrcRC;
315  }
316  // Check our invariants
317  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
318  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
319         "Cannot have a physical SubIdx");
320  SrcReg = Src;
321  DstReg = Dst;
322  SubIdx = DstSub;
323  return true;
324}
325
326bool CoalescerPair::flip() {
327  if (SubIdx || TargetRegisterInfo::isPhysicalRegister(DstReg))
328    return false;
329  std::swap(SrcReg, DstReg);
330  Flipped = !Flipped;
331  return true;
332}
333
334bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
335  if (!MI)
336    return false;
337  unsigned Src, Dst, SrcSub, DstSub;
338  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
339    return false;
340
341  // Find the virtual register that is SrcReg.
342  if (Dst == SrcReg) {
343    std::swap(Src, Dst);
344    std::swap(SrcSub, DstSub);
345  } else if (Src != SrcReg) {
346    return false;
347  }
348
349  // Now check that Dst matches DstReg.
350  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
351    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
352      return false;
353    assert(!SubIdx && "Inconsistent CoalescerPair state.");
354    // DstSub could be set for a physreg from INSERT_SUBREG.
355    if (DstSub)
356      Dst = TRI.getSubReg(Dst, DstSub);
357    // Full copy of Src.
358    if (!SrcSub)
359      return DstReg == Dst;
360    // This is a partial register copy. Check that the parts match.
361    return TRI.getSubReg(DstReg, SrcSub) == Dst;
362  } else {
363    // DstReg is virtual.
364    if (DstReg != Dst)
365      return false;
366    // Registers match, do the subregisters line up?
367    return compose(TRI, SubIdx, SrcSub) == DstSub;
368  }
369}
370
371void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
372  AU.setPreservesCFG();
373  AU.addRequired<AliasAnalysis>();
374  AU.addRequired<LiveIntervals>();
375  AU.addPreserved<LiveIntervals>();
376  AU.addRequired<LiveDebugVariables>();
377  AU.addPreserved<LiveDebugVariables>();
378  AU.addPreserved<SlotIndexes>();
379  AU.addRequired<MachineLoopInfo>();
380  AU.addPreserved<MachineLoopInfo>();
381  AU.addPreservedID(MachineDominatorsID);
382  AU.addPreservedID(StrongPHIEliminationID);
383  AU.addPreservedID(PHIEliminationID);
384  AU.addPreservedID(TwoAddressInstructionPassID);
385  MachineFunctionPass::getAnalysisUsage(AU);
386}
387
388void RegisterCoalescer::markAsJoined(MachineInstr *CopyMI) {
389  /// Joined copies are not deleted immediately, but kept in JoinedCopies.
390  JoinedCopies.insert(CopyMI);
391
392  /// Mark all register operands of CopyMI as <undef> so they won't affect dead
393  /// code elimination.
394  for (MachineInstr::mop_iterator I = CopyMI->operands_begin(),
395       E = CopyMI->operands_end(); I != E; ++I)
396    if (I->isReg())
397      I->setIsUndef(true);
398}
399
400/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
401/// being the source and IntB being the dest, thus this defines a value number
402/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
403/// see if we can merge these two pieces of B into a single value number,
404/// eliminating a copy.  For example:
405///
406///  A3 = B0
407///    ...
408///  B1 = A3      <- this copy
409///
410/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
411/// value number to be replaced with B0 (which simplifies the B liveinterval).
412///
413/// This returns true if an interval was modified.
414///
415bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
416                                                    MachineInstr *CopyMI) {
417  // Bail if there is no dst interval - can happen when merging physical subreg
418  // operations.
419  if (!LIS->hasInterval(CP.getDstReg()))
420    return false;
421
422  LiveInterval &IntA =
423    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
424  LiveInterval &IntB =
425    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
426  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
427
428  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
429  // the example above.
430  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
431  if (BLR == IntB.end()) return false;
432  VNInfo *BValNo = BLR->valno;
433
434  // Get the location that B is defined at.  Two options: either this value has
435  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
436  // can't process it.
437  if (!BValNo->isDefByCopy()) return false;
438  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
439
440  // AValNo is the value number in A that defines the copy, A3 in the example.
441  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
442  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
443  // The live range might not exist after fun with physreg coalescing.
444  if (ALR == IntA.end()) return false;
445  VNInfo *AValNo = ALR->valno;
446  // If it's re-defined by an early clobber somewhere in the live range, then
447  // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
448  // See PR3149:
449  // 172     %ECX<def> = MOV32rr %reg1039<kill>
450  // 180     INLINEASM <es:subl $5,$1
451  //         sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
452  //         %EAX<kill>,
453  // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
454  // 188     %EAX<def> = MOV32rr %EAX<kill>
455  // 196     %ECX<def> = MOV32rr %ECX<kill>
456  // 204     %ECX<def> = MOV32rr %ECX<kill>
457  // 212     %EAX<def> = MOV32rr %EAX<kill>
458  // 220     %EAX<def> = MOV32rr %EAX
459  // 228     %reg1039<def> = MOV32rr %ECX<kill>
460  // The early clobber operand ties ECX input to the ECX def.
461  //
462  // The live interval of ECX is represented as this:
463  // %reg20,inf = [46,47:1)[174,230:0)  0@174-(230) 1@46-(47)
464  // The coalescer has no idea there was a def in the middle of [174,230].
465  if (AValNo->hasRedefByEC())
466    return false;
467
468  // If AValNo is defined as a copy from IntB, we can potentially process this.
469  // Get the instruction that defines this value number.
470  if (!CP.isCoalescable(AValNo->getCopy()))
471    return false;
472
473  // Get the LiveRange in IntB that this value number starts with.
474  LiveInterval::iterator ValLR =
475    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
476  if (ValLR == IntB.end())
477    return false;
478
479  // Make sure that the end of the live range is inside the same block as
480  // CopyMI.
481  MachineInstr *ValLREndInst =
482    LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
483  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
484    return false;
485
486  // Okay, we now know that ValLR ends in the same block that the CopyMI
487  // live-range starts.  If there are no intervening live ranges between them in
488  // IntB, we can merge them.
489  if (ValLR+1 != BLR) return false;
490
491  // If a live interval is a physical register, conservatively check if any
492  // of its aliases is overlapping the live interval of the virtual register.
493  // If so, do not coalesce.
494  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
495    for (const unsigned *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
496      if (LIS->hasInterval(*AS) && IntA.overlaps(LIS->getInterval(*AS))) {
497        DEBUG({
498            dbgs() << "\t\tInterfere with alias ";
499            LIS->getInterval(*AS).print(dbgs(), TRI);
500          });
501        return false;
502      }
503  }
504
505  DEBUG({
506      dbgs() << "Extending: ";
507      IntB.print(dbgs(), TRI);
508    });
509
510  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
511  // We are about to delete CopyMI, so need to remove it as the 'instruction
512  // that defines this value #'. Update the valnum with the new defining
513  // instruction #.
514  BValNo->def  = FillerStart;
515  BValNo->setCopy(0);
516
517  // Okay, we can merge them.  We need to insert a new liverange:
518  // [ValLR.end, BLR.begin) of either value number, then we merge the
519  // two value numbers.
520  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
521
522  // If the IntB live range is assigned to a physical register, and if that
523  // physreg has sub-registers, update their live intervals as well.
524  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
525    for (const unsigned *SR = TRI->getSubRegisters(IntB.reg); *SR; ++SR) {
526      if (!LIS->hasInterval(*SR))
527        continue;
528      LiveInterval &SRLI = LIS->getInterval(*SR);
529      SRLI.addRange(LiveRange(FillerStart, FillerEnd,
530                              SRLI.getNextValue(FillerStart, 0,
531                                                LIS->getVNInfoAllocator())));
532    }
533  }
534
535  // Okay, merge "B1" into the same value number as "B0".
536  if (BValNo != ValLR->valno) {
537    // If B1 is killed by a PHI, then the merged live range must also be killed
538    // by the same PHI, as B0 and B1 can not overlap.
539    bool HasPHIKill = BValNo->hasPHIKill();
540    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
541    if (HasPHIKill)
542      ValLR->valno->setHasPHIKill(true);
543  }
544  DEBUG({
545      dbgs() << "   result = ";
546      IntB.print(dbgs(), TRI);
547      dbgs() << "\n";
548    });
549
550  // If the source instruction was killing the source register before the
551  // merge, unset the isKill marker given the live range has been extended.
552  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
553  if (UIdx != -1) {
554    ValLREndInst->getOperand(UIdx).setIsKill(false);
555  }
556
557  // If the copy instruction was killing the destination register before the
558  // merge, find the last use and trim the live range. That will also add the
559  // isKill marker.
560  if (ALR->end == CopyIdx)
561    LIS->shrinkToUses(&IntA);
562
563  ++numExtends;
564  return true;
565}
566
567/// HasOtherReachingDefs - Return true if there are definitions of IntB
568/// other than BValNo val# that can reach uses of AValno val# of IntA.
569bool RegisterCoalescer::HasOtherReachingDefs(LiveInterval &IntA,
570                                                    LiveInterval &IntB,
571                                                    VNInfo *AValNo,
572                                                    VNInfo *BValNo) {
573  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
574       AI != AE; ++AI) {
575    if (AI->valno != AValNo) continue;
576    LiveInterval::Ranges::iterator BI =
577      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
578    if (BI != IntB.ranges.begin())
579      --BI;
580    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
581      if (BI->valno == BValNo)
582        continue;
583      if (BI->start <= AI->start && BI->end > AI->start)
584        return true;
585      if (BI->start > AI->start && BI->start < AI->end)
586        return true;
587    }
588  }
589  return false;
590}
591
592/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
593/// IntA being the source and IntB being the dest, thus this defines a value
594/// number in IntB.  If the source value number (in IntA) is defined by a
595/// commutable instruction and its other operand is coalesced to the copy dest
596/// register, see if we can transform the copy into a noop by commuting the
597/// definition. For example,
598///
599///  A3 = op A2 B0<kill>
600///    ...
601///  B1 = A3      <- this copy
602///    ...
603///     = op A3   <- more uses
604///
605/// ==>
606///
607///  B2 = op B0 A2<kill>
608///    ...
609///  B1 = B2      <- now an identify copy
610///    ...
611///     = op B2   <- more uses
612///
613/// This returns true if an interval was modified.
614///
615bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
616                                                        MachineInstr *CopyMI) {
617  // FIXME: For now, only eliminate the copy by commuting its def when the
618  // source register is a virtual register. We want to guard against cases
619  // where the copy is a back edge copy and commuting the def lengthen the
620  // live interval of the source register to the entire loop.
621  if (CP.isPhys() && CP.isFlipped())
622    return false;
623
624  // Bail if there is no dst interval.
625  if (!LIS->hasInterval(CP.getDstReg()))
626    return false;
627
628  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
629
630  LiveInterval &IntA =
631    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
632  LiveInterval &IntB =
633    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
634
635  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
636  // the example above.
637  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
638  if (!BValNo || !BValNo->isDefByCopy())
639    return false;
640
641  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
642
643  // AValNo is the value number in A that defines the copy, A3 in the example.
644  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
645  assert(AValNo && "COPY source not live");
646
647  // If other defs can reach uses of this def, then it's not safe to perform
648  // the optimization.
649  if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
650    return false;
651  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
652  if (!DefMI)
653    return false;
654  if (!DefMI->isCommutable())
655    return false;
656  // If DefMI is a two-address instruction then commuting it will change the
657  // destination register.
658  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
659  assert(DefIdx != -1);
660  unsigned UseOpIdx;
661  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
662    return false;
663  unsigned Op1, Op2, NewDstIdx;
664  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
665    return false;
666  if (Op1 == UseOpIdx)
667    NewDstIdx = Op2;
668  else if (Op2 == UseOpIdx)
669    NewDstIdx = Op1;
670  else
671    return false;
672
673  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
674  unsigned NewReg = NewDstMO.getReg();
675  if (NewReg != IntB.reg || !NewDstMO.isKill())
676    return false;
677
678  // Make sure there are no other definitions of IntB that would reach the
679  // uses which the new definition can reach.
680  if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
681    return false;
682
683  // Abort if the aliases of IntB.reg have values that are not simply the
684  // clobbers from the superreg.
685  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
686    for (const unsigned *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
687      if (LIS->hasInterval(*AS) &&
688          HasOtherReachingDefs(IntA, LIS->getInterval(*AS), AValNo, 0))
689        return false;
690
691  // If some of the uses of IntA.reg is already coalesced away, return false.
692  // It's not possible to determine whether it's safe to perform the coalescing.
693  for (MachineRegisterInfo::use_nodbg_iterator UI =
694         MRI->use_nodbg_begin(IntA.reg),
695       UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
696    MachineInstr *UseMI = &*UI;
697    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
698    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
699    if (ULR == IntA.end())
700      continue;
701    if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
702      return false;
703  }
704
705  DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo->def << '\t'
706               << *DefMI);
707
708  // At this point we have decided that it is legal to do this
709  // transformation.  Start by commuting the instruction.
710  MachineBasicBlock *MBB = DefMI->getParent();
711  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
712  if (!NewMI)
713    return false;
714  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
715      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
716      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
717    return false;
718  if (NewMI != DefMI) {
719    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
720    MachineBasicBlock::iterator Pos = DefMI;
721    MBB->insert(Pos, NewMI);
722    MBB->erase(DefMI);
723  }
724  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
725  NewMI->getOperand(OpIdx).setIsKill();
726
727  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
728  // A = or A, B
729  // ...
730  // B = A
731  // ...
732  // C = A<kill>
733  // ...
734  //   = B
735
736  // Update uses of IntA of the specific Val# with IntB.
737  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
738         UE = MRI->use_end(); UI != UE;) {
739    MachineOperand &UseMO = UI.getOperand();
740    MachineInstr *UseMI = &*UI;
741    ++UI;
742    if (JoinedCopies.count(UseMI))
743      continue;
744    if (UseMI->isDebugValue()) {
745      // FIXME These don't have an instruction index.  Not clear we have enough
746      // info to decide whether to do this replacement or not.  For now do it.
747      UseMO.setReg(NewReg);
748      continue;
749    }
750    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
751    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
752    if (ULR == IntA.end() || ULR->valno != AValNo)
753      continue;
754    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
755      UseMO.substPhysReg(NewReg, *TRI);
756    else
757      UseMO.setReg(NewReg);
758    if (UseMI == CopyMI)
759      continue;
760    if (!UseMI->isCopy())
761      continue;
762    if (UseMI->getOperand(0).getReg() != IntB.reg ||
763        UseMI->getOperand(0).getSubReg())
764      continue;
765
766    // This copy will become a noop. If it's defining a new val#, merge it into
767    // BValNo.
768    SlotIndex DefIdx = UseIdx.getRegSlot();
769    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
770    if (!DVNI)
771      continue;
772    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
773    assert(DVNI->def == DefIdx);
774    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
775    markAsJoined(UseMI);
776  }
777
778  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
779  // is updated.
780  VNInfo *ValNo = BValNo;
781  ValNo->def = AValNo->def;
782  ValNo->setCopy(0);
783  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
784       AI != AE; ++AI) {
785    if (AI->valno != AValNo) continue;
786    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
787  }
788  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
789
790  IntA.removeValNo(AValNo);
791  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
792  ++numCommutes;
793  return true;
794}
795
796/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
797/// computation, replace the copy by rematerialize the definition.
798bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
799                                                       bool preserveSrcInt,
800                                                       unsigned DstReg,
801                                                       MachineInstr *CopyMI) {
802  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
803  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
804  assert(SrcLR != SrcInt.end() && "Live range not found!");
805  VNInfo *ValNo = SrcLR->valno;
806  if (ValNo->isPHIDef() || ValNo->isUnused())
807    return false;
808  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
809  if (!DefMI)
810    return false;
811  assert(DefMI && "Defining instruction disappeared");
812  if (!DefMI->isAsCheapAsAMove())
813    return false;
814  if (!TII->isTriviallyReMaterializable(DefMI, AA))
815    return false;
816  bool SawStore = false;
817  if (!DefMI->isSafeToMove(TII, AA, SawStore))
818    return false;
819  const MCInstrDesc &MCID = DefMI->getDesc();
820  if (MCID.getNumDefs() != 1)
821    return false;
822  if (!DefMI->isImplicitDef()) {
823    // Make sure the copy destination register class fits the instruction
824    // definition register class. The mismatch can happen as a result of earlier
825    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
826    const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI);
827    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
828      if (MRI->getRegClass(DstReg) != RC)
829        return false;
830    } else if (!RC->contains(DstReg))
831      return false;
832  }
833
834  RemoveCopyFlag(DstReg, CopyMI);
835
836  MachineBasicBlock *MBB = CopyMI->getParent();
837  MachineBasicBlock::iterator MII =
838    llvm::next(MachineBasicBlock::iterator(CopyMI));
839  TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
840  MachineInstr *NewMI = prior(MII);
841
842  // CopyMI may have implicit operands, transfer them over to the newly
843  // rematerialized instruction. And update implicit def interval valnos.
844  for (unsigned i = CopyMI->getDesc().getNumOperands(),
845         e = CopyMI->getNumOperands(); i != e; ++i) {
846    MachineOperand &MO = CopyMI->getOperand(i);
847    if (MO.isReg() && MO.isImplicit())
848      NewMI->addOperand(MO);
849    if (MO.isDef())
850      RemoveCopyFlag(MO.getReg(), CopyMI);
851  }
852
853  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
854  CopyMI->eraseFromParent();
855  ReMatCopies.insert(CopyMI);
856  ReMatDefs.insert(DefMI);
857  DEBUG(dbgs() << "Remat: " << *NewMI);
858  ++NumReMats;
859
860  // The source interval can become smaller because we removed a use.
861  if (preserveSrcInt)
862    LIS->shrinkToUses(&SrcInt);
863
864  return true;
865}
866
867/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
868/// values, it only removes local variables. When we have a copy like:
869///
870///   %vreg1 = COPY %vreg2<undef>
871///
872/// We delete the copy and remove the corresponding value number from %vreg1.
873/// Any uses of that value number are marked as <undef>.
874bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
875                                           const CoalescerPair &CP) {
876  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
877  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
878  if (SrcInt->liveAt(Idx))
879    return false;
880  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
881  if (DstInt->liveAt(Idx))
882    return false;
883
884  // No intervals are live-in to CopyMI - it is undef.
885  if (CP.isFlipped())
886    DstInt = SrcInt;
887  SrcInt = 0;
888
889  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
890  assert(DeadVNI && "No value defined in DstInt");
891  DstInt->removeValNo(DeadVNI);
892
893  // Find new undef uses.
894  for (MachineRegisterInfo::reg_nodbg_iterator
895         I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
896       I != E; ++I) {
897    MachineOperand &MO = I.getOperand();
898    if (MO.isDef() || MO.isUndef())
899      continue;
900    MachineInstr *MI = MO.getParent();
901    SlotIndex Idx = LIS->getInstructionIndex(MI);
902    if (DstInt->liveAt(Idx))
903      continue;
904    MO.setIsUndef(true);
905    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
906  }
907  return true;
908}
909
910/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
911/// update the subregister number if it is not zero. If DstReg is a
912/// physical register and the existing subregister number of the def / use
913/// being updated is not zero, make sure to set it to the correct physical
914/// subregister.
915void
916RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair &CP) {
917  bool DstIsPhys = CP.isPhys();
918  unsigned SrcReg = CP.getSrcReg();
919  unsigned DstReg = CP.getDstReg();
920  unsigned SubIdx = CP.getSubIdx();
921
922  // Update LiveDebugVariables.
923  LDV->renameRegister(SrcReg, DstReg, SubIdx);
924
925  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
926       MachineInstr *UseMI = I.skipInstruction();) {
927    // A PhysReg copy that won't be coalesced can perhaps be rematerialized
928    // instead.
929    if (DstIsPhys) {
930      if (UseMI->isFullCopy() &&
931          UseMI->getOperand(1).getReg() == SrcReg &&
932          UseMI->getOperand(0).getReg() != SrcReg &&
933          UseMI->getOperand(0).getReg() != DstReg &&
934          !JoinedCopies.count(UseMI) &&
935          ReMaterializeTrivialDef(LIS->getInterval(SrcReg), false,
936                                  UseMI->getOperand(0).getReg(), UseMI))
937        continue;
938    }
939
940    SmallVector<unsigned,8> Ops;
941    bool Reads, Writes;
942    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
943    bool Kills = false, Deads = false;
944
945    // Replace SrcReg with DstReg in all UseMI operands.
946    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
947      MachineOperand &MO = UseMI->getOperand(Ops[i]);
948      Kills |= MO.isKill();
949      Deads |= MO.isDead();
950
951      // Make sure we don't create read-modify-write defs accidentally.  We
952      // assume here that a SrcReg def cannot be joined into a live DstReg.  If
953      // RegisterCoalescer starts tracking partially live registers, we will
954      // need to check the actual LiveInterval to determine if DstReg is live
955      // here.
956      if (SubIdx && !Reads)
957        MO.setIsUndef();
958
959      if (DstIsPhys)
960        MO.substPhysReg(DstReg, *TRI);
961      else
962        MO.substVirtReg(DstReg, SubIdx, *TRI);
963    }
964
965    // This instruction is a copy that will be removed.
966    if (JoinedCopies.count(UseMI))
967      continue;
968
969    if (SubIdx) {
970      // If UseMI was a simple SrcReg def, make sure we didn't turn it into a
971      // read-modify-write of DstReg.
972      if (Deads)
973        UseMI->addRegisterDead(DstReg, TRI);
974      else if (!Reads && Writes)
975        UseMI->addRegisterDefined(DstReg, TRI);
976
977      // Kill flags apply to the whole physical register.
978      if (DstIsPhys && Kills)
979        UseMI->addRegisterKilled(DstReg, TRI);
980    }
981
982    DEBUG({
983        dbgs() << "\t\tupdated: ";
984        if (!UseMI->isDebugValue())
985          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
986        dbgs() << *UseMI;
987      });
988  }
989}
990
991/// removeIntervalIfEmpty - Check if the live interval of a physical register
992/// is empty, if so remove it and also remove the empty intervals of its
993/// sub-registers. Return true if live interval is removed.
994static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *LIS,
995                                  const TargetRegisterInfo *TRI) {
996  if (li.empty()) {
997    if (TargetRegisterInfo::isPhysicalRegister(li.reg))
998      for (const unsigned* SR = TRI->getSubRegisters(li.reg); *SR; ++SR) {
999        if (!LIS->hasInterval(*SR))
1000          continue;
1001        LiveInterval &sli = LIS->getInterval(*SR);
1002        if (sli.empty())
1003          LIS->removeInterval(*SR);
1004      }
1005    LIS->removeInterval(li.reg);
1006    return true;
1007  }
1008  return false;
1009}
1010
1011/// RemoveDeadDef - If a def of a live interval is now determined dead, remove
1012/// the val# it defines. If the live interval becomes empty, remove it as well.
1013bool RegisterCoalescer::RemoveDeadDef(LiveInterval &li,
1014                                             MachineInstr *DefMI) {
1015  SlotIndex DefIdx = LIS->getInstructionIndex(DefMI).getRegSlot();
1016  LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
1017  if (DefIdx != MLR->valno->def)
1018    return false;
1019  li.removeValNo(MLR->valno);
1020  return removeIntervalIfEmpty(li, LIS, TRI);
1021}
1022
1023void RegisterCoalescer::RemoveCopyFlag(unsigned DstReg,
1024                                              const MachineInstr *CopyMI) {
1025  SlotIndex DefIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
1026  if (LIS->hasInterval(DstReg)) {
1027    LiveInterval &LI = LIS->getInterval(DstReg);
1028    if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
1029      if (LR->valno->def == DefIdx)
1030        LR->valno->setCopy(0);
1031  }
1032  if (!TargetRegisterInfo::isPhysicalRegister(DstReg))
1033    return;
1034  for (const unsigned* AS = TRI->getAliasSet(DstReg); *AS; ++AS) {
1035    if (!LIS->hasInterval(*AS))
1036      continue;
1037    LiveInterval &LI = LIS->getInterval(*AS);
1038    if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
1039      if (LR->valno->def == DefIdx)
1040        LR->valno->setCopy(0);
1041  }
1042}
1043
1044/// shouldJoinPhys - Return true if a copy involving a physreg should be joined.
1045/// We need to be careful about coalescing a source physical register with a
1046/// virtual register. Once the coalescing is done, it cannot be broken and these
1047/// are not spillable! If the destination interval uses are far away, think
1048/// twice about coalescing them!
1049bool RegisterCoalescer::shouldJoinPhys(CoalescerPair &CP) {
1050  bool Allocatable = LIS->isAllocatable(CP.getDstReg());
1051  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1052
1053  /// Always join simple intervals that are defined by a single copy from a
1054  /// reserved register. This doesn't increase register pressure, so it is
1055  /// always beneficial.
1056  if (!Allocatable && CP.isFlipped() && JoinVInt.containsOneValue())
1057    return true;
1058
1059  if (!EnablePhysicalJoin) {
1060    DEBUG(dbgs() << "\tPhysreg joins disabled.\n");
1061    return false;
1062  }
1063
1064  // Only coalesce to allocatable physreg, we don't want to risk modifying
1065  // reserved registers.
1066  if (!Allocatable) {
1067    DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
1068    return false;  // Not coalescable.
1069  }
1070
1071  // Don't join with physregs that have a ridiculous number of live
1072  // ranges. The data structure performance is really bad when that
1073  // happens.
1074  if (LIS->hasInterval(CP.getDstReg()) &&
1075      LIS->getInterval(CP.getDstReg()).ranges.size() > 1000) {
1076    ++numAborts;
1077    DEBUG(dbgs()
1078          << "\tPhysical register live interval too complicated, abort!\n");
1079    return false;
1080  }
1081
1082  // FIXME: Why are we skipping this test for partial copies?
1083  //        CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
1084  if (!CP.isPartial()) {
1085    const TargetRegisterClass *RC = MRI->getRegClass(CP.getSrcReg());
1086    unsigned Threshold = RegClassInfo.getNumAllocatableRegs(RC) * 2;
1087    unsigned Length = LIS->getApproximateInstructionCount(JoinVInt);
1088    if (Length > Threshold) {
1089      ++numAborts;
1090      DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
1091      return false;
1092    }
1093  }
1094  return true;
1095}
1096
1097/// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1098/// two virtual registers from different register classes.
1099bool
1100RegisterCoalescer::isWinToJoinCrossClass(unsigned SrcReg,
1101                                             unsigned DstReg,
1102                                             const TargetRegisterClass *SrcRC,
1103                                             const TargetRegisterClass *DstRC,
1104                                             const TargetRegisterClass *NewRC) {
1105  unsigned NewRCCount = RegClassInfo.getNumAllocatableRegs(NewRC);
1106  // This heuristics is good enough in practice, but it's obviously not *right*.
1107  // 4 is a magic number that works well enough for x86, ARM, etc. It filter
1108  // out all but the most restrictive register classes.
1109  if (NewRCCount > 4 ||
1110      // Early exit if the function is fairly small, coalesce aggressively if
1111      // that's the case. For really special register classes with 3 or
1112      // fewer registers, be a bit more careful.
1113      (LIS->getFuncInstructionCount() / NewRCCount) < 8)
1114    return true;
1115  LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1116  LiveInterval &DstInt = LIS->getInterval(DstReg);
1117  unsigned SrcSize = LIS->getApproximateInstructionCount(SrcInt);
1118  unsigned DstSize = LIS->getApproximateInstructionCount(DstInt);
1119
1120  // Coalesce aggressively if the intervals are small compared to the number of
1121  // registers in the new class. The number 4 is fairly arbitrary, chosen to be
1122  // less aggressive than the 8 used for the whole function size.
1123  const unsigned ThresSize = 4 * NewRCCount;
1124  if (SrcSize <= ThresSize && DstSize <= ThresSize)
1125    return true;
1126
1127  // Estimate *register use density*. If it doubles or more, abort.
1128  unsigned SrcUses = std::distance(MRI->use_nodbg_begin(SrcReg),
1129                                   MRI->use_nodbg_end());
1130  unsigned DstUses = std::distance(MRI->use_nodbg_begin(DstReg),
1131                                   MRI->use_nodbg_end());
1132  unsigned NewUses = SrcUses + DstUses;
1133  unsigned NewSize = SrcSize + DstSize;
1134  if (SrcRC != NewRC && SrcSize > ThresSize) {
1135    unsigned SrcRCCount = RegClassInfo.getNumAllocatableRegs(SrcRC);
1136    if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
1137      return false;
1138  }
1139  if (DstRC != NewRC && DstSize > ThresSize) {
1140    unsigned DstRCCount = RegClassInfo.getNumAllocatableRegs(DstRC);
1141    if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
1142      return false;
1143  }
1144  return true;
1145}
1146
1147
1148/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1149/// which are the src/dst of the copy instruction CopyMI.  This returns true
1150/// if the copy was successfully coalesced away. If it is not currently
1151/// possible to coalesce this interval, but it may be possible if other
1152/// things get coalesced, then it returns true by reference in 'Again'.
1153bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
1154
1155  Again = false;
1156  if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
1157    return false; // Already done.
1158
1159  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1160
1161  CoalescerPair CP(*TII, *TRI);
1162  if (!CP.setRegisters(CopyMI)) {
1163    DEBUG(dbgs() << "\tNot coalescable.\n");
1164    return false;
1165  }
1166
1167  // If they are already joined we continue.
1168  if (CP.getSrcReg() == CP.getDstReg()) {
1169    markAsJoined(CopyMI);
1170    DEBUG(dbgs() << "\tCopy already coalesced.\n");
1171    return false;  // Not coalescable.
1172  }
1173
1174  // Eliminate undefs.
1175  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
1176    markAsJoined(CopyMI);
1177    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
1178    return false;  // Not coalescable.
1179  }
1180
1181  DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1182               << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSubIdx())
1183               << "\n");
1184
1185  // Enforce policies.
1186  if (CP.isPhys()) {
1187    if (!shouldJoinPhys(CP)) {
1188      // Before giving up coalescing, if definition of source is defined by
1189      // trivial computation, try rematerializing it.
1190      if (!CP.isFlipped() &&
1191          ReMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
1192                                  CP.getDstReg(), CopyMI))
1193        return true;
1194      return false;
1195    }
1196  } else {
1197    // Avoid constraining virtual register regclass too much.
1198    if (CP.isCrossClass()) {
1199      DEBUG(dbgs() << "\tCross-class to " << CP.getNewRC()->getName() << ".\n");
1200      if (DisableCrossClassJoin) {
1201        DEBUG(dbgs() << "\tCross-class joins disabled.\n");
1202        return false;
1203      }
1204      if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
1205                                 MRI->getRegClass(CP.getSrcReg()),
1206                                 MRI->getRegClass(CP.getDstReg()),
1207                                 CP.getNewRC())) {
1208        DEBUG(dbgs() << "\tAvoid coalescing to constrained register class.\n");
1209        Again = true;  // May be possible to coalesce later.
1210        return false;
1211      }
1212    }
1213
1214    // When possible, let DstReg be the larger interval.
1215    if (!CP.getSubIdx() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
1216                           LIS->getInterval(CP.getDstReg()).ranges.size())
1217      CP.flip();
1218  }
1219
1220  // Okay, attempt to join these two intervals.  On failure, this returns false.
1221  // Otherwise, if one of the intervals being joined is a physreg, this method
1222  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1223  // been modified, so we can use this information below to update aliases.
1224  if (!JoinIntervals(CP)) {
1225    // Coalescing failed.
1226
1227    // If definition of source is defined by trivial computation, try
1228    // rematerializing it.
1229    if (!CP.isFlipped() &&
1230        ReMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
1231                                CP.getDstReg(), CopyMI))
1232      return true;
1233
1234    // If we can eliminate the copy without merging the live ranges, do so now.
1235    if (!CP.isPartial()) {
1236      if (AdjustCopiesBackFrom(CP, CopyMI) ||
1237          RemoveCopyByCommutingDef(CP, CopyMI)) {
1238        markAsJoined(CopyMI);
1239        DEBUG(dbgs() << "\tTrivial!\n");
1240        return true;
1241      }
1242    }
1243
1244    // Otherwise, we are unable to join the intervals.
1245    DEBUG(dbgs() << "\tInterference!\n");
1246    Again = true;  // May be possible to coalesce later.
1247    return false;
1248  }
1249
1250  // Coalescing to a virtual register that is of a sub-register class of the
1251  // other. Make sure the resulting register is set to the right register class.
1252  if (CP.isCrossClass()) {
1253    ++numCrossRCs;
1254    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1255  }
1256
1257  // Remember to delete the copy instruction.
1258  markAsJoined(CopyMI);
1259
1260  UpdateRegDefsUses(CP);
1261
1262  // If we have extended the live range of a physical register, make sure we
1263  // update live-in lists as well.
1264  if (CP.isPhys()) {
1265    SmallVector<MachineBasicBlock*, 16> BlockSeq;
1266    // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
1267    // ranges for this, and they are preserved.
1268    LiveInterval &SrcInt = LIS->getInterval(CP.getSrcReg());
1269    for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
1270         I != E; ++I ) {
1271      LIS->findLiveInMBBs(I->start, I->end, BlockSeq);
1272      for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
1273        MachineBasicBlock &block = *BlockSeq[idx];
1274        if (!block.isLiveIn(CP.getDstReg()))
1275          block.addLiveIn(CP.getDstReg());
1276      }
1277      BlockSeq.clear();
1278    }
1279  }
1280
1281  // SrcReg is guaranteed to be the register whose live interval that is
1282  // being merged.
1283  LIS->removeInterval(CP.getSrcReg());
1284
1285  // Update regalloc hint.
1286  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1287
1288  DEBUG({
1289    LiveInterval &DstInt = LIS->getInterval(CP.getDstReg());
1290    dbgs() << "\tJoined. Result = ";
1291    DstInt.print(dbgs(), TRI);
1292    dbgs() << "\n";
1293  });
1294
1295  ++numJoins;
1296  return true;
1297}
1298
1299/// ComputeUltimateVN - Assuming we are going to join two live intervals,
1300/// compute what the resultant value numbers for each value in the input two
1301/// ranges will be.  This is complicated by copies between the two which can
1302/// and will commonly cause multiple value numbers to be merged into one.
1303///
1304/// VN is the value number that we're trying to resolve.  InstDefiningValue
1305/// keeps track of the new InstDefiningValue assignment for the result
1306/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
1307/// whether a value in this or other is a copy from the opposite set.
1308/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1309/// already been assigned.
1310///
1311/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1312/// contains the value number the copy is from.
1313///
1314static unsigned ComputeUltimateVN(VNInfo *VNI,
1315                                  SmallVector<VNInfo*, 16> &NewVNInfo,
1316                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1317                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1318                                  SmallVector<int, 16> &ThisValNoAssignments,
1319                                  SmallVector<int, 16> &OtherValNoAssignments) {
1320  unsigned VN = VNI->id;
1321
1322  // If the VN has already been computed, just return it.
1323  if (ThisValNoAssignments[VN] >= 0)
1324    return ThisValNoAssignments[VN];
1325  assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
1326
1327  // If this val is not a copy from the other val, then it must be a new value
1328  // number in the destination.
1329  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1330  if (I == ThisFromOther.end()) {
1331    NewVNInfo.push_back(VNI);
1332    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1333  }
1334  VNInfo *OtherValNo = I->second;
1335
1336  // Otherwise, this *is* a copy from the RHS.  If the other side has already
1337  // been computed, return it.
1338  if (OtherValNoAssignments[OtherValNo->id] >= 0)
1339    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1340
1341  // Mark this value number as currently being computed, then ask what the
1342  // ultimate value # of the other value is.
1343  ThisValNoAssignments[VN] = -2;
1344  unsigned UltimateVN =
1345    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1346                      OtherValNoAssignments, ThisValNoAssignments);
1347  return ThisValNoAssignments[VN] = UltimateVN;
1348}
1349
1350
1351// Find out if we have something like
1352// A = X
1353// B = X
1354// if so, we can pretend this is actually
1355// A = X
1356// B = A
1357// which allows us to coalesce A and B.
1358// VNI is the definition of B. LR is the life range of A that includes
1359// the slot just before B. If we return true, we add "B = X" to DupCopies.
1360// This implies that A dominates B.
1361static bool RegistersDefinedFromSameValue(LiveIntervals &li,
1362                                          const TargetRegisterInfo &tri,
1363                                          CoalescerPair &CP,
1364                                          VNInfo *VNI,
1365                                          LiveRange *LR,
1366                                     SmallVector<MachineInstr*, 8> &DupCopies) {
1367  // FIXME: This is very conservative. For example, we don't handle
1368  // physical registers.
1369
1370  MachineInstr *MI = VNI->getCopy();
1371
1372  if (!MI->isFullCopy() || CP.isPartial() || CP.isPhys())
1373    return false;
1374
1375  unsigned Dst = MI->getOperand(0).getReg();
1376  unsigned Src = MI->getOperand(1).getReg();
1377
1378  if (!TargetRegisterInfo::isVirtualRegister(Src) ||
1379      !TargetRegisterInfo::isVirtualRegister(Dst))
1380    return false;
1381
1382  unsigned A = CP.getDstReg();
1383  unsigned B = CP.getSrcReg();
1384
1385  if (B == Dst)
1386    std::swap(A, B);
1387  assert(Dst == A);
1388
1389  VNInfo *Other = LR->valno;
1390  if (!Other->isDefByCopy())
1391    return false;
1392  const MachineInstr *OtherMI = Other->getCopy();
1393
1394  if (!OtherMI->isFullCopy())
1395    return false;
1396
1397  unsigned OtherDst = OtherMI->getOperand(0).getReg();
1398  unsigned OtherSrc = OtherMI->getOperand(1).getReg();
1399
1400  if (!TargetRegisterInfo::isVirtualRegister(OtherSrc) ||
1401      !TargetRegisterInfo::isVirtualRegister(OtherDst))
1402    return false;
1403
1404  assert(OtherDst == B);
1405
1406  if (Src != OtherSrc)
1407    return false;
1408
1409  // If the copies use two different value numbers of X, we cannot merge
1410  // A and B.
1411  LiveInterval &SrcInt = li.getInterval(Src);
1412  // getVNInfoBefore returns NULL for undef copies. In this case, the
1413  // optimization is still safe.
1414  if (SrcInt.getVNInfoBefore(Other->def) != SrcInt.getVNInfoBefore(VNI->def))
1415    return false;
1416
1417  DupCopies.push_back(MI);
1418
1419  return true;
1420}
1421
1422/// JoinIntervals - Attempt to join these two intervals.  On failure, this
1423/// returns false.
1424bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
1425  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1426  DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; });
1427
1428  // If a live interval is a physical register, check for interference with any
1429  // aliases. The interference check implemented here is a bit more conservative
1430  // than the full interfeence check below. We allow overlapping live ranges
1431  // only when one is a copy of the other.
1432  if (CP.isPhys()) {
1433    // Optimization for reserved registers like ESP.
1434    // We can only merge with a reserved physreg if RHS has a single value that
1435    // is a copy of CP.DstReg().  The live range of the reserved register will
1436    // look like a set of dead defs - we don't properly track the live range of
1437    // reserved registers.
1438    if (RegClassInfo.isReserved(CP.getDstReg())) {
1439      assert(CP.isFlipped() && RHS.containsOneValue() &&
1440             "Invalid join with reserved register");
1441      // Deny any overlapping intervals.  This depends on all the reserved
1442      // register live ranges to look like dead defs.
1443      for (const unsigned *AS = TRI->getOverlaps(CP.getDstReg()); *AS; ++AS) {
1444        if (!LIS->hasInterval(*AS))
1445          continue;
1446        if (RHS.overlaps(LIS->getInterval(*AS))) {
1447          DEBUG(dbgs() << "\t\tInterference: " << PrintReg(*AS, TRI) << '\n');
1448          return false;
1449        }
1450      }
1451      // Skip any value computations, we are not adding new values to the
1452      // reserved register.  Also skip merging the live ranges, the reserved
1453      // register live range doesn't need to be accurate as long as all the
1454      // defs are there.
1455      return true;
1456    }
1457
1458    for (const unsigned *AS = TRI->getAliasSet(CP.getDstReg()); *AS; ++AS){
1459      if (!LIS->hasInterval(*AS))
1460        continue;
1461      const LiveInterval &LHS = LIS->getInterval(*AS);
1462      LiveInterval::const_iterator LI = LHS.begin();
1463      for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
1464           RI != RE; ++RI) {
1465        LI = std::lower_bound(LI, LHS.end(), RI->start);
1466        // Does LHS have an overlapping live range starting before RI?
1467        if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
1468            (RI->start != RI->valno->def ||
1469             !CP.isCoalescable(LIS->getInstructionFromIndex(RI->start)))) {
1470          DEBUG({
1471            dbgs() << "\t\tInterference from alias: ";
1472            LHS.print(dbgs(), TRI);
1473            dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
1474          });
1475          return false;
1476        }
1477
1478        // Check that LHS ranges beginning in this range are copies.
1479        for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
1480          if (LI->start != LI->valno->def ||
1481              !CP.isCoalescable(LIS->getInstructionFromIndex(LI->start))) {
1482            DEBUG({
1483              dbgs() << "\t\tInterference from alias: ";
1484              LHS.print(dbgs(), TRI);
1485              dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
1486            });
1487            return false;
1488          }
1489        }
1490      }
1491    }
1492  }
1493
1494  // Compute the final value assignment, assuming that the live ranges can be
1495  // coalesced.
1496  SmallVector<int, 16> LHSValNoAssignments;
1497  SmallVector<int, 16> RHSValNoAssignments;
1498  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
1499  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
1500  SmallVector<VNInfo*, 16> NewVNInfo;
1501
1502  SmallVector<MachineInstr*, 8> DupCopies;
1503
1504  LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg());
1505  DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), TRI); dbgs() << "\n"; });
1506
1507  // Loop over the value numbers of the LHS, seeing if any are defined from
1508  // the RHS.
1509  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1510       i != e; ++i) {
1511    VNInfo *VNI = *i;
1512    if (VNI->isUnused() || !VNI->isDefByCopy())  // Src not defined by a copy?
1513      continue;
1514
1515    // Never join with a register that has EarlyClobber redefs.
1516    if (VNI->hasRedefByEC())
1517      return false;
1518
1519    // Figure out the value # from the RHS.
1520    LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
1521    // The copy could be to an aliased physreg.
1522    if (!lr) continue;
1523
1524    // DstReg is known to be a register in the LHS interval.  If the src is
1525    // from the RHS interval, we can use its value #.
1526    MachineInstr *MI = VNI->getCopy();
1527    if (!CP.isCoalescable(MI) &&
1528        !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
1529      continue;
1530
1531    LHSValsDefinedFromRHS[VNI] = lr->valno;
1532  }
1533
1534  // Loop over the value numbers of the RHS, seeing if any are defined from
1535  // the LHS.
1536  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1537       i != e; ++i) {
1538    VNInfo *VNI = *i;
1539    if (VNI->isUnused() || !VNI->isDefByCopy())  // Src not defined by a copy?
1540      continue;
1541
1542    // Never join with a register that has EarlyClobber redefs.
1543    if (VNI->hasRedefByEC())
1544      return false;
1545
1546    // Figure out the value # from the LHS.
1547    LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
1548    // The copy could be to an aliased physreg.
1549    if (!lr) continue;
1550
1551    // DstReg is known to be a register in the RHS interval.  If the src is
1552    // from the LHS interval, we can use its value #.
1553    MachineInstr *MI = VNI->getCopy();
1554    if (!CP.isCoalescable(MI) &&
1555        !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
1556        continue;
1557
1558    RHSValsDefinedFromLHS[VNI] = lr->valno;
1559  }
1560
1561  LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1562  RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1563  NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1564
1565  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1566       i != e; ++i) {
1567    VNInfo *VNI = *i;
1568    unsigned VN = VNI->id;
1569    if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1570      continue;
1571    ComputeUltimateVN(VNI, NewVNInfo,
1572                      LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1573                      LHSValNoAssignments, RHSValNoAssignments);
1574  }
1575  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1576       i != e; ++i) {
1577    VNInfo *VNI = *i;
1578    unsigned VN = VNI->id;
1579    if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1580      continue;
1581    // If this value number isn't a copy from the LHS, it's a new number.
1582    if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
1583      NewVNInfo.push_back(VNI);
1584      RHSValNoAssignments[VN] = NewVNInfo.size()-1;
1585      continue;
1586    }
1587
1588    ComputeUltimateVN(VNI, NewVNInfo,
1589                      RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1590                      RHSValNoAssignments, LHSValNoAssignments);
1591  }
1592
1593  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1594  // interval lists to see if these intervals are coalescable.
1595  LiveInterval::const_iterator I = LHS.begin();
1596  LiveInterval::const_iterator IE = LHS.end();
1597  LiveInterval::const_iterator J = RHS.begin();
1598  LiveInterval::const_iterator JE = RHS.end();
1599
1600  // Skip ahead until the first place of potential sharing.
1601  if (I != IE && J != JE) {
1602    if (I->start < J->start) {
1603      I = std::upper_bound(I, IE, J->start);
1604      if (I != LHS.begin()) --I;
1605    } else if (J->start < I->start) {
1606      J = std::upper_bound(J, JE, I->start);
1607      if (J != RHS.begin()) --J;
1608    }
1609  }
1610
1611  while (I != IE && J != JE) {
1612    // Determine if these two live ranges overlap.
1613    bool Overlaps;
1614    if (I->start < J->start) {
1615      Overlaps = I->end > J->start;
1616    } else {
1617      Overlaps = J->end > I->start;
1618    }
1619
1620    // If so, check value # info to determine if they are really different.
1621    if (Overlaps) {
1622      // If the live range overlap will map to the same value number in the
1623      // result liverange, we can still coalesce them.  If not, we can't.
1624      if (LHSValNoAssignments[I->valno->id] !=
1625          RHSValNoAssignments[J->valno->id])
1626        return false;
1627      // If it's re-defined by an early clobber somewhere in the live range,
1628      // then conservatively abort coalescing.
1629      if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC())
1630        return false;
1631    }
1632
1633    if (I->end < J->end)
1634      ++I;
1635    else
1636      ++J;
1637  }
1638
1639  // Update kill info. Some live ranges are extended due to copy coalescing.
1640  for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
1641         E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
1642    VNInfo *VNI = I->first;
1643    unsigned LHSValID = LHSValNoAssignments[VNI->id];
1644    if (VNI->hasPHIKill())
1645      NewVNInfo[LHSValID]->setHasPHIKill(true);
1646  }
1647
1648  // Update kill info. Some live ranges are extended due to copy coalescing.
1649  for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
1650         E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
1651    VNInfo *VNI = I->first;
1652    unsigned RHSValID = RHSValNoAssignments[VNI->id];
1653    if (VNI->hasPHIKill())
1654      NewVNInfo[RHSValID]->setHasPHIKill(true);
1655  }
1656
1657  if (LHSValNoAssignments.empty())
1658    LHSValNoAssignments.push_back(-1);
1659  if (RHSValNoAssignments.empty())
1660    RHSValNoAssignments.push_back(-1);
1661
1662  SmallVector<unsigned, 8> SourceRegisters;
1663  for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
1664         E = DupCopies.end(); I != E; ++I) {
1665    MachineInstr *MI = *I;
1666
1667    // We have pretended that the assignment to B in
1668    // A = X
1669    // B = X
1670    // was actually a copy from A. Now that we decided to coalesce A and B,
1671    // transform the code into
1672    // A = X
1673    // X = X
1674    // and mark the X as coalesced to keep the illusion.
1675    unsigned Src = MI->getOperand(1).getReg();
1676    SourceRegisters.push_back(Src);
1677    MI->getOperand(0).substVirtReg(Src, 0, *TRI);
1678
1679    markAsJoined(MI);
1680  }
1681
1682  // If B = X was the last use of X in a liverange, we have to shrink it now
1683  // that B = X is gone.
1684  for (SmallVector<unsigned, 8>::iterator I = SourceRegisters.begin(),
1685         E = SourceRegisters.end(); I != E; ++I) {
1686    LIS->shrinkToUses(&LIS->getInterval(*I));
1687  }
1688
1689  // If we get here, we know that we can coalesce the live ranges.  Ask the
1690  // intervals to coalesce themselves now.
1691  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
1692           MRI);
1693  return true;
1694}
1695
1696namespace {
1697  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1698  // depth of the basic block (the unsigned), and then on the MBB number.
1699  struct DepthMBBCompare {
1700    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1701    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1702      // Deeper loops first
1703      if (LHS.first != RHS.first)
1704        return LHS.first > RHS.first;
1705
1706      // Prefer blocks that are more connected in the CFG. This takes care of
1707      // the most difficult copies first while intervals are short.
1708      unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
1709      unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
1710      if (cl != cr)
1711        return cl > cr;
1712
1713      // As a last resort, sort by block number.
1714      return LHS.second->getNumber() < RHS.second->getNumber();
1715    }
1716  };
1717}
1718
1719void RegisterCoalescer::CopyCoalesceInMBB(MachineBasicBlock *MBB,
1720                                            std::vector<MachineInstr*> &TryAgain) {
1721  DEBUG(dbgs() << MBB->getName() << ":\n");
1722
1723  SmallVector<MachineInstr*, 8> VirtCopies;
1724  SmallVector<MachineInstr*, 8> PhysCopies;
1725  SmallVector<MachineInstr*, 8> ImpDefCopies;
1726  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1727       MII != E;) {
1728    MachineInstr *Inst = MII++;
1729
1730    // If this isn't a copy nor a extract_subreg, we can't join intervals.
1731    unsigned SrcReg, DstReg;
1732    if (Inst->isCopy()) {
1733      DstReg = Inst->getOperand(0).getReg();
1734      SrcReg = Inst->getOperand(1).getReg();
1735    } else if (Inst->isSubregToReg()) {
1736      DstReg = Inst->getOperand(0).getReg();
1737      SrcReg = Inst->getOperand(2).getReg();
1738    } else
1739      continue;
1740
1741    bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1742    bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1743    if (LIS->hasInterval(SrcReg) && LIS->getInterval(SrcReg).empty())
1744      ImpDefCopies.push_back(Inst);
1745    else if (SrcIsPhys || DstIsPhys)
1746      PhysCopies.push_back(Inst);
1747    else
1748      VirtCopies.push_back(Inst);
1749  }
1750
1751  // Try coalescing implicit copies and insert_subreg <undef> first,
1752  // followed by copies to / from physical registers, then finally copies
1753  // from virtual registers to virtual registers.
1754  for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
1755    MachineInstr *TheCopy = ImpDefCopies[i];
1756    bool Again = false;
1757    if (!JoinCopy(TheCopy, Again))
1758      if (Again)
1759        TryAgain.push_back(TheCopy);
1760  }
1761  for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
1762    MachineInstr *TheCopy = PhysCopies[i];
1763    bool Again = false;
1764    if (!JoinCopy(TheCopy, Again))
1765      if (Again)
1766        TryAgain.push_back(TheCopy);
1767  }
1768  for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
1769    MachineInstr *TheCopy = VirtCopies[i];
1770    bool Again = false;
1771    if (!JoinCopy(TheCopy, Again))
1772      if (Again)
1773        TryAgain.push_back(TheCopy);
1774  }
1775}
1776
1777void RegisterCoalescer::joinIntervals() {
1778  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
1779
1780  std::vector<MachineInstr*> TryAgainList;
1781  if (Loops->empty()) {
1782    // If there are no loops in the function, join intervals in function order.
1783    for (MachineFunction::iterator I = MF->begin(), E = MF->end();
1784         I != E; ++I)
1785      CopyCoalesceInMBB(I, TryAgainList);
1786  } else {
1787    // Otherwise, join intervals in inner loops before other intervals.
1788    // Unfortunately we can't just iterate over loop hierarchy here because
1789    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1790
1791    // Join intervals in the function prolog first. We want to join physical
1792    // registers with virtual registers before the intervals got too long.
1793    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1794    for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
1795      MachineBasicBlock *MBB = I;
1796      MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I));
1797    }
1798
1799    // Sort by loop depth.
1800    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1801
1802    // Finally, join intervals in loop nest order.
1803    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1804      CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
1805  }
1806
1807  // Joining intervals can allow other intervals to be joined.  Iteratively join
1808  // until we make no progress.
1809  bool ProgressMade = true;
1810  while (ProgressMade) {
1811    ProgressMade = false;
1812
1813    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1814      MachineInstr *&TheCopy = TryAgainList[i];
1815      if (!TheCopy)
1816        continue;
1817
1818      bool Again = false;
1819      bool Success = JoinCopy(TheCopy, Again);
1820      if (Success || !Again) {
1821        TheCopy= 0;   // Mark this one as done.
1822        ProgressMade = true;
1823      }
1824    }
1825  }
1826}
1827
1828void RegisterCoalescer::releaseMemory() {
1829  JoinedCopies.clear();
1830  ReMatCopies.clear();
1831  ReMatDefs.clear();
1832}
1833
1834bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
1835  MF = &fn;
1836  MRI = &fn.getRegInfo();
1837  TM = &fn.getTarget();
1838  TRI = TM->getRegisterInfo();
1839  TII = TM->getInstrInfo();
1840  LIS = &getAnalysis<LiveIntervals>();
1841  LDV = &getAnalysis<LiveDebugVariables>();
1842  AA = &getAnalysis<AliasAnalysis>();
1843  Loops = &getAnalysis<MachineLoopInfo>();
1844
1845  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
1846               << "********** Function: "
1847               << ((Value*)MF->getFunction())->getName() << '\n');
1848
1849  if (VerifyCoalescing)
1850    MF->verify(this, "Before register coalescing");
1851
1852  RegClassInfo.runOnMachineFunction(fn);
1853
1854  // Join (coalesce) intervals if requested.
1855  if (EnableJoining) {
1856    joinIntervals();
1857    DEBUG({
1858        dbgs() << "********** INTERVALS POST JOINING **********\n";
1859        for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end();
1860             I != E; ++I){
1861          I->second->print(dbgs(), TRI);
1862          dbgs() << "\n";
1863        }
1864      });
1865  }
1866
1867  // Perform a final pass over the instructions and compute spill weights
1868  // and remove identity moves.
1869  SmallVector<unsigned, 4> DeadDefs, InflateRegs;
1870  for (MachineFunction::iterator mbbi = MF->begin(), mbbe = MF->end();
1871       mbbi != mbbe; ++mbbi) {
1872    MachineBasicBlock* mbb = mbbi;
1873    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
1874         mii != mie; ) {
1875      MachineInstr *MI = mii;
1876      if (JoinedCopies.count(MI)) {
1877        // Delete all coalesced copies.
1878        bool DoDelete = true;
1879        assert(MI->isCopyLike() && "Unrecognized copy instruction");
1880        unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
1881        unsigned DstReg = MI->getOperand(0).getReg();
1882
1883        // Collect candidates for register class inflation.
1884        if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1885            RegClassInfo.isProperSubClass(MRI->getRegClass(SrcReg)))
1886          InflateRegs.push_back(SrcReg);
1887        if (TargetRegisterInfo::isVirtualRegister(DstReg) &&
1888            RegClassInfo.isProperSubClass(MRI->getRegClass(DstReg)))
1889          InflateRegs.push_back(DstReg);
1890
1891        if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1892            MI->getNumOperands() > 2)
1893          // Do not delete extract_subreg, insert_subreg of physical
1894          // registers unless the definition is dead. e.g.
1895          // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
1896          // or else the scavenger may complain. LowerSubregs will
1897          // delete them later.
1898          DoDelete = false;
1899
1900        if (MI->allDefsAreDead()) {
1901          if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1902              LIS->hasInterval(SrcReg))
1903            LIS->shrinkToUses(&LIS->getInterval(SrcReg));
1904          DoDelete = true;
1905        }
1906        if (!DoDelete) {
1907          // We need the instruction to adjust liveness, so make it a KILL.
1908          if (MI->isSubregToReg()) {
1909            MI->RemoveOperand(3);
1910            MI->RemoveOperand(1);
1911          }
1912          MI->setDesc(TII->get(TargetOpcode::KILL));
1913          mii = llvm::next(mii);
1914        } else {
1915          LIS->RemoveMachineInstrFromMaps(MI);
1916          mii = mbbi->erase(mii);
1917          ++numPeep;
1918        }
1919        continue;
1920      }
1921
1922      // Now check if this is a remat'ed def instruction which is now dead.
1923      if (ReMatDefs.count(MI)) {
1924        bool isDead = true;
1925        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1926          const MachineOperand &MO = MI->getOperand(i);
1927          if (!MO.isReg())
1928            continue;
1929          unsigned Reg = MO.getReg();
1930          if (!Reg)
1931            continue;
1932          if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1933            DeadDefs.push_back(Reg);
1934            // Remat may also enable register class inflation.
1935            if (RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)))
1936              InflateRegs.push_back(Reg);
1937          }
1938          if (MO.isDead())
1939            continue;
1940          if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
1941              !MRI->use_nodbg_empty(Reg)) {
1942            isDead = false;
1943            break;
1944          }
1945        }
1946        if (isDead) {
1947          while (!DeadDefs.empty()) {
1948            unsigned DeadDef = DeadDefs.back();
1949            DeadDefs.pop_back();
1950            RemoveDeadDef(LIS->getInterval(DeadDef), MI);
1951          }
1952          LIS->RemoveMachineInstrFromMaps(mii);
1953          mii = mbbi->erase(mii);
1954          continue;
1955        } else
1956          DeadDefs.clear();
1957      }
1958
1959      ++mii;
1960
1961      // Check for now unnecessary kill flags.
1962      if (LIS->isNotInMIMap(MI)) continue;
1963      SlotIndex DefIdx = LIS->getInstructionIndex(MI).getRegSlot();
1964      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1965        MachineOperand &MO = MI->getOperand(i);
1966        if (!MO.isReg() || !MO.isKill()) continue;
1967        unsigned reg = MO.getReg();
1968        if (!reg || !LIS->hasInterval(reg)) continue;
1969        if (!LIS->getInterval(reg).killedAt(DefIdx)) {
1970          MO.setIsKill(false);
1971          continue;
1972        }
1973        // When leaving a kill flag on a physreg, check if any subregs should
1974        // remain alive.
1975        if (!TargetRegisterInfo::isPhysicalRegister(reg))
1976          continue;
1977        for (const unsigned *SR = TRI->getSubRegisters(reg);
1978             unsigned S = *SR; ++SR)
1979          if (LIS->hasInterval(S) && LIS->getInterval(S).liveAt(DefIdx))
1980            MI->addRegisterDefined(S, TRI);
1981      }
1982    }
1983  }
1984
1985  // After deleting a lot of copies, register classes may be less constrained.
1986  // Removing sub-register opreands may alow GR32_ABCD -> GR32 and DPR_VFP2 ->
1987  // DPR inflation.
1988  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
1989  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
1990                    InflateRegs.end());
1991  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
1992  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
1993    unsigned Reg = InflateRegs[i];
1994    if (MRI->reg_nodbg_empty(Reg))
1995      continue;
1996    if (MRI->recomputeRegClass(Reg, *TM)) {
1997      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
1998                   << MRI->getRegClass(Reg)->getName() << '\n');
1999      ++NumInflated;
2000    }
2001  }
2002
2003  DEBUG(dump());
2004  DEBUG(LDV->dump());
2005  if (VerifyCoalescing)
2006    MF->verify(this, "After register coalescing");
2007  return true;
2008}
2009
2010/// print - Implement the dump method.
2011void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
2012   LIS->print(O, m);
2013}
2014