JIT.cpp revision b35fd448cea32da671ecd3ecaad3cc637598c6e0
1//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tool implements a just-in-time compiler for LLVM, allowing direct
11// execution of LLVM bitcode in an efficient manner.
12//
13//===----------------------------------------------------------------------===//
14
15#include "JIT.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/Instructions.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/CodeGen/JITCodeEmitter.h"
23#include "llvm/CodeGen/MachineCodeInfo.h"
24#include "llvm/ExecutionEngine/GenericValue.h"
25#include "llvm/ExecutionEngine/JITEventListener.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Target/TargetJITInfo.h"
29#include "llvm/Support/Dwarf.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/ManagedStatic.h"
32#include "llvm/Support/MutexGuard.h"
33#include "llvm/System/DynamicLibrary.h"
34#include "llvm/Config/config.h"
35
36using namespace llvm;
37
38#ifdef __APPLE__
39// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
40// of atexit). It passes the address of linker generated symbol __dso_handle
41// to the function.
42// This configuration change happened at version 5330.
43# include <AvailabilityMacros.h>
44# if defined(MAC_OS_X_VERSION_10_4) && \
45     ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
46      (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
47       __APPLE_CC__ >= 5330))
48#  ifndef HAVE___DSO_HANDLE
49#   define HAVE___DSO_HANDLE 1
50#  endif
51# endif
52#endif
53
54#if HAVE___DSO_HANDLE
55extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
56#endif
57
58namespace {
59
60static struct RegisterJIT {
61  RegisterJIT() { JIT::Register(); }
62} JITRegistrator;
63
64}
65
66extern "C" void LLVMLinkInJIT() {
67}
68
69
70#if defined(__GNUC__) && !defined(__ARM_EABI__) && !defined(__USING_SJLJ_EXCEPTIONS__)
71
72// libgcc defines the __register_frame function to dynamically register new
73// dwarf frames for exception handling. This functionality is not portable
74// across compilers and is only provided by GCC. We use the __register_frame
75// function here so that code generated by the JIT cooperates with the unwinding
76// runtime of libgcc. When JITting with exception handling enable, LLVM
77// generates dwarf frames and registers it to libgcc with __register_frame.
78//
79// The __register_frame function works with Linux.
80//
81// Unfortunately, this functionality seems to be in libgcc after the unwinding
82// library of libgcc for darwin was written. The code for darwin overwrites the
83// value updated by __register_frame with a value fetched with "keymgr".
84// "keymgr" is an obsolete functionality, which should be rewritten some day.
85// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
86// need a workaround in LLVM which uses the "keymgr" to dynamically modify the
87// values of an opaque key, used by libgcc to find dwarf tables.
88
89extern "C" void __register_frame(void*);
90extern "C" void __deregister_frame(void*);
91
92#if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
93# define USE_KEYMGR 1
94#else
95# define USE_KEYMGR 0
96#endif
97
98#if USE_KEYMGR
99
100namespace {
101
102// LibgccObject - This is the structure defined in libgcc. There is no #include
103// provided for this structure, so we also define it here. libgcc calls it
104// "struct object". The structure is undocumented in libgcc.
105struct LibgccObject {
106  void *unused1;
107  void *unused2;
108  void *unused3;
109
110  /// frame - Pointer to the exception table.
111  void *frame;
112
113  /// encoding -  The encoding of the object?
114  union {
115    struct {
116      unsigned long sorted : 1;
117      unsigned long from_array : 1;
118      unsigned long mixed_encoding : 1;
119      unsigned long encoding : 8;
120      unsigned long count : 21;
121    } b;
122    size_t i;
123  } encoding;
124
125  /// fde_end - libgcc defines this field only if some macro is defined. We
126  /// include this field even if it may not there, to make libgcc happy.
127  char *fde_end;
128
129  /// next - At least we know it's a chained list!
130  struct LibgccObject *next;
131};
132
133// "kemgr" stuff. Apparently, all frame tables are stored there.
134extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
135extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
136#define KEYMGR_GCC3_DW2_OBJ_LIST        302     /* Dwarf2 object list  */
137
138/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
139/// probably contains all dwarf tables that are loaded.
140struct LibgccObjectInfo {
141
142  /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
143  ///
144  struct LibgccObject* seenObjects;
145
146  /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
147  ///
148  struct LibgccObject* unseenObjects;
149
150  unsigned unused[2];
151};
152
153/// darwin_register_frame - Since __register_frame does not work with darwin's
154/// libgcc,we provide our own function, which "tricks" libgcc by modifying the
155/// "Dwarf2 object list" key.
156void DarwinRegisterFrame(void* FrameBegin) {
157  // Get the key.
158  LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
159    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
160  assert(LOI && "This should be preallocated by the runtime");
161
162  // Allocate a new LibgccObject to represent this frame. Deallocation of this
163  // object may be impossible: since darwin code in libgcc was written after
164  // the ability to dynamically register frames, things may crash if we
165  // deallocate it.
166  struct LibgccObject* ob = (struct LibgccObject*)
167    malloc(sizeof(struct LibgccObject));
168
169  // Do like libgcc for the values of the field.
170  ob->unused1 = (void *)-1;
171  ob->unused2 = 0;
172  ob->unused3 = 0;
173  ob->frame = FrameBegin;
174  ob->encoding.i = 0;
175  ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
176
177  // Put the info on both places, as libgcc uses the first or the second
178  // field. Note that we rely on having two pointers here. If fde_end was a
179  // char, things would get complicated.
180  ob->fde_end = (char*)LOI->unseenObjects;
181  ob->next = LOI->unseenObjects;
182
183  // Update the key's unseenObjects list.
184  LOI->unseenObjects = ob;
185
186  // Finally update the "key". Apparently, libgcc requires it.
187  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
188                                         LOI);
189
190}
191
192}
193#endif // __APPLE__
194#endif // __GNUC__
195
196/// createJIT - This is the factory method for creating a JIT for the current
197/// machine, it does not fall back to the interpreter.  This takes ownership
198/// of the module.
199ExecutionEngine *ExecutionEngine::createJIT(Module *M,
200                                            std::string *ErrorStr,
201                                            JITMemoryManager *JMM,
202                                            CodeGenOpt::Level OptLevel,
203                                            bool GVsWithCode,
204                                            CodeModel::Model CMM) {
205  // Use the defaults for extra parameters.  Users can use EngineBuilder to
206  // set them.
207  StringRef MArch = "";
208  StringRef MCPU = "";
209  SmallVector<std::string, 1> MAttrs;
210  return JIT::createJIT(M, ErrorStr, JMM, OptLevel, GVsWithCode, CMM,
211                        MArch, MCPU, MAttrs);
212}
213
214ExecutionEngine *JIT::createJIT(Module *M,
215                                std::string *ErrorStr,
216                                JITMemoryManager *JMM,
217                                CodeGenOpt::Level OptLevel,
218                                bool GVsWithCode,
219                                CodeModel::Model CMM,
220                                StringRef MArch,
221                                StringRef MCPU,
222                                const SmallVectorImpl<std::string>& MAttrs) {
223  // Try to register the program as a source of symbols to resolve against.
224  sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
225
226  // Pick a target either via -march or by guessing the native arch.
227  TargetMachine *TM = JIT::selectTarget(M, MArch, MCPU, MAttrs, ErrorStr);
228  if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
229  TM->setCodeModel(CMM);
230
231  // If the target supports JIT code generation, create a the JIT.
232  if (TargetJITInfo *TJ = TM->getJITInfo()) {
233    return new JIT(M, *TM, *TJ, JMM, OptLevel, GVsWithCode);
234  } else {
235    if (ErrorStr)
236      *ErrorStr = "target does not support JIT code generation";
237    return 0;
238  }
239}
240
241namespace {
242/// This class supports the global getPointerToNamedFunction(), which allows
243/// bugpoint or gdb users to search for a function by name without any context.
244class JitPool {
245  SmallPtrSet<JIT*, 1> JITs;  // Optimize for process containing just 1 JIT.
246  mutable sys::Mutex Lock;
247public:
248  void Add(JIT *jit) {
249    MutexGuard guard(Lock);
250    JITs.insert(jit);
251  }
252  void Remove(JIT *jit) {
253    MutexGuard guard(Lock);
254    JITs.erase(jit);
255  }
256  void *getPointerToNamedFunction(const char *Name) const {
257    MutexGuard guard(Lock);
258    assert(JITs.size() != 0 && "No Jit registered");
259    //search function in every instance of JIT
260    for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(),
261           end = JITs.end();
262         Jit != end; ++Jit) {
263      if (Function *F = (*Jit)->FindFunctionNamed(Name))
264        return (*Jit)->getPointerToFunction(F);
265    }
266    // The function is not available : fallback on the first created (will
267    // search in symbol of the current program/library)
268    return (*JITs.begin())->getPointerToNamedFunction(Name);
269  }
270};
271ManagedStatic<JitPool> AllJits;
272}
273extern "C" {
274  // getPointerToNamedFunction - This function is used as a global wrapper to
275  // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
276  // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
277  // need to resolve function(s) that are being mis-codegenerated, so we need to
278  // resolve their addresses at runtime, and this is the way to do it.
279  void *getPointerToNamedFunction(const char *Name) {
280    return AllJits->getPointerToNamedFunction(Name);
281  }
282}
283
284JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
285         JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode)
286  : ExecutionEngine(M), TM(tm), TJI(tji), AllocateGVsWithCode(GVsWithCode),
287    isAlreadyCodeGenerating(false) {
288  setTargetData(TM.getTargetData());
289
290  jitstate = new JITState(M);
291
292  // Initialize JCE
293  JCE = createEmitter(*this, JMM, TM);
294
295  // Register in global list of all JITs.
296  AllJits->Add(this);
297
298  // Add target data
299  MutexGuard locked(lock);
300  FunctionPassManager &PM = jitstate->getPM(locked);
301  PM.add(new TargetData(*TM.getTargetData()));
302
303  // Turn the machine code intermediate representation into bytes in memory that
304  // may be executed.
305  if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) {
306    report_fatal_error("Target does not support machine code emission!");
307  }
308
309  // Register routine for informing unwinding runtime about new EH frames
310#if defined(__GNUC__) && !defined(__ARM_EABI__) && !defined(__USING_SJLJ_EXCEPTIONS__)
311#if USE_KEYMGR
312  struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
313    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
314
315  // The key is created on demand, and libgcc creates it the first time an
316  // exception occurs. Since we need the key to register frames, we create
317  // it now.
318  if (!LOI)
319    LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
320  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
321  InstallExceptionTableRegister(DarwinRegisterFrame);
322  // Not sure about how to deregister on Darwin.
323#else
324  InstallExceptionTableRegister(__register_frame);
325  InstallExceptionTableDeregister(__deregister_frame);
326#endif // __APPLE__
327#endif // __GNUC__
328
329  // Initialize passes.
330  PM.doInitialization();
331}
332
333JIT::~JIT() {
334  // Unregister all exception tables registered by this JIT.
335  DeregisterAllTables();
336  // Cleanup.
337  AllJits->Remove(this);
338  delete jitstate;
339  delete JCE;
340  delete &TM;
341}
342
343/// addModule - Add a new Module to the JIT.  If we previously removed the last
344/// Module, we need re-initialize jitstate with a valid Module.
345void JIT::addModule(Module *M) {
346  MutexGuard locked(lock);
347
348  if (Modules.empty()) {
349    assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
350
351    jitstate = new JITState(M);
352
353    FunctionPassManager &PM = jitstate->getPM(locked);
354    PM.add(new TargetData(*TM.getTargetData()));
355
356    // Turn the machine code intermediate representation into bytes in memory
357    // that may be executed.
358    if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
359      report_fatal_error("Target does not support machine code emission!");
360    }
361
362    // Initialize passes.
363    PM.doInitialization();
364  }
365
366  ExecutionEngine::addModule(M);
367}
368
369/// removeModule - If we are removing the last Module, invalidate the jitstate
370/// since the PassManager it contains references a released Module.
371bool JIT::removeModule(Module *M) {
372  bool result = ExecutionEngine::removeModule(M);
373
374  MutexGuard locked(lock);
375
376  if (jitstate->getModule() == M) {
377    delete jitstate;
378    jitstate = 0;
379  }
380
381  if (!jitstate && !Modules.empty()) {
382    jitstate = new JITState(Modules[0]);
383
384    FunctionPassManager &PM = jitstate->getPM(locked);
385    PM.add(new TargetData(*TM.getTargetData()));
386
387    // Turn the machine code intermediate representation into bytes in memory
388    // that may be executed.
389    if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
390      report_fatal_error("Target does not support machine code emission!");
391    }
392
393    // Initialize passes.
394    PM.doInitialization();
395  }
396  return result;
397}
398
399/// run - Start execution with the specified function and arguments.
400///
401GenericValue JIT::runFunction(Function *F,
402                              const std::vector<GenericValue> &ArgValues) {
403  assert(F && "Function *F was null at entry to run()");
404
405  void *FPtr = getPointerToFunction(F);
406  assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
407  const FunctionType *FTy = F->getFunctionType();
408  const Type *RetTy = FTy->getReturnType();
409
410  assert((FTy->getNumParams() == ArgValues.size() ||
411          (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
412         "Wrong number of arguments passed into function!");
413  assert(FTy->getNumParams() == ArgValues.size() &&
414         "This doesn't support passing arguments through varargs (yet)!");
415
416  // Handle some common cases first.  These cases correspond to common `main'
417  // prototypes.
418  if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
419    switch (ArgValues.size()) {
420    case 3:
421      if (FTy->getParamType(0)->isIntegerTy(32) &&
422          FTy->getParamType(1)->isPointerTy() &&
423          FTy->getParamType(2)->isPointerTy()) {
424        int (*PF)(int, char **, const char **) =
425          (int(*)(int, char **, const char **))(intptr_t)FPtr;
426
427        // Call the function.
428        GenericValue rv;
429        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
430                                 (char **)GVTOP(ArgValues[1]),
431                                 (const char **)GVTOP(ArgValues[2])));
432        return rv;
433      }
434      break;
435    case 2:
436      if (FTy->getParamType(0)->isIntegerTy(32) &&
437          FTy->getParamType(1)->isPointerTy()) {
438        int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
439
440        // Call the function.
441        GenericValue rv;
442        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
443                                 (char **)GVTOP(ArgValues[1])));
444        return rv;
445      }
446      break;
447    case 1:
448      if (FTy->getNumParams() == 1 &&
449          FTy->getParamType(0)->isIntegerTy(32)) {
450        GenericValue rv;
451        int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
452        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
453        return rv;
454      }
455      break;
456    }
457  }
458
459  // Handle cases where no arguments are passed first.
460  if (ArgValues.empty()) {
461    GenericValue rv;
462    switch (RetTy->getTypeID()) {
463    default: llvm_unreachable("Unknown return type for function call!");
464    case Type::IntegerTyID: {
465      unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
466      if (BitWidth == 1)
467        rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
468      else if (BitWidth <= 8)
469        rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
470      else if (BitWidth <= 16)
471        rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
472      else if (BitWidth <= 32)
473        rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
474      else if (BitWidth <= 64)
475        rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
476      else
477        llvm_unreachable("Integer types > 64 bits not supported");
478      return rv;
479    }
480    case Type::VoidTyID:
481      rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
482      return rv;
483    case Type::FloatTyID:
484      rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
485      return rv;
486    case Type::DoubleTyID:
487      rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
488      return rv;
489    case Type::X86_FP80TyID:
490    case Type::FP128TyID:
491    case Type::PPC_FP128TyID:
492      llvm_unreachable("long double not supported yet");
493      return rv;
494    case Type::PointerTyID:
495      return PTOGV(((void*(*)())(intptr_t)FPtr)());
496    }
497  }
498
499  // Okay, this is not one of our quick and easy cases.  Because we don't have a
500  // full FFI, we have to codegen a nullary stub function that just calls the
501  // function we are interested in, passing in constants for all of the
502  // arguments.  Make this function and return.
503
504  // First, create the function.
505  FunctionType *STy=FunctionType::get(RetTy, false);
506  Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
507                                    F->getParent());
508
509  // Insert a basic block.
510  BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
511
512  // Convert all of the GenericValue arguments over to constants.  Note that we
513  // currently don't support varargs.
514  SmallVector<Value*, 8> Args;
515  for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
516    Constant *C = 0;
517    const Type *ArgTy = FTy->getParamType(i);
518    const GenericValue &AV = ArgValues[i];
519    switch (ArgTy->getTypeID()) {
520    default: llvm_unreachable("Unknown argument type for function call!");
521    case Type::IntegerTyID:
522        C = ConstantInt::get(F->getContext(), AV.IntVal);
523        break;
524    case Type::FloatTyID:
525        C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
526        break;
527    case Type::DoubleTyID:
528        C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
529        break;
530    case Type::PPC_FP128TyID:
531    case Type::X86_FP80TyID:
532    case Type::FP128TyID:
533        C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
534        break;
535    case Type::PointerTyID:
536      void *ArgPtr = GVTOP(AV);
537      if (sizeof(void*) == 4)
538        C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
539                             (int)(intptr_t)ArgPtr);
540      else
541        C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
542                             (intptr_t)ArgPtr);
543      // Cast the integer to pointer
544      C = ConstantExpr::getIntToPtr(C, ArgTy);
545      break;
546    }
547    Args.push_back(C);
548  }
549
550  CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(),
551                                       "", StubBB);
552  TheCall->setCallingConv(F->getCallingConv());
553  TheCall->setTailCall();
554  if (!TheCall->getType()->isVoidTy())
555    // Return result of the call.
556    ReturnInst::Create(F->getContext(), TheCall, StubBB);
557  else
558    ReturnInst::Create(F->getContext(), StubBB);           // Just return void.
559
560  // Finally, call our nullary stub function.
561  GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
562  // Erase it, since no other function can have a reference to it.
563  Stub->eraseFromParent();
564  // And return the result.
565  return Result;
566}
567
568void JIT::RegisterJITEventListener(JITEventListener *L) {
569  if (L == NULL)
570    return;
571  MutexGuard locked(lock);
572  EventListeners.push_back(L);
573}
574void JIT::UnregisterJITEventListener(JITEventListener *L) {
575  if (L == NULL)
576    return;
577  MutexGuard locked(lock);
578  std::vector<JITEventListener*>::reverse_iterator I=
579      std::find(EventListeners.rbegin(), EventListeners.rend(), L);
580  if (I != EventListeners.rend()) {
581    std::swap(*I, EventListeners.back());
582    EventListeners.pop_back();
583  }
584}
585void JIT::NotifyFunctionEmitted(
586    const Function &F,
587    void *Code, size_t Size,
588    const JITEvent_EmittedFunctionDetails &Details) {
589  MutexGuard locked(lock);
590  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
591    EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
592  }
593}
594
595void JIT::NotifyFreeingMachineCode(void *OldPtr) {
596  MutexGuard locked(lock);
597  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
598    EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
599  }
600}
601
602/// runJITOnFunction - Run the FunctionPassManager full of
603/// just-in-time compilation passes on F, hopefully filling in
604/// GlobalAddress[F] with the address of F's machine code.
605///
606void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
607  MutexGuard locked(lock);
608
609  class MCIListener : public JITEventListener {
610    MachineCodeInfo *const MCI;
611   public:
612    MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
613    virtual void NotifyFunctionEmitted(const Function &,
614                                       void *Code, size_t Size,
615                                       const EmittedFunctionDetails &) {
616      MCI->setAddress(Code);
617      MCI->setSize(Size);
618    }
619  };
620  MCIListener MCIL(MCI);
621  if (MCI)
622    RegisterJITEventListener(&MCIL);
623
624  runJITOnFunctionUnlocked(F, locked);
625
626  if (MCI)
627    UnregisterJITEventListener(&MCIL);
628}
629
630void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
631  assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
632
633  jitTheFunction(F, locked);
634
635  // If the function referred to another function that had not yet been
636  // read from bitcode, and we are jitting non-lazily, emit it now.
637  while (!jitstate->getPendingFunctions(locked).empty()) {
638    Function *PF = jitstate->getPendingFunctions(locked).back();
639    jitstate->getPendingFunctions(locked).pop_back();
640
641    assert(!PF->hasAvailableExternallyLinkage() &&
642           "Externally-defined function should not be in pending list.");
643
644    jitTheFunction(PF, locked);
645
646    // Now that the function has been jitted, ask the JITEmitter to rewrite
647    // the stub with real address of the function.
648    updateFunctionStub(PF);
649  }
650}
651
652void JIT::jitTheFunction(Function *F, const MutexGuard &locked) {
653  isAlreadyCodeGenerating = true;
654  jitstate->getPM(locked).run(*F);
655  isAlreadyCodeGenerating = false;
656
657  // clear basic block addresses after this function is done
658  getBasicBlockAddressMap(locked).clear();
659}
660
661/// getPointerToFunction - This method is used to get the address of the
662/// specified function, compiling it if neccesary.
663///
664void *JIT::getPointerToFunction(Function *F) {
665
666  if (void *Addr = getPointerToGlobalIfAvailable(F))
667    return Addr;   // Check if function already code gen'd
668
669  MutexGuard locked(lock);
670
671  // Now that this thread owns the lock, make sure we read in the function if it
672  // exists in this Module.
673  std::string ErrorMsg;
674  if (F->Materialize(&ErrorMsg)) {
675    report_fatal_error("Error reading function '" + F->getName()+
676                      "' from bitcode file: " + ErrorMsg);
677  }
678
679  // ... and check if another thread has already code gen'd the function.
680  if (void *Addr = getPointerToGlobalIfAvailable(F))
681    return Addr;
682
683  if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
684    bool AbortOnFailure = !F->hasExternalWeakLinkage();
685    void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
686    addGlobalMapping(F, Addr);
687    return Addr;
688  }
689
690  runJITOnFunctionUnlocked(F, locked);
691
692  void *Addr = getPointerToGlobalIfAvailable(F);
693  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
694  return Addr;
695}
696
697void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) {
698  MutexGuard locked(lock);
699
700  BasicBlockAddressMapTy::iterator I =
701    getBasicBlockAddressMap(locked).find(BB);
702  if (I == getBasicBlockAddressMap(locked).end()) {
703    getBasicBlockAddressMap(locked)[BB] = Addr;
704  } else {
705    // ignore repeats: some BBs can be split into few MBBs?
706  }
707}
708
709void JIT::clearPointerToBasicBlock(const BasicBlock *BB) {
710  MutexGuard locked(lock);
711  getBasicBlockAddressMap(locked).erase(BB);
712}
713
714void *JIT::getPointerToBasicBlock(BasicBlock *BB) {
715  // make sure it's function is compiled by JIT
716  (void)getPointerToFunction(BB->getParent());
717
718  // resolve basic block address
719  MutexGuard locked(lock);
720
721  BasicBlockAddressMapTy::iterator I =
722    getBasicBlockAddressMap(locked).find(BB);
723  if (I != getBasicBlockAddressMap(locked).end()) {
724    return I->second;
725  } else {
726    assert(0 && "JIT does not have BB address for address-of-label, was"
727           " it eliminated by optimizer?");
728    return 0;
729  }
730}
731
732/// getOrEmitGlobalVariable - Return the address of the specified global
733/// variable, possibly emitting it to memory if needed.  This is used by the
734/// Emitter.
735void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
736  MutexGuard locked(lock);
737
738  void *Ptr = getPointerToGlobalIfAvailable(GV);
739  if (Ptr) return Ptr;
740
741  // If the global is external, just remember the address.
742  if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
743#if HAVE___DSO_HANDLE
744    if (GV->getName() == "__dso_handle")
745      return (void*)&__dso_handle;
746#endif
747    Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
748    if (Ptr == 0) {
749      report_fatal_error("Could not resolve external global address: "
750                        +GV->getName());
751    }
752    addGlobalMapping(GV, Ptr);
753  } else {
754    // If the global hasn't been emitted to memory yet, allocate space and
755    // emit it into memory.
756    Ptr = getMemoryForGV(GV);
757    addGlobalMapping(GV, Ptr);
758    EmitGlobalVariable(GV);  // Initialize the variable.
759  }
760  return Ptr;
761}
762
763/// recompileAndRelinkFunction - This method is used to force a function
764/// which has already been compiled, to be compiled again, possibly
765/// after it has been modified. Then the entry to the old copy is overwritten
766/// with a branch to the new copy. If there was no old copy, this acts
767/// just like JIT::getPointerToFunction().
768///
769void *JIT::recompileAndRelinkFunction(Function *F) {
770  void *OldAddr = getPointerToGlobalIfAvailable(F);
771
772  // If it's not already compiled there is no reason to patch it up.
773  if (OldAddr == 0) { return getPointerToFunction(F); }
774
775  // Delete the old function mapping.
776  addGlobalMapping(F, 0);
777
778  // Recodegen the function
779  runJITOnFunction(F);
780
781  // Update state, forward the old function to the new function.
782  void *Addr = getPointerToGlobalIfAvailable(F);
783  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
784  TJI.replaceMachineCodeForFunction(OldAddr, Addr);
785  return Addr;
786}
787
788/// getMemoryForGV - This method abstracts memory allocation of global
789/// variable so that the JIT can allocate thread local variables depending
790/// on the target.
791///
792char* JIT::getMemoryForGV(const GlobalVariable* GV) {
793  char *Ptr;
794
795  // GlobalVariable's which are not "constant" will cause trouble in a server
796  // situation. It's returned in the same block of memory as code which may
797  // not be writable.
798  if (isGVCompilationDisabled() && !GV->isConstant()) {
799    report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
800  }
801
802  // Some applications require globals and code to live together, so they may
803  // be allocated into the same buffer, but in general globals are allocated
804  // through the memory manager which puts them near the code but not in the
805  // same buffer.
806  const Type *GlobalType = GV->getType()->getElementType();
807  size_t S = getTargetData()->getTypeAllocSize(GlobalType);
808  size_t A = getTargetData()->getPreferredAlignment(GV);
809  if (GV->isThreadLocal()) {
810    MutexGuard locked(lock);
811    Ptr = TJI.allocateThreadLocalMemory(S);
812  } else if (TJI.allocateSeparateGVMemory()) {
813    if (A <= 8) {
814      Ptr = (char*)malloc(S);
815    } else {
816      // Allocate S+A bytes of memory, then use an aligned pointer within that
817      // space.
818      Ptr = (char*)malloc(S+A);
819      unsigned MisAligned = ((intptr_t)Ptr & (A-1));
820      Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
821    }
822  } else if (AllocateGVsWithCode) {
823    Ptr = (char*)JCE->allocateSpace(S, A);
824  } else {
825    Ptr = (char*)JCE->allocateGlobal(S, A);
826  }
827  return Ptr;
828}
829
830void JIT::addPendingFunction(Function *F) {
831  MutexGuard locked(lock);
832  jitstate->getPendingFunctions(locked).push_back(F);
833}
834
835
836JITEventListener::~JITEventListener() {}
837