InstCombineCompares.cpp revision a77243300ba1a40c80c0f8417ba74bb76e7de279
1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/Support/ConstantRange.h"
20#include "llvm/Support/GetElementPtrTypeIterator.h"
21#include "llvm/Support/PatternMatch.h"
22using namespace llvm;
23using namespace PatternMatch;
24
25static ConstantInt *getOne(Constant *C) {
26  return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
27}
28
29/// AddOne - Add one to a ConstantInt
30static Constant *AddOne(Constant *C) {
31  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
32}
33/// SubOne - Subtract one from a ConstantInt
34static Constant *SubOne(Constant *C) {
35  return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
36}
37
38static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
39  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
40}
41
42static bool HasAddOverflow(ConstantInt *Result,
43                           ConstantInt *In1, ConstantInt *In2,
44                           bool IsSigned) {
45  if (IsSigned)
46    if (In2->getValue().isNegative())
47      return Result->getValue().sgt(In1->getValue());
48    else
49      return Result->getValue().slt(In1->getValue());
50  else
51    return Result->getValue().ult(In1->getValue());
52}
53
54/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
55/// overflowed for this type.
56static bool AddWithOverflow(Constant *&Result, Constant *In1,
57                            Constant *In2, bool IsSigned = false) {
58  Result = ConstantExpr::getAdd(In1, In2);
59
60  if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
61    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
62      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
63      if (HasAddOverflow(ExtractElement(Result, Idx),
64                         ExtractElement(In1, Idx),
65                         ExtractElement(In2, Idx),
66                         IsSigned))
67        return true;
68    }
69    return false;
70  }
71
72  return HasAddOverflow(cast<ConstantInt>(Result),
73                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
74                        IsSigned);
75}
76
77static bool HasSubOverflow(ConstantInt *Result,
78                           ConstantInt *In1, ConstantInt *In2,
79                           bool IsSigned) {
80  if (IsSigned)
81    if (In2->getValue().isNegative())
82      return Result->getValue().slt(In1->getValue());
83    else
84      return Result->getValue().sgt(In1->getValue());
85  else
86    return Result->getValue().ugt(In1->getValue());
87}
88
89/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
90/// overflowed for this type.
91static bool SubWithOverflow(Constant *&Result, Constant *In1,
92                            Constant *In2, bool IsSigned = false) {
93  Result = ConstantExpr::getSub(In1, In2);
94
95  if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
96    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
97      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
98      if (HasSubOverflow(ExtractElement(Result, Idx),
99                         ExtractElement(In1, Idx),
100                         ExtractElement(In2, Idx),
101                         IsSigned))
102        return true;
103    }
104    return false;
105  }
106
107  return HasSubOverflow(cast<ConstantInt>(Result),
108                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
109                        IsSigned);
110}
111
112/// isSignBitCheck - Given an exploded icmp instruction, return true if the
113/// comparison only checks the sign bit.  If it only checks the sign bit, set
114/// TrueIfSigned if the result of the comparison is true when the input value is
115/// signed.
116static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
117                           bool &TrueIfSigned) {
118  switch (pred) {
119  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
120    TrueIfSigned = true;
121    return RHS->isZero();
122  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
123    TrueIfSigned = true;
124    return RHS->isAllOnesValue();
125  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
126    TrueIfSigned = false;
127    return RHS->isAllOnesValue();
128  case ICmpInst::ICMP_UGT:
129    // True if LHS u> RHS and RHS == high-bit-mask - 1
130    TrueIfSigned = true;
131    return RHS->getValue() ==
132      APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
133  case ICmpInst::ICMP_UGE:
134    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
135    TrueIfSigned = true;
136    return RHS->getValue().isSignBit();
137  default:
138    return false;
139  }
140}
141
142// isHighOnes - Return true if the constant is of the form 1+0+.
143// This is the same as lowones(~X).
144static bool isHighOnes(const ConstantInt *CI) {
145  return (~CI->getValue() + 1).isPowerOf2();
146}
147
148/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
149/// set of known zero and one bits, compute the maximum and minimum values that
150/// could have the specified known zero and known one bits, returning them in
151/// min/max.
152static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
153                                                   const APInt& KnownOne,
154                                                   APInt& Min, APInt& Max) {
155  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
156         KnownZero.getBitWidth() == Min.getBitWidth() &&
157         KnownZero.getBitWidth() == Max.getBitWidth() &&
158         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
159  APInt UnknownBits = ~(KnownZero|KnownOne);
160
161  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
162  // bit if it is unknown.
163  Min = KnownOne;
164  Max = KnownOne|UnknownBits;
165
166  if (UnknownBits.isNegative()) { // Sign bit is unknown
167    Min.setBit(Min.getBitWidth()-1);
168    Max.clearBit(Max.getBitWidth()-1);
169  }
170}
171
172// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
173// a set of known zero and one bits, compute the maximum and minimum values that
174// could have the specified known zero and known one bits, returning them in
175// min/max.
176static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
177                                                     const APInt &KnownOne,
178                                                     APInt &Min, APInt &Max) {
179  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
180         KnownZero.getBitWidth() == Min.getBitWidth() &&
181         KnownZero.getBitWidth() == Max.getBitWidth() &&
182         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
183  APInt UnknownBits = ~(KnownZero|KnownOne);
184
185  // The minimum value is when the unknown bits are all zeros.
186  Min = KnownOne;
187  // The maximum value is when the unknown bits are all ones.
188  Max = KnownOne|UnknownBits;
189}
190
191
192
193/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
194///   cmp pred (load (gep GV, ...)), cmpcst
195/// where GV is a global variable with a constant initializer.  Try to simplify
196/// this into some simple computation that does not need the load.  For example
197/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
198///
199/// If AndCst is non-null, then the loaded value is masked with that constant
200/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
201Instruction *InstCombiner::
202FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
203                             CmpInst &ICI, ConstantInt *AndCst) {
204  // We need TD information to know the pointer size unless this is inbounds.
205  if (!GEP->isInBounds() && TD == 0) return 0;
206
207  ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
208  if (Init == 0 || Init->getNumOperands() > 1024) return 0;
209
210  // There are many forms of this optimization we can handle, for now, just do
211  // the simple index into a single-dimensional array.
212  //
213  // Require: GEP GV, 0, i {{, constant indices}}
214  if (GEP->getNumOperands() < 3 ||
215      !isa<ConstantInt>(GEP->getOperand(1)) ||
216      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
217      isa<Constant>(GEP->getOperand(2)))
218    return 0;
219
220  // Check that indices after the variable are constants and in-range for the
221  // type they index.  Collect the indices.  This is typically for arrays of
222  // structs.
223  SmallVector<unsigned, 4> LaterIndices;
224
225  const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
226  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
227    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
228    if (Idx == 0) return 0;  // Variable index.
229
230    uint64_t IdxVal = Idx->getZExtValue();
231    if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
232
233    if (const StructType *STy = dyn_cast<StructType>(EltTy))
234      EltTy = STy->getElementType(IdxVal);
235    else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
236      if (IdxVal >= ATy->getNumElements()) return 0;
237      EltTy = ATy->getElementType();
238    } else {
239      return 0; // Unknown type.
240    }
241
242    LaterIndices.push_back(IdxVal);
243  }
244
245  enum { Overdefined = -3, Undefined = -2 };
246
247  // Variables for our state machines.
248
249  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
250  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
251  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
252  // undefined, otherwise set to the first true element.  SecondTrueElement is
253  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
254  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
255
256  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
257  // form "i != 47 & i != 87".  Same state transitions as for true elements.
258  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
259
260  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
261  /// define a state machine that triggers for ranges of values that the index
262  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
263  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
264  /// index in the range (inclusive).  We use -2 for undefined here because we
265  /// use relative comparisons and don't want 0-1 to match -1.
266  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
267
268  // MagicBitvector - This is a magic bitvector where we set a bit if the
269  // comparison is true for element 'i'.  If there are 64 elements or less in
270  // the array, this will fully represent all the comparison results.
271  uint64_t MagicBitvector = 0;
272
273
274  // Scan the array and see if one of our patterns matches.
275  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
276  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
277    Constant *Elt = Init->getOperand(i);
278
279    // If this is indexing an array of structures, get the structure element.
280    if (!LaterIndices.empty())
281      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices.data(),
282                                          LaterIndices.size());
283
284    // If the element is masked, handle it.
285    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
286
287    // Find out if the comparison would be true or false for the i'th element.
288    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
289                                                  CompareRHS, TD);
290    // If the result is undef for this element, ignore it.
291    if (isa<UndefValue>(C)) {
292      // Extend range state machines to cover this element in case there is an
293      // undef in the middle of the range.
294      if (TrueRangeEnd == (int)i-1)
295        TrueRangeEnd = i;
296      if (FalseRangeEnd == (int)i-1)
297        FalseRangeEnd = i;
298      continue;
299    }
300
301    // If we can't compute the result for any of the elements, we have to give
302    // up evaluating the entire conditional.
303    if (!isa<ConstantInt>(C)) return 0;
304
305    // Otherwise, we know if the comparison is true or false for this element,
306    // update our state machines.
307    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
308
309    // State machine for single/double/range index comparison.
310    if (IsTrueForElt) {
311      // Update the TrueElement state machine.
312      if (FirstTrueElement == Undefined)
313        FirstTrueElement = TrueRangeEnd = i;  // First true element.
314      else {
315        // Update double-compare state machine.
316        if (SecondTrueElement == Undefined)
317          SecondTrueElement = i;
318        else
319          SecondTrueElement = Overdefined;
320
321        // Update range state machine.
322        if (TrueRangeEnd == (int)i-1)
323          TrueRangeEnd = i;
324        else
325          TrueRangeEnd = Overdefined;
326      }
327    } else {
328      // Update the FalseElement state machine.
329      if (FirstFalseElement == Undefined)
330        FirstFalseElement = FalseRangeEnd = i; // First false element.
331      else {
332        // Update double-compare state machine.
333        if (SecondFalseElement == Undefined)
334          SecondFalseElement = i;
335        else
336          SecondFalseElement = Overdefined;
337
338        // Update range state machine.
339        if (FalseRangeEnd == (int)i-1)
340          FalseRangeEnd = i;
341        else
342          FalseRangeEnd = Overdefined;
343      }
344    }
345
346
347    // If this element is in range, update our magic bitvector.
348    if (i < 64 && IsTrueForElt)
349      MagicBitvector |= 1ULL << i;
350
351    // If all of our states become overdefined, bail out early.  Since the
352    // predicate is expensive, only check it every 8 elements.  This is only
353    // really useful for really huge arrays.
354    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
355        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
356        FalseRangeEnd == Overdefined)
357      return 0;
358  }
359
360  // Now that we've scanned the entire array, emit our new comparison(s).  We
361  // order the state machines in complexity of the generated code.
362  Value *Idx = GEP->getOperand(2);
363
364  // If the index is larger than the pointer size of the target, truncate the
365  // index down like the GEP would do implicitly.  We don't have to do this for
366  // an inbounds GEP because the index can't be out of range.
367  if (!GEP->isInBounds() &&
368      Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
369    Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
370
371  // If the comparison is only true for one or two elements, emit direct
372  // comparisons.
373  if (SecondTrueElement != Overdefined) {
374    // None true -> false.
375    if (FirstTrueElement == Undefined)
376      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
377
378    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
379
380    // True for one element -> 'i == 47'.
381    if (SecondTrueElement == Undefined)
382      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
383
384    // True for two elements -> 'i == 47 | i == 72'.
385    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
386    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
387    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
388    return BinaryOperator::CreateOr(C1, C2);
389  }
390
391  // If the comparison is only false for one or two elements, emit direct
392  // comparisons.
393  if (SecondFalseElement != Overdefined) {
394    // None false -> true.
395    if (FirstFalseElement == Undefined)
396      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
397
398    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
399
400    // False for one element -> 'i != 47'.
401    if (SecondFalseElement == Undefined)
402      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
403
404    // False for two elements -> 'i != 47 & i != 72'.
405    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
406    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
407    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
408    return BinaryOperator::CreateAnd(C1, C2);
409  }
410
411  // If the comparison can be replaced with a range comparison for the elements
412  // where it is true, emit the range check.
413  if (TrueRangeEnd != Overdefined) {
414    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
415
416    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
417    if (FirstTrueElement) {
418      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
419      Idx = Builder->CreateAdd(Idx, Offs);
420    }
421
422    Value *End = ConstantInt::get(Idx->getType(),
423                                  TrueRangeEnd-FirstTrueElement+1);
424    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
425  }
426
427  // False range check.
428  if (FalseRangeEnd != Overdefined) {
429    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
430    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
431    if (FirstFalseElement) {
432      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
433      Idx = Builder->CreateAdd(Idx, Offs);
434    }
435
436    Value *End = ConstantInt::get(Idx->getType(),
437                                  FalseRangeEnd-FirstFalseElement);
438    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
439  }
440
441
442  // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
443  // of this load, replace it with computation that does:
444  //   ((magic_cst >> i) & 1) != 0
445  if (Init->getNumOperands() <= 32 ||
446      (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
447    const Type *Ty;
448    if (Init->getNumOperands() <= 32)
449      Ty = Type::getInt32Ty(Init->getContext());
450    else
451      Ty = Type::getInt64Ty(Init->getContext());
452    Value *V = Builder->CreateIntCast(Idx, Ty, false);
453    V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
454    V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
455    return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
456  }
457
458  return 0;
459}
460
461
462/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
463/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
464/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
465/// be complex, and scales are involved.  The above expression would also be
466/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
467/// This later form is less amenable to optimization though, and we are allowed
468/// to generate the first by knowing that pointer arithmetic doesn't overflow.
469///
470/// If we can't emit an optimized form for this expression, this returns null.
471///
472static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
473                                          InstCombiner &IC) {
474  TargetData &TD = *IC.getTargetData();
475  gep_type_iterator GTI = gep_type_begin(GEP);
476
477  // Check to see if this gep only has a single variable index.  If so, and if
478  // any constant indices are a multiple of its scale, then we can compute this
479  // in terms of the scale of the variable index.  For example, if the GEP
480  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
481  // because the expression will cross zero at the same point.
482  unsigned i, e = GEP->getNumOperands();
483  int64_t Offset = 0;
484  for (i = 1; i != e; ++i, ++GTI) {
485    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
486      // Compute the aggregate offset of constant indices.
487      if (CI->isZero()) continue;
488
489      // Handle a struct index, which adds its field offset to the pointer.
490      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
491        Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
492      } else {
493        uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
494        Offset += Size*CI->getSExtValue();
495      }
496    } else {
497      // Found our variable index.
498      break;
499    }
500  }
501
502  // If there are no variable indices, we must have a constant offset, just
503  // evaluate it the general way.
504  if (i == e) return 0;
505
506  Value *VariableIdx = GEP->getOperand(i);
507  // Determine the scale factor of the variable element.  For example, this is
508  // 4 if the variable index is into an array of i32.
509  uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
510
511  // Verify that there are no other variable indices.  If so, emit the hard way.
512  for (++i, ++GTI; i != e; ++i, ++GTI) {
513    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
514    if (!CI) return 0;
515
516    // Compute the aggregate offset of constant indices.
517    if (CI->isZero()) continue;
518
519    // Handle a struct index, which adds its field offset to the pointer.
520    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
521      Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
522    } else {
523      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
524      Offset += Size*CI->getSExtValue();
525    }
526  }
527
528  // Okay, we know we have a single variable index, which must be a
529  // pointer/array/vector index.  If there is no offset, life is simple, return
530  // the index.
531  unsigned IntPtrWidth = TD.getPointerSizeInBits();
532  if (Offset == 0) {
533    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
534    // we don't need to bother extending: the extension won't affect where the
535    // computation crosses zero.
536    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
537      VariableIdx = new TruncInst(VariableIdx,
538                                  TD.getIntPtrType(VariableIdx->getContext()),
539                                  VariableIdx->getName(), &I);
540    return VariableIdx;
541  }
542
543  // Otherwise, there is an index.  The computation we will do will be modulo
544  // the pointer size, so get it.
545  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
546
547  Offset &= PtrSizeMask;
548  VariableScale &= PtrSizeMask;
549
550  // To do this transformation, any constant index must be a multiple of the
551  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
552  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
553  // multiple of the variable scale.
554  int64_t NewOffs = Offset / (int64_t)VariableScale;
555  if (Offset != NewOffs*(int64_t)VariableScale)
556    return 0;
557
558  // Okay, we can do this evaluation.  Start by converting the index to intptr.
559  const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
560  if (VariableIdx->getType() != IntPtrTy)
561    VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
562                                              true /*SExt*/,
563                                              VariableIdx->getName(), &I);
564  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
565  return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
566}
567
568/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
569/// else.  At this point we know that the GEP is on the LHS of the comparison.
570Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
571                                       ICmpInst::Predicate Cond,
572                                       Instruction &I) {
573  // Look through bitcasts.
574  if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
575    RHS = BCI->getOperand(0);
576
577  Value *PtrBase = GEPLHS->getOperand(0);
578  if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
579    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
580    // This transformation (ignoring the base and scales) is valid because we
581    // know pointers can't overflow since the gep is inbounds.  See if we can
582    // output an optimized form.
583    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
584
585    // If not, synthesize the offset the hard way.
586    if (Offset == 0)
587      Offset = EmitGEPOffset(GEPLHS);
588    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
589                        Constant::getNullValue(Offset->getType()));
590  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
591    // If the base pointers are different, but the indices are the same, just
592    // compare the base pointer.
593    if (PtrBase != GEPRHS->getOperand(0)) {
594      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
595      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
596                        GEPRHS->getOperand(0)->getType();
597      if (IndicesTheSame)
598        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
599          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
600            IndicesTheSame = false;
601            break;
602          }
603
604      // If all indices are the same, just compare the base pointers.
605      if (IndicesTheSame)
606        return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
607                            GEPLHS->getOperand(0), GEPRHS->getOperand(0));
608
609      // Otherwise, the base pointers are different and the indices are
610      // different, bail out.
611      return 0;
612    }
613
614    // If one of the GEPs has all zero indices, recurse.
615    bool AllZeros = true;
616    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
617      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
618          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
619        AllZeros = false;
620        break;
621      }
622    if (AllZeros)
623      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
624                          ICmpInst::getSwappedPredicate(Cond), I);
625
626    // If the other GEP has all zero indices, recurse.
627    AllZeros = true;
628    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
629      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
630          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
631        AllZeros = false;
632        break;
633      }
634    if (AllZeros)
635      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
636
637    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
638      // If the GEPs only differ by one index, compare it.
639      unsigned NumDifferences = 0;  // Keep track of # differences.
640      unsigned DiffOperand = 0;     // The operand that differs.
641      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
642        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
643          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
644                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
645            // Irreconcilable differences.
646            NumDifferences = 2;
647            break;
648          } else {
649            if (NumDifferences++) break;
650            DiffOperand = i;
651          }
652        }
653
654      if (NumDifferences == 0)   // SAME GEP?
655        return ReplaceInstUsesWith(I, // No comparison is needed here.
656                               ConstantInt::get(Type::getInt1Ty(I.getContext()),
657                                             ICmpInst::isTrueWhenEqual(Cond)));
658
659      else if (NumDifferences == 1) {
660        Value *LHSV = GEPLHS->getOperand(DiffOperand);
661        Value *RHSV = GEPRHS->getOperand(DiffOperand);
662        // Make sure we do a signed comparison here.
663        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
664      }
665    }
666
667    // Only lower this if the icmp is the only user of the GEP or if we expect
668    // the result to fold to a constant!
669    if (TD &&
670        (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
671        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
672      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
673      Value *L = EmitGEPOffset(GEPLHS);
674      Value *R = EmitGEPOffset(GEPRHS);
675      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
676    }
677  }
678  return 0;
679}
680
681/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
682Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
683                                            Value *X, ConstantInt *CI,
684                                            ICmpInst::Predicate Pred,
685                                            Value *TheAdd) {
686  // If we have X+0, exit early (simplifying logic below) and let it get folded
687  // elsewhere.   icmp X+0, X  -> icmp X, X
688  if (CI->isZero()) {
689    bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
690    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
691  }
692
693  // (X+4) == X -> false.
694  if (Pred == ICmpInst::ICMP_EQ)
695    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
696
697  // (X+4) != X -> true.
698  if (Pred == ICmpInst::ICMP_NE)
699    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
700
701  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
702  // so the values can never be equal.  Similiarly for all other "or equals"
703  // operators.
704
705  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
706  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
707  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
708  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
709    Value *R =
710      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
711    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
712  }
713
714  // (X+1) >u X        --> X <u (0-1)        --> X != 255
715  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
716  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
717  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
718    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
719
720  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
721  ConstantInt *SMax = ConstantInt::get(X->getContext(),
722                                       APInt::getSignedMaxValue(BitWidth));
723
724  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
725  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
726  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
727  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
728  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
729  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
730  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
731    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
732
733  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
734  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
735  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
736  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
737  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
738  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
739
740  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
741  Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
742  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
743}
744
745/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
746/// and CmpRHS are both known to be integer constants.
747Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
748                                          ConstantInt *DivRHS) {
749  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
750  const APInt &CmpRHSV = CmpRHS->getValue();
751
752  // FIXME: If the operand types don't match the type of the divide
753  // then don't attempt this transform. The code below doesn't have the
754  // logic to deal with a signed divide and an unsigned compare (and
755  // vice versa). This is because (x /s C1) <s C2  produces different
756  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
757  // (x /u C1) <u C2.  Simply casting the operands and result won't
758  // work. :(  The if statement below tests that condition and bails
759  // if it finds it.
760  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
761  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
762    return 0;
763  if (DivRHS->isZero())
764    return 0; // The ProdOV computation fails on divide by zero.
765  if (DivIsSigned && DivRHS->isAllOnesValue())
766    return 0; // The overflow computation also screws up here
767  if (DivRHS->isOne()) {
768    // This eliminates some funny cases with INT_MIN.
769    ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
770    return &ICI;
771  }
772
773  // Compute Prod = CI * DivRHS. We are essentially solving an equation
774  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
775  // C2 (CI). By solving for X we can turn this into a range check
776  // instead of computing a divide.
777  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
778
779  // Determine if the product overflows by seeing if the product is
780  // not equal to the divide. Make sure we do the same kind of divide
781  // as in the LHS instruction that we're folding.
782  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
783                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
784
785  // Get the ICmp opcode
786  ICmpInst::Predicate Pred = ICI.getPredicate();
787
788  /// If the division is known to be exact, then there is no remainder from the
789  /// divide, so the covered range size is unit, otherwise it is the divisor.
790  ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
791
792  // Figure out the interval that is being checked.  For example, a comparison
793  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
794  // Compute this interval based on the constants involved and the signedness of
795  // the compare/divide.  This computes a half-open interval, keeping track of
796  // whether either value in the interval overflows.  After analysis each
797  // overflow variable is set to 0 if it's corresponding bound variable is valid
798  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
799  int LoOverflow = 0, HiOverflow = 0;
800  Constant *LoBound = 0, *HiBound = 0;
801
802  if (!DivIsSigned) {  // udiv
803    // e.g. X/5 op 3  --> [15, 20)
804    LoBound = Prod;
805    HiOverflow = LoOverflow = ProdOV;
806    if (!HiOverflow) {
807      // If this is not an exact divide, then many values in the range collapse
808      // to the same result value.
809      HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
810    }
811
812  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
813    if (CmpRHSV == 0) {       // (X / pos) op 0
814      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
815      LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
816      HiBound = RangeSize;
817    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
818      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
819      HiOverflow = LoOverflow = ProdOV;
820      if (!HiOverflow)
821        HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
822    } else {                       // (X / pos) op neg
823      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
824      HiBound = AddOne(Prod);
825      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
826      if (!LoOverflow) {
827        ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
828        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
829      }
830    }
831  } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
832    if (DivI->isExact())
833      RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
834    if (CmpRHSV == 0) {       // (X / neg) op 0
835      // e.g. X/-5 op 0  --> [-4, 5)
836      LoBound = AddOne(RangeSize);
837      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
838      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
839        HiOverflow = 1;            // [INTMIN+1, overflow)
840        HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
841      }
842    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
843      // e.g. X/-5 op 3  --> [-19, -14)
844      HiBound = AddOne(Prod);
845      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
846      if (!LoOverflow)
847        LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
848    } else {                       // (X / neg) op neg
849      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
850      LoOverflow = HiOverflow = ProdOV;
851      if (!HiOverflow)
852        HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
853    }
854
855    // Dividing by a negative swaps the condition.  LT <-> GT
856    Pred = ICmpInst::getSwappedPredicate(Pred);
857  }
858
859  Value *X = DivI->getOperand(0);
860  switch (Pred) {
861  default: llvm_unreachable("Unhandled icmp opcode!");
862  case ICmpInst::ICMP_EQ:
863    if (LoOverflow && HiOverflow)
864      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
865    if (HiOverflow)
866      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
867                          ICmpInst::ICMP_UGE, X, LoBound);
868    if (LoOverflow)
869      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
870                          ICmpInst::ICMP_ULT, X, HiBound);
871    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
872                                                    DivIsSigned, true));
873  case ICmpInst::ICMP_NE:
874    if (LoOverflow && HiOverflow)
875      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
876    if (HiOverflow)
877      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
878                          ICmpInst::ICMP_ULT, X, LoBound);
879    if (LoOverflow)
880      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
881                          ICmpInst::ICMP_UGE, X, HiBound);
882    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
883                                                    DivIsSigned, false));
884  case ICmpInst::ICMP_ULT:
885  case ICmpInst::ICMP_SLT:
886    if (LoOverflow == +1)   // Low bound is greater than input range.
887      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
888    if (LoOverflow == -1)   // Low bound is less than input range.
889      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
890    return new ICmpInst(Pred, X, LoBound);
891  case ICmpInst::ICMP_UGT:
892  case ICmpInst::ICMP_SGT:
893    if (HiOverflow == +1)       // High bound greater than input range.
894      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
895    if (HiOverflow == -1)       // High bound less than input range.
896      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
897    if (Pred == ICmpInst::ICMP_UGT)
898      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
899    return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
900  }
901}
902
903/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
904Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
905                                          ConstantInt *ShAmt) {
906  const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
907
908  // Check that the shift amount is in range.  If not, don't perform
909  // undefined shifts.  When the shift is visited it will be
910  // simplified.
911  uint32_t TypeBits = CmpRHSV.getBitWidth();
912  uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
913  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
914    return 0;
915
916  if (!ICI.isEquality()) {
917    // If we have an unsigned comparison and an ashr, we can't simplify this.
918    // Similarly for signed comparisons with lshr.
919    if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
920      return 0;
921
922    // Otherwise, all lshr and all exact ashr's are equivalent to a udiv/sdiv by
923    // a power of 2.  Since we already have logic to simplify these, transform
924    // to div and then simplify the resultant comparison.
925    if (Shr->getOpcode() == Instruction::AShr &&
926        !Shr->isExact())
927      return 0;
928
929    // Revisit the shift (to delete it).
930    Worklist.Add(Shr);
931
932    Constant *DivCst =
933      ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
934
935    Value *Tmp =
936      Shr->getOpcode() == Instruction::AShr ?
937      Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
938      Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
939
940    ICI.setOperand(0, Tmp);
941
942    // If the builder folded the binop, just return it.
943    BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
944    if (TheDiv == 0)
945      return &ICI;
946
947    // Otherwise, fold this div/compare.
948    assert(TheDiv->getOpcode() == Instruction::SDiv ||
949           TheDiv->getOpcode() == Instruction::UDiv);
950
951    Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
952    assert(Res && "This div/cst should have folded!");
953    return Res;
954  }
955
956
957  // If we are comparing against bits always shifted out, the
958  // comparison cannot succeed.
959  APInt Comp = CmpRHSV << ShAmtVal;
960  ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
961  if (Shr->getOpcode() == Instruction::LShr)
962    Comp = Comp.lshr(ShAmtVal);
963  else
964    Comp = Comp.ashr(ShAmtVal);
965
966  if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
967    bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
968    Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
969                                     IsICMP_NE);
970    return ReplaceInstUsesWith(ICI, Cst);
971  }
972
973  // Otherwise, check to see if the bits shifted out are known to be zero.
974  // If so, we can compare against the unshifted value:
975  //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
976  if (Shr->hasOneUse() && Shr->isExact())
977    return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
978
979  if (Shr->hasOneUse()) {
980    // Otherwise strength reduce the shift into an and.
981    APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
982    Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
983
984    Value *And = Builder->CreateAnd(Shr->getOperand(0),
985                                    Mask, Shr->getName()+".mask");
986    return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
987  }
988  return 0;
989}
990
991
992/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
993///
994Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
995                                                          Instruction *LHSI,
996                                                          ConstantInt *RHS) {
997  const APInt &RHSV = RHS->getValue();
998
999  switch (LHSI->getOpcode()) {
1000  case Instruction::Trunc:
1001    if (ICI.isEquality() && LHSI->hasOneUse()) {
1002      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1003      // of the high bits truncated out of x are known.
1004      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1005             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1006      APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
1007      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1008      ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
1009
1010      // If all the high bits are known, we can do this xform.
1011      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1012        // Pull in the high bits from known-ones set.
1013        APInt NewRHS = RHS->getValue().zext(SrcBits);
1014        NewRHS |= KnownOne;
1015        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1016                            ConstantInt::get(ICI.getContext(), NewRHS));
1017      }
1018    }
1019    break;
1020
1021  case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
1022    if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1023      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1024      // fold the xor.
1025      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1026          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1027        Value *CompareVal = LHSI->getOperand(0);
1028
1029        // If the sign bit of the XorCST is not set, there is no change to
1030        // the operation, just stop using the Xor.
1031        if (!XorCST->getValue().isNegative()) {
1032          ICI.setOperand(0, CompareVal);
1033          Worklist.Add(LHSI);
1034          return &ICI;
1035        }
1036
1037        // Was the old condition true if the operand is positive?
1038        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1039
1040        // If so, the new one isn't.
1041        isTrueIfPositive ^= true;
1042
1043        if (isTrueIfPositive)
1044          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1045                              SubOne(RHS));
1046        else
1047          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1048                              AddOne(RHS));
1049      }
1050
1051      if (LHSI->hasOneUse()) {
1052        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1053        if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
1054          const APInt &SignBit = XorCST->getValue();
1055          ICmpInst::Predicate Pred = ICI.isSigned()
1056                                         ? ICI.getUnsignedPredicate()
1057                                         : ICI.getSignedPredicate();
1058          return new ICmpInst(Pred, LHSI->getOperand(0),
1059                              ConstantInt::get(ICI.getContext(),
1060                                               RHSV ^ SignBit));
1061        }
1062
1063        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1064        if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) {
1065          const APInt &NotSignBit = XorCST->getValue();
1066          ICmpInst::Predicate Pred = ICI.isSigned()
1067                                         ? ICI.getUnsignedPredicate()
1068                                         : ICI.getSignedPredicate();
1069          Pred = ICI.getSwappedPredicate(Pred);
1070          return new ICmpInst(Pred, LHSI->getOperand(0),
1071                              ConstantInt::get(ICI.getContext(),
1072                                               RHSV ^ NotSignBit));
1073        }
1074      }
1075    }
1076    break;
1077  case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
1078    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1079        LHSI->getOperand(0)->hasOneUse()) {
1080      ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
1081
1082      // If the LHS is an AND of a truncating cast, we can widen the
1083      // and/compare to be the input width without changing the value
1084      // produced, eliminating a cast.
1085      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1086        // We can do this transformation if either the AND constant does not
1087        // have its sign bit set or if it is an equality comparison.
1088        // Extending a relational comparison when we're checking the sign
1089        // bit would not work.
1090        if (Cast->hasOneUse() &&
1091            (ICI.isEquality() ||
1092             (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
1093          uint32_t BitWidth =
1094            cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
1095          APInt NewCST = AndCST->getValue().zext(BitWidth);
1096          APInt NewCI = RHSV.zext(BitWidth);
1097          Value *NewAnd =
1098            Builder->CreateAnd(Cast->getOperand(0),
1099                           ConstantInt::get(ICI.getContext(), NewCST),
1100                               LHSI->getName());
1101          return new ICmpInst(ICI.getPredicate(), NewAnd,
1102                              ConstantInt::get(ICI.getContext(), NewCI));
1103        }
1104      }
1105
1106      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1107      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1108      // happens a LOT in code produced by the C front-end, for bitfield
1109      // access.
1110      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1111      if (Shift && !Shift->isShift())
1112        Shift = 0;
1113
1114      ConstantInt *ShAmt;
1115      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
1116      const Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
1117      const Type *AndTy = AndCST->getType();          // Type of the and.
1118
1119      // We can fold this as long as we can't shift unknown bits
1120      // into the mask.  This can only happen with signed shift
1121      // rights, as they sign-extend.
1122      if (ShAmt) {
1123        bool CanFold = Shift->isLogicalShift();
1124        if (!CanFold) {
1125          // To test for the bad case of the signed shr, see if any
1126          // of the bits shifted in could be tested after the mask.
1127          uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1128          int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
1129
1130          uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
1131          if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
1132               AndCST->getValue()) == 0)
1133            CanFold = true;
1134        }
1135
1136        if (CanFold) {
1137          Constant *NewCst;
1138          if (Shift->getOpcode() == Instruction::Shl)
1139            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1140          else
1141            NewCst = ConstantExpr::getShl(RHS, ShAmt);
1142
1143          // Check to see if we are shifting out any of the bits being
1144          // compared.
1145          if (ConstantExpr::get(Shift->getOpcode(),
1146                                       NewCst, ShAmt) != RHS) {
1147            // If we shifted bits out, the fold is not going to work out.
1148            // As a special case, check to see if this means that the
1149            // result is always true or false now.
1150            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1151              return ReplaceInstUsesWith(ICI,
1152                                       ConstantInt::getFalse(ICI.getContext()));
1153            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1154              return ReplaceInstUsesWith(ICI,
1155                                       ConstantInt::getTrue(ICI.getContext()));
1156          } else {
1157            ICI.setOperand(1, NewCst);
1158            Constant *NewAndCST;
1159            if (Shift->getOpcode() == Instruction::Shl)
1160              NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1161            else
1162              NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1163            LHSI->setOperand(1, NewAndCST);
1164            LHSI->setOperand(0, Shift->getOperand(0));
1165            Worklist.Add(Shift); // Shift is dead.
1166            return &ICI;
1167          }
1168        }
1169      }
1170
1171      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1172      // preferable because it allows the C<<Y expression to be hoisted out
1173      // of a loop if Y is invariant and X is not.
1174      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1175          ICI.isEquality() && !Shift->isArithmeticShift() &&
1176          !isa<Constant>(Shift->getOperand(0))) {
1177        // Compute C << Y.
1178        Value *NS;
1179        if (Shift->getOpcode() == Instruction::LShr) {
1180          NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
1181        } else {
1182          // Insert a logical shift.
1183          NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
1184        }
1185
1186        // Compute X & (C << Y).
1187        Value *NewAnd =
1188          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1189
1190        ICI.setOperand(0, NewAnd);
1191        return &ICI;
1192      }
1193    }
1194
1195    // Try to optimize things like "A[i]&42 == 0" to index computations.
1196    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1197      if (GetElementPtrInst *GEP =
1198          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1199        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1200          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1201              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1202            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1203            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1204              return Res;
1205          }
1206    }
1207    break;
1208
1209  case Instruction::Or: {
1210    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1211      break;
1212    Value *P, *Q;
1213    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1214      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1215      // -> and (icmp eq P, null), (icmp eq Q, null).
1216      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1217                                        Constant::getNullValue(P->getType()));
1218      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1219                                        Constant::getNullValue(Q->getType()));
1220      Instruction *Op;
1221      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1222        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1223      else
1224        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1225      return Op;
1226    }
1227    break;
1228  }
1229
1230  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1231    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1232    if (!ShAmt) break;
1233
1234    uint32_t TypeBits = RHSV.getBitWidth();
1235
1236    // Check that the shift amount is in range.  If not, don't perform
1237    // undefined shifts.  When the shift is visited it will be
1238    // simplified.
1239    if (ShAmt->uge(TypeBits))
1240      break;
1241
1242    if (ICI.isEquality()) {
1243      // If we are comparing against bits always shifted out, the
1244      // comparison cannot succeed.
1245      Constant *Comp =
1246        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1247                                                                 ShAmt);
1248      if (Comp != RHS) {// Comparing against a bit that we know is zero.
1249        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1250        Constant *Cst =
1251          ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
1252        return ReplaceInstUsesWith(ICI, Cst);
1253      }
1254
1255      // If the shift is NUW, then it is just shifting out zeros, no need for an
1256      // AND.
1257      if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1258        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1259                            ConstantExpr::getLShr(RHS, ShAmt));
1260
1261      if (LHSI->hasOneUse()) {
1262        // Otherwise strength reduce the shift into an and.
1263        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1264        Constant *Mask =
1265          ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
1266                                                       TypeBits-ShAmtVal));
1267
1268        Value *And =
1269          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1270        return new ICmpInst(ICI.getPredicate(), And,
1271                            ConstantExpr::getLShr(RHS, ShAmt));
1272      }
1273    }
1274
1275    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1276    bool TrueIfSigned = false;
1277    if (LHSI->hasOneUse() &&
1278        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1279      // (X << 31) <s 0  --> (X&1) != 0
1280      Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1281                                        APInt::getOneBitSet(TypeBits,
1282                                            TypeBits-ShAmt->getZExtValue()-1));
1283      Value *And =
1284        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1285      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1286                          And, Constant::getNullValue(And->getType()));
1287    }
1288    break;
1289  }
1290
1291  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1292  case Instruction::AShr:
1293    // Only handle equality comparisons of shift-by-constant.
1294    if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1295      if (Instruction *Res = FoldICmpShrCst(ICI, cast<BinaryOperator>(LHSI),
1296                                            ShAmt))
1297        return Res;
1298    break;
1299
1300  case Instruction::SDiv:
1301  case Instruction::UDiv:
1302    // Fold: icmp pred ([us]div X, C1), C2 -> range test
1303    // Fold this div into the comparison, producing a range check.
1304    // Determine, based on the divide type, what the range is being
1305    // checked.  If there is an overflow on the low or high side, remember
1306    // it, otherwise compute the range [low, hi) bounding the new value.
1307    // See: InsertRangeTest above for the kinds of replacements possible.
1308    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1309      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1310                                          DivRHS))
1311        return R;
1312    break;
1313
1314  case Instruction::Add:
1315    // Fold: icmp pred (add X, C1), C2
1316    if (!ICI.isEquality()) {
1317      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1318      if (!LHSC) break;
1319      const APInt &LHSV = LHSC->getValue();
1320
1321      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1322                            .subtract(LHSV);
1323
1324      if (ICI.isSigned()) {
1325        if (CR.getLower().isSignBit()) {
1326          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1327                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1328        } else if (CR.getUpper().isSignBit()) {
1329          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1330                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1331        }
1332      } else {
1333        if (CR.getLower().isMinValue()) {
1334          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1335                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1336        } else if (CR.getUpper().isMinValue()) {
1337          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1338                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1339        }
1340      }
1341    }
1342    break;
1343  }
1344
1345  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1346  if (ICI.isEquality()) {
1347    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1348
1349    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1350    // the second operand is a constant, simplify a bit.
1351    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1352      switch (BO->getOpcode()) {
1353      case Instruction::SRem:
1354        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1355        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1356          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1357          if (V.sgt(1) && V.isPowerOf2()) {
1358            Value *NewRem =
1359              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1360                                  BO->getName());
1361            return new ICmpInst(ICI.getPredicate(), NewRem,
1362                                Constant::getNullValue(BO->getType()));
1363          }
1364        }
1365        break;
1366      case Instruction::Add:
1367        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1368        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1369          if (BO->hasOneUse())
1370            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1371                                ConstantExpr::getSub(RHS, BOp1C));
1372        } else if (RHSV == 0) {
1373          // Replace ((add A, B) != 0) with (A != -B) if A or B is
1374          // efficiently invertible, or if the add has just this one use.
1375          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1376
1377          if (Value *NegVal = dyn_castNegVal(BOp1))
1378            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1379          else if (Value *NegVal = dyn_castNegVal(BOp0))
1380            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1381          else if (BO->hasOneUse()) {
1382            Value *Neg = Builder->CreateNeg(BOp1);
1383            Neg->takeName(BO);
1384            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1385          }
1386        }
1387        break;
1388      case Instruction::Xor:
1389        // For the xor case, we can xor two constants together, eliminating
1390        // the explicit xor.
1391        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
1392          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1393                              ConstantExpr::getXor(RHS, BOC));
1394
1395        // FALLTHROUGH
1396      case Instruction::Sub:
1397        // Replace (([sub|xor] A, B) != 0) with (A != B)
1398        if (RHSV == 0)
1399          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1400                              BO->getOperand(1));
1401        break;
1402
1403      case Instruction::Or:
1404        // If bits are being or'd in that are not present in the constant we
1405        // are comparing against, then the comparison could never succeed!
1406        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1407          Constant *NotCI = ConstantExpr::getNot(RHS);
1408          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1409            return ReplaceInstUsesWith(ICI,
1410                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1411                                       isICMP_NE));
1412        }
1413        break;
1414
1415      case Instruction::And:
1416        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1417          // If bits are being compared against that are and'd out, then the
1418          // comparison can never succeed!
1419          if ((RHSV & ~BOC->getValue()) != 0)
1420            return ReplaceInstUsesWith(ICI,
1421                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1422                                       isICMP_NE));
1423
1424          // If we have ((X & C) == C), turn it into ((X & C) != 0).
1425          if (RHS == BOC && RHSV.isPowerOf2())
1426            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1427                                ICmpInst::ICMP_NE, LHSI,
1428                                Constant::getNullValue(RHS->getType()));
1429
1430          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1431          if (BOC->getValue().isSignBit()) {
1432            Value *X = BO->getOperand(0);
1433            Constant *Zero = Constant::getNullValue(X->getType());
1434            ICmpInst::Predicate pred = isICMP_NE ?
1435              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1436            return new ICmpInst(pred, X, Zero);
1437          }
1438
1439          // ((X & ~7) == 0) --> X < 8
1440          if (RHSV == 0 && isHighOnes(BOC)) {
1441            Value *X = BO->getOperand(0);
1442            Constant *NegX = ConstantExpr::getNeg(BOC);
1443            ICmpInst::Predicate pred = isICMP_NE ?
1444              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1445            return new ICmpInst(pred, X, NegX);
1446          }
1447        }
1448      default: break;
1449      }
1450    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1451      // Handle icmp {eq|ne} <intrinsic>, intcst.
1452      switch (II->getIntrinsicID()) {
1453      case Intrinsic::bswap:
1454        Worklist.Add(II);
1455        ICI.setOperand(0, II->getArgOperand(0));
1456        ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
1457        return &ICI;
1458      case Intrinsic::ctlz:
1459      case Intrinsic::cttz:
1460        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1461        if (RHSV == RHS->getType()->getBitWidth()) {
1462          Worklist.Add(II);
1463          ICI.setOperand(0, II->getArgOperand(0));
1464          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1465          return &ICI;
1466        }
1467        break;
1468      case Intrinsic::ctpop:
1469        // popcount(A) == 0  ->  A == 0 and likewise for !=
1470        if (RHS->isZero()) {
1471          Worklist.Add(II);
1472          ICI.setOperand(0, II->getArgOperand(0));
1473          ICI.setOperand(1, RHS);
1474          return &ICI;
1475        }
1476        break;
1477      default:
1478        break;
1479      }
1480    }
1481  }
1482  return 0;
1483}
1484
1485/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1486/// We only handle extending casts so far.
1487///
1488Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1489  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1490  Value *LHSCIOp        = LHSCI->getOperand(0);
1491  const Type *SrcTy     = LHSCIOp->getType();
1492  const Type *DestTy    = LHSCI->getType();
1493  Value *RHSCIOp;
1494
1495  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1496  // integer type is the same size as the pointer type.
1497  if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1498      TD->getPointerSizeInBits() ==
1499         cast<IntegerType>(DestTy)->getBitWidth()) {
1500    Value *RHSOp = 0;
1501    if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1502      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1503    } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1504      RHSOp = RHSC->getOperand(0);
1505      // If the pointer types don't match, insert a bitcast.
1506      if (LHSCIOp->getType() != RHSOp->getType())
1507        RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1508    }
1509
1510    if (RHSOp)
1511      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1512  }
1513
1514  // The code below only handles extension cast instructions, so far.
1515  // Enforce this.
1516  if (LHSCI->getOpcode() != Instruction::ZExt &&
1517      LHSCI->getOpcode() != Instruction::SExt)
1518    return 0;
1519
1520  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1521  bool isSignedCmp = ICI.isSigned();
1522
1523  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1524    // Not an extension from the same type?
1525    RHSCIOp = CI->getOperand(0);
1526    if (RHSCIOp->getType() != LHSCIOp->getType())
1527      return 0;
1528
1529    // If the signedness of the two casts doesn't agree (i.e. one is a sext
1530    // and the other is a zext), then we can't handle this.
1531    if (CI->getOpcode() != LHSCI->getOpcode())
1532      return 0;
1533
1534    // Deal with equality cases early.
1535    if (ICI.isEquality())
1536      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1537
1538    // A signed comparison of sign extended values simplifies into a
1539    // signed comparison.
1540    if (isSignedCmp && isSignedExt)
1541      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1542
1543    // The other three cases all fold into an unsigned comparison.
1544    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1545  }
1546
1547  // If we aren't dealing with a constant on the RHS, exit early
1548  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1549  if (!CI)
1550    return 0;
1551
1552  // Compute the constant that would happen if we truncated to SrcTy then
1553  // reextended to DestTy.
1554  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1555  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1556                                                Res1, DestTy);
1557
1558  // If the re-extended constant didn't change...
1559  if (Res2 == CI) {
1560    // Deal with equality cases early.
1561    if (ICI.isEquality())
1562      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1563
1564    // A signed comparison of sign extended values simplifies into a
1565    // signed comparison.
1566    if (isSignedExt && isSignedCmp)
1567      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1568
1569    // The other three cases all fold into an unsigned comparison.
1570    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1571  }
1572
1573  // The re-extended constant changed so the constant cannot be represented
1574  // in the shorter type. Consequently, we cannot emit a simple comparison.
1575  // All the cases that fold to true or false will have already been handled
1576  // by SimplifyICmpInst, so only deal with the tricky case.
1577
1578  if (isSignedCmp || !isSignedExt)
1579    return 0;
1580
1581  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1582  // should have been folded away previously and not enter in here.
1583
1584  // We're performing an unsigned comp with a sign extended value.
1585  // This is true if the input is >= 0. [aka >s -1]
1586  Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1587  Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1588
1589  // Finally, return the value computed.
1590  if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
1591    return ReplaceInstUsesWith(ICI, Result);
1592
1593  assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
1594  return BinaryOperator::CreateNot(Result);
1595}
1596
1597/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1598///   I = icmp ugt (add (add A, B), CI2), CI1
1599/// If this is of the form:
1600///   sum = a + b
1601///   if (sum+128 >u 255)
1602/// Then replace it with llvm.sadd.with.overflow.i8.
1603///
1604static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1605                                          ConstantInt *CI2, ConstantInt *CI1,
1606                                          InstCombiner &IC) {
1607  // The transformation we're trying to do here is to transform this into an
1608  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1609  // with a narrower add, and discard the add-with-constant that is part of the
1610  // range check (if we can't eliminate it, this isn't profitable).
1611
1612  // In order to eliminate the add-with-constant, the compare can be its only
1613  // use.
1614  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1615  if (!AddWithCst->hasOneUse()) return 0;
1616
1617  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1618  if (!CI2->getValue().isPowerOf2()) return 0;
1619  unsigned NewWidth = CI2->getValue().countTrailingZeros();
1620  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
1621
1622  // The width of the new add formed is 1 more than the bias.
1623  ++NewWidth;
1624
1625  // Check to see that CI1 is an all-ones value with NewWidth bits.
1626  if (CI1->getBitWidth() == NewWidth ||
1627      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1628    return 0;
1629
1630  // In order to replace the original add with a narrower
1631  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1632  // and truncates that discard the high bits of the add.  Verify that this is
1633  // the case.
1634  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1635  for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1636       UI != E; ++UI) {
1637    if (*UI == AddWithCst) continue;
1638
1639    // Only accept truncates for now.  We would really like a nice recursive
1640    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1641    // chain to see which bits of a value are actually demanded.  If the
1642    // original add had another add which was then immediately truncated, we
1643    // could still do the transformation.
1644    TruncInst *TI = dyn_cast<TruncInst>(*UI);
1645    if (TI == 0 ||
1646        TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1647  }
1648
1649  // If the pattern matches, truncate the inputs to the narrower type and
1650  // use the sadd_with_overflow intrinsic to efficiently compute both the
1651  // result and the overflow bit.
1652  Module *M = I.getParent()->getParent()->getParent();
1653
1654  const Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1655  Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
1656                                       &NewType, 1);
1657
1658  InstCombiner::BuilderTy *Builder = IC.Builder;
1659
1660  // Put the new code above the original add, in case there are any uses of the
1661  // add between the add and the compare.
1662  Builder->SetInsertPoint(OrigAdd);
1663
1664  Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1665  Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1666  CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1667  Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1668  Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1669
1670  // The inner add was the result of the narrow add, zero extended to the
1671  // wider type.  Replace it with the result computed by the intrinsic.
1672  IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
1673
1674  // The original icmp gets replaced with the overflow value.
1675  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1676}
1677
1678static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1679                                     InstCombiner &IC) {
1680  // Don't bother doing this transformation for pointers, don't do it for
1681  // vectors.
1682  if (!isa<IntegerType>(OrigAddV->getType())) return 0;
1683
1684  // If the add is a constant expr, then we don't bother transforming it.
1685  Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1686  if (OrigAdd == 0) return 0;
1687
1688  Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
1689
1690  // Put the new code above the original add, in case there are any uses of the
1691  // add between the add and the compare.
1692  InstCombiner::BuilderTy *Builder = IC.Builder;
1693  Builder->SetInsertPoint(OrigAdd);
1694
1695  Module *M = I.getParent()->getParent()->getParent();
1696  const Type *Ty = LHS->getType();
1697  Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, &Ty,1);
1698  CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
1699  Value *Add = Builder->CreateExtractValue(Call, 0);
1700
1701  IC.ReplaceInstUsesWith(*OrigAdd, Add);
1702
1703  // The original icmp gets replaced with the overflow value.
1704  return ExtractValueInst::Create(Call, 1, "uadd.overflow");
1705}
1706
1707// DemandedBitsLHSMask - When performing a comparison against a constant,
1708// it is possible that not all the bits in the LHS are demanded.  This helper
1709// method computes the mask that IS demanded.
1710static APInt DemandedBitsLHSMask(ICmpInst &I,
1711                                 unsigned BitWidth, bool isSignCheck) {
1712  if (isSignCheck)
1713    return APInt::getSignBit(BitWidth);
1714
1715  ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
1716  if (!CI) return APInt::getAllOnesValue(BitWidth);
1717  const APInt &RHS = CI->getValue();
1718
1719  switch (I.getPredicate()) {
1720  // For a UGT comparison, we don't care about any bits that
1721  // correspond to the trailing ones of the comparand.  The value of these
1722  // bits doesn't impact the outcome of the comparison, because any value
1723  // greater than the RHS must differ in a bit higher than these due to carry.
1724  case ICmpInst::ICMP_UGT: {
1725    unsigned trailingOnes = RHS.countTrailingOnes();
1726    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
1727    return ~lowBitsSet;
1728  }
1729
1730  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
1731  // Any value less than the RHS must differ in a higher bit because of carries.
1732  case ICmpInst::ICMP_ULT: {
1733    unsigned trailingZeros = RHS.countTrailingZeros();
1734    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
1735    return ~lowBitsSet;
1736  }
1737
1738  default:
1739    return APInt::getAllOnesValue(BitWidth);
1740  }
1741
1742}
1743
1744Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
1745  bool Changed = false;
1746  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1747
1748  /// Orders the operands of the compare so that they are listed from most
1749  /// complex to least complex.  This puts constants before unary operators,
1750  /// before binary operators.
1751  if (getComplexity(Op0) < getComplexity(Op1)) {
1752    I.swapOperands();
1753    std::swap(Op0, Op1);
1754    Changed = true;
1755  }
1756
1757  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
1758    return ReplaceInstUsesWith(I, V);
1759
1760  const Type *Ty = Op0->getType();
1761
1762  // icmp's with boolean values can always be turned into bitwise operations
1763  if (Ty->isIntegerTy(1)) {
1764    switch (I.getPredicate()) {
1765    default: llvm_unreachable("Invalid icmp instruction!");
1766    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
1767      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
1768      return BinaryOperator::CreateNot(Xor);
1769    }
1770    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
1771      return BinaryOperator::CreateXor(Op0, Op1);
1772
1773    case ICmpInst::ICMP_UGT:
1774      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
1775      // FALL THROUGH
1776    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
1777      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1778      return BinaryOperator::CreateAnd(Not, Op1);
1779    }
1780    case ICmpInst::ICMP_SGT:
1781      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
1782      // FALL THROUGH
1783    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
1784      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1785      return BinaryOperator::CreateAnd(Not, Op0);
1786    }
1787    case ICmpInst::ICMP_UGE:
1788      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
1789      // FALL THROUGH
1790    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
1791      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1792      return BinaryOperator::CreateOr(Not, Op1);
1793    }
1794    case ICmpInst::ICMP_SGE:
1795      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
1796      // FALL THROUGH
1797    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
1798      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1799      return BinaryOperator::CreateOr(Not, Op0);
1800    }
1801    }
1802  }
1803
1804  unsigned BitWidth = 0;
1805  if (Ty->isIntOrIntVectorTy())
1806    BitWidth = Ty->getScalarSizeInBits();
1807  else if (TD)  // Pointers require TD info to get their size.
1808    BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
1809
1810  bool isSignBit = false;
1811
1812  // See if we are doing a comparison with a constant.
1813  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1814    Value *A = 0, *B = 0;
1815
1816    // Match the following pattern, which is a common idiom when writing
1817    // overflow-safe integer arithmetic function.  The source performs an
1818    // addition in wider type, and explicitly checks for overflow using
1819    // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
1820    // sadd_with_overflow intrinsic.
1821    //
1822    // TODO: This could probably be generalized to handle other overflow-safe
1823    // operations if we worked out the formulas to compute the appropriate
1824    // magic constants.
1825    //
1826    // sum = a + b
1827    // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1828    {
1829    ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
1830    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
1831        match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1832      if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
1833        return Res;
1834    }
1835
1836    // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
1837    if (I.isEquality() && CI->isZero() &&
1838        match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
1839      // (icmp cond A B) if cond is equality
1840      return new ICmpInst(I.getPredicate(), A, B);
1841    }
1842
1843    // If we have an icmp le or icmp ge instruction, turn it into the
1844    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
1845    // them being folded in the code below.  The SimplifyICmpInst code has
1846    // already handled the edge cases for us, so we just assert on them.
1847    switch (I.getPredicate()) {
1848    default: break;
1849    case ICmpInst::ICMP_ULE:
1850      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
1851      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
1852                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1853    case ICmpInst::ICMP_SLE:
1854      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
1855      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1856                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1857    case ICmpInst::ICMP_UGE:
1858      assert(!CI->isMinValue(false));                  // A >=u MIN -> TRUE
1859      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
1860                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1861    case ICmpInst::ICMP_SGE:
1862      assert(!CI->isMinValue(true));                   // A >=s MIN -> TRUE
1863      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1864                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1865    }
1866
1867    // If this comparison is a normal comparison, it demands all
1868    // bits, if it is a sign bit comparison, it only demands the sign bit.
1869    bool UnusedBit;
1870    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
1871  }
1872
1873  // See if we can fold the comparison based on range information we can get
1874  // by checking whether bits are known to be zero or one in the input.
1875  if (BitWidth != 0) {
1876    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
1877    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
1878
1879    if (SimplifyDemandedBits(I.getOperandUse(0),
1880                             DemandedBitsLHSMask(I, BitWidth, isSignBit),
1881                             Op0KnownZero, Op0KnownOne, 0))
1882      return &I;
1883    if (SimplifyDemandedBits(I.getOperandUse(1),
1884                             APInt::getAllOnesValue(BitWidth),
1885                             Op1KnownZero, Op1KnownOne, 0))
1886      return &I;
1887
1888    // Given the known and unknown bits, compute a range that the LHS could be
1889    // in.  Compute the Min, Max and RHS values based on the known bits. For the
1890    // EQ and NE we use unsigned values.
1891    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
1892    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
1893    if (I.isSigned()) {
1894      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1895                                             Op0Min, Op0Max);
1896      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1897                                             Op1Min, Op1Max);
1898    } else {
1899      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1900                                               Op0Min, Op0Max);
1901      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1902                                               Op1Min, Op1Max);
1903    }
1904
1905    // If Min and Max are known to be the same, then SimplifyDemandedBits
1906    // figured out that the LHS is a constant.  Just constant fold this now so
1907    // that code below can assume that Min != Max.
1908    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
1909      return new ICmpInst(I.getPredicate(),
1910                          ConstantInt::get(I.getContext(), Op0Min), Op1);
1911    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
1912      return new ICmpInst(I.getPredicate(), Op0,
1913                          ConstantInt::get(I.getContext(), Op1Min));
1914
1915    // Based on the range information we know about the LHS, see if we can
1916    // simplify this comparison.  For example, (x&4) < 8  is always true.
1917    switch (I.getPredicate()) {
1918    default: llvm_unreachable("Unknown icmp opcode!");
1919    case ICmpInst::ICMP_EQ: {
1920      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1921        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1922
1923      // If all bits are known zero except for one, then we know at most one
1924      // bit is set.   If the comparison is against zero, then this is a check
1925      // to see if *that* bit is set.
1926      APInt Op0KnownZeroInverted = ~Op0KnownZero;
1927      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1928        // If the LHS is an AND with the same constant, look through it.
1929        Value *LHS = 0;
1930        ConstantInt *LHSC = 0;
1931        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1932            LHSC->getValue() != Op0KnownZeroInverted)
1933          LHS = Op0;
1934
1935        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
1936        // then turn "((1 << x)&8) == 0" into "x != 3".
1937        Value *X = 0;
1938        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
1939          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
1940          return new ICmpInst(ICmpInst::ICMP_NE, X,
1941                              ConstantInt::get(X->getType(), CmpVal));
1942        }
1943
1944        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
1945        // then turn "((8 >>u x)&1) == 0" into "x != 3".
1946        const APInt *CI;
1947        if (Op0KnownZeroInverted == 1 &&
1948            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
1949          return new ICmpInst(ICmpInst::ICMP_NE, X,
1950                              ConstantInt::get(X->getType(),
1951                                               CI->countTrailingZeros()));
1952      }
1953
1954      break;
1955    }
1956    case ICmpInst::ICMP_NE: {
1957      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1958        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1959
1960      // If all bits are known zero except for one, then we know at most one
1961      // bit is set.   If the comparison is against zero, then this is a check
1962      // to see if *that* bit is set.
1963      APInt Op0KnownZeroInverted = ~Op0KnownZero;
1964      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1965        // If the LHS is an AND with the same constant, look through it.
1966        Value *LHS = 0;
1967        ConstantInt *LHSC = 0;
1968        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1969            LHSC->getValue() != Op0KnownZeroInverted)
1970          LHS = Op0;
1971
1972        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
1973        // then turn "((1 << x)&8) != 0" into "x == 3".
1974        Value *X = 0;
1975        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
1976          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
1977          return new ICmpInst(ICmpInst::ICMP_EQ, X,
1978                              ConstantInt::get(X->getType(), CmpVal));
1979        }
1980
1981        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
1982        // then turn "((8 >>u x)&1) != 0" into "x == 3".
1983        const APInt *CI;
1984        if (Op0KnownZeroInverted == 1 &&
1985            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
1986          return new ICmpInst(ICmpInst::ICMP_EQ, X,
1987                              ConstantInt::get(X->getType(),
1988                                               CI->countTrailingZeros()));
1989      }
1990
1991      break;
1992    }
1993    case ICmpInst::ICMP_ULT:
1994      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
1995        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1996      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
1997        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1998      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
1999        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2000      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2001        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
2002          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2003                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
2004
2005        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
2006        if (CI->isMinValue(true))
2007          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2008                           Constant::getAllOnesValue(Op0->getType()));
2009      }
2010      break;
2011    case ICmpInst::ICMP_UGT:
2012      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
2013        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2014      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
2015        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2016
2017      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
2018        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2019      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2020        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
2021          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2022                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
2023
2024        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
2025        if (CI->isMaxValue(true))
2026          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2027                              Constant::getNullValue(Op0->getType()));
2028      }
2029      break;
2030    case ICmpInst::ICMP_SLT:
2031      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
2032        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2033      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
2034        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2035      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
2036        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2037      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2038        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
2039          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2040                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
2041      }
2042      break;
2043    case ICmpInst::ICMP_SGT:
2044      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
2045        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2046      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
2047        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2048
2049      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
2050        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2051      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2052        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
2053          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2054                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
2055      }
2056      break;
2057    case ICmpInst::ICMP_SGE:
2058      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2059      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
2060        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2061      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
2062        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2063      break;
2064    case ICmpInst::ICMP_SLE:
2065      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2066      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
2067        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2068      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
2069        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2070      break;
2071    case ICmpInst::ICMP_UGE:
2072      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2073      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
2074        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2075      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
2076        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2077      break;
2078    case ICmpInst::ICMP_ULE:
2079      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2080      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
2081        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2082      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
2083        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2084      break;
2085    }
2086
2087    // Turn a signed comparison into an unsigned one if both operands
2088    // are known to have the same sign.
2089    if (I.isSigned() &&
2090        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2091         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2092      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2093  }
2094
2095  // Test if the ICmpInst instruction is used exclusively by a select as
2096  // part of a minimum or maximum operation. If so, refrain from doing
2097  // any other folding. This helps out other analyses which understand
2098  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2099  // and CodeGen. And in this case, at least one of the comparison
2100  // operands has at least one user besides the compare (the select),
2101  // which would often largely negate the benefit of folding anyway.
2102  if (I.hasOneUse())
2103    if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2104      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2105          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2106        return 0;
2107
2108  // See if we are doing a comparison between a constant and an instruction that
2109  // can be folded into the comparison.
2110  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2111    // Since the RHS is a ConstantInt (CI), if the left hand side is an
2112    // instruction, see if that instruction also has constants so that the
2113    // instruction can be folded into the icmp
2114    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2115      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2116        return Res;
2117  }
2118
2119  // Handle icmp with constant (but not simple integer constant) RHS
2120  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2121    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2122      switch (LHSI->getOpcode()) {
2123      case Instruction::GetElementPtr:
2124          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2125        if (RHSC->isNullValue() &&
2126            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2127          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2128                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
2129        break;
2130      case Instruction::PHI:
2131        // Only fold icmp into the PHI if the phi and icmp are in the same
2132        // block.  If in the same block, we're encouraging jump threading.  If
2133        // not, we are just pessimizing the code by making an i1 phi.
2134        if (LHSI->getParent() == I.getParent())
2135          if (Instruction *NV = FoldOpIntoPhi(I))
2136            return NV;
2137        break;
2138      case Instruction::Select: {
2139        // If either operand of the select is a constant, we can fold the
2140        // comparison into the select arms, which will cause one to be
2141        // constant folded and the select turned into a bitwise or.
2142        Value *Op1 = 0, *Op2 = 0;
2143        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2144          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2145        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2146          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2147
2148        // We only want to perform this transformation if it will not lead to
2149        // additional code. This is true if either both sides of the select
2150        // fold to a constant (in which case the icmp is replaced with a select
2151        // which will usually simplify) or this is the only user of the
2152        // select (in which case we are trading a select+icmp for a simpler
2153        // select+icmp).
2154        if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2155          if (!Op1)
2156            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2157                                      RHSC, I.getName());
2158          if (!Op2)
2159            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2160                                      RHSC, I.getName());
2161          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2162        }
2163        break;
2164      }
2165      case Instruction::IntToPtr:
2166        // icmp pred inttoptr(X), null -> icmp pred X, 0
2167        if (RHSC->isNullValue() && TD &&
2168            TD->getIntPtrType(RHSC->getContext()) ==
2169               LHSI->getOperand(0)->getType())
2170          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2171                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
2172        break;
2173
2174      case Instruction::Load:
2175        // Try to optimize things like "A[i] > 4" to index computations.
2176        if (GetElementPtrInst *GEP =
2177              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2178          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2179            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2180                !cast<LoadInst>(LHSI)->isVolatile())
2181              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2182                return Res;
2183        }
2184        break;
2185      }
2186  }
2187
2188  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2189  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2190    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2191      return NI;
2192  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2193    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2194                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2195      return NI;
2196
2197  // Test to see if the operands of the icmp are casted versions of other
2198  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
2199  // now.
2200  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
2201    if (Op0->getType()->isPointerTy() &&
2202        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2203      // We keep moving the cast from the left operand over to the right
2204      // operand, where it can often be eliminated completely.
2205      Op0 = CI->getOperand(0);
2206
2207      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2208      // so eliminate it as well.
2209      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2210        Op1 = CI2->getOperand(0);
2211
2212      // If Op1 is a constant, we can fold the cast into the constant.
2213      if (Op0->getType() != Op1->getType()) {
2214        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2215          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2216        } else {
2217          // Otherwise, cast the RHS right before the icmp
2218          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2219        }
2220      }
2221      return new ICmpInst(I.getPredicate(), Op0, Op1);
2222    }
2223  }
2224
2225  if (isa<CastInst>(Op0)) {
2226    // Handle the special case of: icmp (cast bool to X), <cst>
2227    // This comes up when you have code like
2228    //   int X = A < B;
2229    //   if (X) ...
2230    // For generality, we handle any zero-extension of any operand comparison
2231    // with a constant or another cast from the same type.
2232    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2233      if (Instruction *R = visitICmpInstWithCastAndCast(I))
2234        return R;
2235  }
2236
2237  // Special logic for binary operators.
2238  BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2239  BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2240  if (BO0 || BO1) {
2241    CmpInst::Predicate Pred = I.getPredicate();
2242    bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2243    if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2244      NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
2245        (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2246        (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2247    if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2248      NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
2249        (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2250        (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2251
2252    // Analyze the case when either Op0 or Op1 is an add instruction.
2253    // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2254    Value *A = 0, *B = 0, *C = 0, *D = 0;
2255    if (BO0 && BO0->getOpcode() == Instruction::Add)
2256      A = BO0->getOperand(0), B = BO0->getOperand(1);
2257    if (BO1 && BO1->getOpcode() == Instruction::Add)
2258      C = BO1->getOperand(0), D = BO1->getOperand(1);
2259
2260    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2261    if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2262      return new ICmpInst(Pred, A == Op1 ? B : A,
2263                          Constant::getNullValue(Op1->getType()));
2264
2265    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2266    if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2267      return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2268                          C == Op0 ? D : C);
2269
2270    // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2271    if (A && C && (A == C || A == D || B == C || B == D) &&
2272        NoOp0WrapProblem && NoOp1WrapProblem &&
2273        // Try not to increase register pressure.
2274        BO0->hasOneUse() && BO1->hasOneUse()) {
2275      // Determine Y and Z in the form icmp (X+Y), (X+Z).
2276      Value *Y = (A == C || A == D) ? B : A;
2277      Value *Z = (C == A || C == B) ? D : C;
2278      return new ICmpInst(Pred, Y, Z);
2279    }
2280
2281    // Analyze the case when either Op0 or Op1 is a sub instruction.
2282    // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2283    A = 0; B = 0; C = 0; D = 0;
2284    if (BO0 && BO0->getOpcode() == Instruction::Sub)
2285      A = BO0->getOperand(0), B = BO0->getOperand(1);
2286    if (BO1 && BO1->getOpcode() == Instruction::Sub)
2287      C = BO1->getOperand(0), D = BO1->getOperand(1);
2288
2289    // icmp (Y-X), (Z-X) -> icmp Y,Z for equalities or if there is no overflow.
2290    if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2291        // Try not to increase register pressure.
2292        BO0->hasOneUse() && BO1->hasOneUse())
2293      return new ICmpInst(Pred, A, C);
2294
2295    if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
2296        BO0->hasOneUse() && BO1->hasOneUse() &&
2297        BO0->getOperand(1) == BO1->getOperand(1)) {
2298      switch (BO0->getOpcode()) {
2299      default: break;
2300      case Instruction::Add:
2301      case Instruction::Sub:
2302      case Instruction::Xor:
2303        if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
2304          return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2305                              BO1->getOperand(0));
2306        // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2307        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2308          if (CI->getValue().isSignBit()) {
2309            ICmpInst::Predicate Pred = I.isSigned()
2310                                           ? I.getUnsignedPredicate()
2311                                           : I.getSignedPredicate();
2312            return new ICmpInst(Pred, BO0->getOperand(0),
2313                                BO1->getOperand(0));
2314          }
2315
2316          if (CI->getValue().isMaxSignedValue()) {
2317            ICmpInst::Predicate Pred = I.isSigned()
2318                                           ? I.getUnsignedPredicate()
2319                                           : I.getSignedPredicate();
2320            Pred = I.getSwappedPredicate(Pred);
2321            return new ICmpInst(Pred, BO0->getOperand(0),
2322                                BO1->getOperand(0));
2323          }
2324        }
2325        break;
2326      case Instruction::Mul:
2327        if (!I.isEquality())
2328          break;
2329
2330        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2331          // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2332          // Mask = -1 >> count-trailing-zeros(Cst).
2333          if (!CI->isZero() && !CI->isOne()) {
2334            const APInt &AP = CI->getValue();
2335            ConstantInt *Mask = ConstantInt::get(I.getContext(),
2336                                    APInt::getLowBitsSet(AP.getBitWidth(),
2337                                                         AP.getBitWidth() -
2338                                                    AP.countTrailingZeros()));
2339            Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
2340            Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
2341            return new ICmpInst(I.getPredicate(), And1, And2);
2342          }
2343        }
2344        break;
2345      }
2346    }
2347  }
2348
2349  { Value *A, *B;
2350    // ~x < ~y --> y < x
2351    // ~x < cst --> ~cst < x
2352    if (match(Op0, m_Not(m_Value(A)))) {
2353      if (match(Op1, m_Not(m_Value(B))))
2354        return new ICmpInst(I.getPredicate(), B, A);
2355      if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2356        return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2357    }
2358
2359    // (a+b) <u a  --> llvm.uadd.with.overflow.
2360    // (a+b) <u b  --> llvm.uadd.with.overflow.
2361    if (I.getPredicate() == ICmpInst::ICMP_ULT &&
2362        match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2363        (Op1 == A || Op1 == B))
2364      if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2365        return R;
2366
2367    // a >u (a+b)  --> llvm.uadd.with.overflow.
2368    // b >u (a+b)  --> llvm.uadd.with.overflow.
2369    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2370        match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2371        (Op0 == A || Op0 == B))
2372      if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2373        return R;
2374  }
2375
2376  if (I.isEquality()) {
2377    Value *A, *B, *C, *D;
2378
2379    // -x == -y --> x == y
2380    if (match(Op0, m_Neg(m_Value(A))) &&
2381        match(Op1, m_Neg(m_Value(B))))
2382      return new ICmpInst(I.getPredicate(), A, B);
2383
2384    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2385      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
2386        Value *OtherVal = A == Op1 ? B : A;
2387        return new ICmpInst(I.getPredicate(), OtherVal,
2388                            Constant::getNullValue(A->getType()));
2389      }
2390
2391      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2392        // A^c1 == C^c2 --> A == C^(c1^c2)
2393        ConstantInt *C1, *C2;
2394        if (match(B, m_ConstantInt(C1)) &&
2395            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2396          Constant *NC = ConstantInt::get(I.getContext(),
2397                                          C1->getValue() ^ C2->getValue());
2398          Value *Xor = Builder->CreateXor(C, NC, "tmp");
2399          return new ICmpInst(I.getPredicate(), A, Xor);
2400        }
2401
2402        // A^B == A^D -> B == D
2403        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2404        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2405        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2406        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2407      }
2408    }
2409
2410    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2411        (A == Op0 || B == Op0)) {
2412      // A == (A^B)  ->  B == 0
2413      Value *OtherVal = A == Op0 ? B : A;
2414      return new ICmpInst(I.getPredicate(), OtherVal,
2415                          Constant::getNullValue(A->getType()));
2416    }
2417
2418    // (A-B) == A  ->  B == 0
2419    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
2420      return new ICmpInst(I.getPredicate(), B,
2421                          Constant::getNullValue(B->getType()));
2422
2423    // A == (A-B)  ->  B == 0
2424    if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
2425      return new ICmpInst(I.getPredicate(), B,
2426                          Constant::getNullValue(B->getType()));
2427
2428    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2429    if (Op0->hasOneUse() && Op1->hasOneUse() &&
2430        match(Op0, m_And(m_Value(A), m_Value(B))) &&
2431        match(Op1, m_And(m_Value(C), m_Value(D)))) {
2432      Value *X = 0, *Y = 0, *Z = 0;
2433
2434      if (A == C) {
2435        X = B; Y = D; Z = A;
2436      } else if (A == D) {
2437        X = B; Y = C; Z = A;
2438      } else if (B == C) {
2439        X = A; Y = D; Z = B;
2440      } else if (B == D) {
2441        X = A; Y = C; Z = B;
2442      }
2443
2444      if (X) {   // Build (X^Y) & Z
2445        Op1 = Builder->CreateXor(X, Y, "tmp");
2446        Op1 = Builder->CreateAnd(Op1, Z, "tmp");
2447        I.setOperand(0, Op1);
2448        I.setOperand(1, Constant::getNullValue(Op1->getType()));
2449        return &I;
2450      }
2451    }
2452  }
2453
2454  {
2455    Value *X; ConstantInt *Cst;
2456    // icmp X+Cst, X
2457    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2458      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2459
2460    // icmp X, X+Cst
2461    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2462      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2463  }
2464  return Changed ? &I : 0;
2465}
2466
2467
2468
2469
2470
2471
2472/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2473///
2474Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2475                                                Instruction *LHSI,
2476                                                Constant *RHSC) {
2477  if (!isa<ConstantFP>(RHSC)) return 0;
2478  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
2479
2480  // Get the width of the mantissa.  We don't want to hack on conversions that
2481  // might lose information from the integer, e.g. "i64 -> float"
2482  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2483  if (MantissaWidth == -1) return 0;  // Unknown.
2484
2485  // Check to see that the input is converted from an integer type that is small
2486  // enough that preserves all bits.  TODO: check here for "known" sign bits.
2487  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2488  unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
2489
2490  // If this is a uitofp instruction, we need an extra bit to hold the sign.
2491  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2492  if (LHSUnsigned)
2493    ++InputSize;
2494
2495  // If the conversion would lose info, don't hack on this.
2496  if ((int)InputSize > MantissaWidth)
2497    return 0;
2498
2499  // Otherwise, we can potentially simplify the comparison.  We know that it
2500  // will always come through as an integer value and we know the constant is
2501  // not a NAN (it would have been previously simplified).
2502  assert(!RHS.isNaN() && "NaN comparison not already folded!");
2503
2504  ICmpInst::Predicate Pred;
2505  switch (I.getPredicate()) {
2506  default: llvm_unreachable("Unexpected predicate!");
2507  case FCmpInst::FCMP_UEQ:
2508  case FCmpInst::FCMP_OEQ:
2509    Pred = ICmpInst::ICMP_EQ;
2510    break;
2511  case FCmpInst::FCMP_UGT:
2512  case FCmpInst::FCMP_OGT:
2513    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2514    break;
2515  case FCmpInst::FCMP_UGE:
2516  case FCmpInst::FCMP_OGE:
2517    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2518    break;
2519  case FCmpInst::FCMP_ULT:
2520  case FCmpInst::FCMP_OLT:
2521    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2522    break;
2523  case FCmpInst::FCMP_ULE:
2524  case FCmpInst::FCMP_OLE:
2525    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2526    break;
2527  case FCmpInst::FCMP_UNE:
2528  case FCmpInst::FCMP_ONE:
2529    Pred = ICmpInst::ICMP_NE;
2530    break;
2531  case FCmpInst::FCMP_ORD:
2532    return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2533  case FCmpInst::FCMP_UNO:
2534    return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2535  }
2536
2537  const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
2538
2539  // Now we know that the APFloat is a normal number, zero or inf.
2540
2541  // See if the FP constant is too large for the integer.  For example,
2542  // comparing an i8 to 300.0.
2543  unsigned IntWidth = IntTy->getScalarSizeInBits();
2544
2545  if (!LHSUnsigned) {
2546    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
2547    // and large values.
2548    APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
2549    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
2550                          APFloat::rmNearestTiesToEven);
2551    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
2552      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
2553          Pred == ICmpInst::ICMP_SLE)
2554        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2555      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2556    }
2557  } else {
2558    // If the RHS value is > UnsignedMax, fold the comparison. This handles
2559    // +INF and large values.
2560    APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
2561    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
2562                          APFloat::rmNearestTiesToEven);
2563    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
2564      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
2565          Pred == ICmpInst::ICMP_ULE)
2566        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2567      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2568    }
2569  }
2570
2571  if (!LHSUnsigned) {
2572    // See if the RHS value is < SignedMin.
2573    APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2574    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
2575                          APFloat::rmNearestTiesToEven);
2576    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
2577      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
2578          Pred == ICmpInst::ICMP_SGE)
2579        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2580      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2581    }
2582  }
2583
2584  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2585  // [0, UMAX], but it may still be fractional.  See if it is fractional by
2586  // casting the FP value to the integer value and back, checking for equality.
2587  // Don't do this for zero, because -0.0 is not fractional.
2588  Constant *RHSInt = LHSUnsigned
2589    ? ConstantExpr::getFPToUI(RHSC, IntTy)
2590    : ConstantExpr::getFPToSI(RHSC, IntTy);
2591  if (!RHS.isZero()) {
2592    bool Equal = LHSUnsigned
2593      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
2594      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
2595    if (!Equal) {
2596      // If we had a comparison against a fractional value, we have to adjust
2597      // the compare predicate and sometimes the value.  RHSC is rounded towards
2598      // zero at this point.
2599      switch (Pred) {
2600      default: llvm_unreachable("Unexpected integer comparison!");
2601      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
2602        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2603      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
2604        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2605      case ICmpInst::ICMP_ULE:
2606        // (float)int <= 4.4   --> int <= 4
2607        // (float)int <= -4.4  --> false
2608        if (RHS.isNegative())
2609          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2610        break;
2611      case ICmpInst::ICMP_SLE:
2612        // (float)int <= 4.4   --> int <= 4
2613        // (float)int <= -4.4  --> int < -4
2614        if (RHS.isNegative())
2615          Pred = ICmpInst::ICMP_SLT;
2616        break;
2617      case ICmpInst::ICMP_ULT:
2618        // (float)int < -4.4   --> false
2619        // (float)int < 4.4    --> int <= 4
2620        if (RHS.isNegative())
2621          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2622        Pred = ICmpInst::ICMP_ULE;
2623        break;
2624      case ICmpInst::ICMP_SLT:
2625        // (float)int < -4.4   --> int < -4
2626        // (float)int < 4.4    --> int <= 4
2627        if (!RHS.isNegative())
2628          Pred = ICmpInst::ICMP_SLE;
2629        break;
2630      case ICmpInst::ICMP_UGT:
2631        // (float)int > 4.4    --> int > 4
2632        // (float)int > -4.4   --> true
2633        if (RHS.isNegative())
2634          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2635        break;
2636      case ICmpInst::ICMP_SGT:
2637        // (float)int > 4.4    --> int > 4
2638        // (float)int > -4.4   --> int >= -4
2639        if (RHS.isNegative())
2640          Pred = ICmpInst::ICMP_SGE;
2641        break;
2642      case ICmpInst::ICMP_UGE:
2643        // (float)int >= -4.4   --> true
2644        // (float)int >= 4.4    --> int > 4
2645        if (!RHS.isNegative())
2646          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2647        Pred = ICmpInst::ICMP_UGT;
2648        break;
2649      case ICmpInst::ICMP_SGE:
2650        // (float)int >= -4.4   --> int >= -4
2651        // (float)int >= 4.4    --> int > 4
2652        if (!RHS.isNegative())
2653          Pred = ICmpInst::ICMP_SGT;
2654        break;
2655      }
2656    }
2657  }
2658
2659  // Lower this FP comparison into an appropriate integer version of the
2660  // comparison.
2661  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
2662}
2663
2664Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
2665  bool Changed = false;
2666
2667  /// Orders the operands of the compare so that they are listed from most
2668  /// complex to least complex.  This puts constants before unary operators,
2669  /// before binary operators.
2670  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
2671    I.swapOperands();
2672    Changed = true;
2673  }
2674
2675  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2676
2677  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
2678    return ReplaceInstUsesWith(I, V);
2679
2680  // Simplify 'fcmp pred X, X'
2681  if (Op0 == Op1) {
2682    switch (I.getPredicate()) {
2683    default: llvm_unreachable("Unknown predicate!");
2684    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
2685    case FCmpInst::FCMP_ULT:    // True if unordered or less than
2686    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
2687    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
2688      // Canonicalize these to be 'fcmp uno %X, 0.0'.
2689      I.setPredicate(FCmpInst::FCMP_UNO);
2690      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2691      return &I;
2692
2693    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
2694    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
2695    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
2696    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
2697      // Canonicalize these to be 'fcmp ord %X, 0.0'.
2698      I.setPredicate(FCmpInst::FCMP_ORD);
2699      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2700      return &I;
2701    }
2702  }
2703
2704  // Handle fcmp with constant RHS
2705  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2706    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2707      switch (LHSI->getOpcode()) {
2708      case Instruction::PHI:
2709        // Only fold fcmp into the PHI if the phi and fcmp are in the same
2710        // block.  If in the same block, we're encouraging jump threading.  If
2711        // not, we are just pessimizing the code by making an i1 phi.
2712        if (LHSI->getParent() == I.getParent())
2713          if (Instruction *NV = FoldOpIntoPhi(I))
2714            return NV;
2715        break;
2716      case Instruction::SIToFP:
2717      case Instruction::UIToFP:
2718        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
2719          return NV;
2720        break;
2721      case Instruction::Select: {
2722        // If either operand of the select is a constant, we can fold the
2723        // comparison into the select arms, which will cause one to be
2724        // constant folded and the select turned into a bitwise or.
2725        Value *Op1 = 0, *Op2 = 0;
2726        if (LHSI->hasOneUse()) {
2727          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2728            // Fold the known value into the constant operand.
2729            Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2730            // Insert a new FCmp of the other select operand.
2731            Op2 = Builder->CreateFCmp(I.getPredicate(),
2732                                      LHSI->getOperand(2), RHSC, I.getName());
2733          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2734            // Fold the known value into the constant operand.
2735            Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2736            // Insert a new FCmp of the other select operand.
2737            Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
2738                                      RHSC, I.getName());
2739          }
2740        }
2741
2742        if (Op1)
2743          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2744        break;
2745      }
2746      case Instruction::Load:
2747        if (GetElementPtrInst *GEP =
2748            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2749          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2750            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2751                !cast<LoadInst>(LHSI)->isVolatile())
2752              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2753                return Res;
2754        }
2755        break;
2756      }
2757  }
2758
2759  return Changed ? &I : 0;
2760}
2761