InstCombineCompares.cpp revision bb75d337c4d544692cd250acba8e3507aacb7b75
1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/Support/ConstantRange.h"
20#include "llvm/Support/GetElementPtrTypeIterator.h"
21#include "llvm/Support/PatternMatch.h"
22using namespace llvm;
23using namespace PatternMatch;
24
25static ConstantInt *getOne(Constant *C) {
26  return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
27}
28
29/// AddOne - Add one to a ConstantInt
30static Constant *AddOne(Constant *C) {
31  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
32}
33/// SubOne - Subtract one from a ConstantInt
34static Constant *SubOne(Constant *C) {
35  return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
36}
37
38static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
39  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
40}
41
42static bool HasAddOverflow(ConstantInt *Result,
43                           ConstantInt *In1, ConstantInt *In2,
44                           bool IsSigned) {
45  if (IsSigned)
46    if (In2->getValue().isNegative())
47      return Result->getValue().sgt(In1->getValue());
48    else
49      return Result->getValue().slt(In1->getValue());
50  else
51    return Result->getValue().ult(In1->getValue());
52}
53
54/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
55/// overflowed for this type.
56static bool AddWithOverflow(Constant *&Result, Constant *In1,
57                            Constant *In2, bool IsSigned = false) {
58  Result = ConstantExpr::getAdd(In1, In2);
59
60  if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
61    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
62      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
63      if (HasAddOverflow(ExtractElement(Result, Idx),
64                         ExtractElement(In1, Idx),
65                         ExtractElement(In2, Idx),
66                         IsSigned))
67        return true;
68    }
69    return false;
70  }
71
72  return HasAddOverflow(cast<ConstantInt>(Result),
73                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
74                        IsSigned);
75}
76
77static bool HasSubOverflow(ConstantInt *Result,
78                           ConstantInt *In1, ConstantInt *In2,
79                           bool IsSigned) {
80  if (IsSigned)
81    if (In2->getValue().isNegative())
82      return Result->getValue().slt(In1->getValue());
83    else
84      return Result->getValue().sgt(In1->getValue());
85  else
86    return Result->getValue().ugt(In1->getValue());
87}
88
89/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
90/// overflowed for this type.
91static bool SubWithOverflow(Constant *&Result, Constant *In1,
92                            Constant *In2, bool IsSigned = false) {
93  Result = ConstantExpr::getSub(In1, In2);
94
95  if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
96    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
97      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
98      if (HasSubOverflow(ExtractElement(Result, Idx),
99                         ExtractElement(In1, Idx),
100                         ExtractElement(In2, Idx),
101                         IsSigned))
102        return true;
103    }
104    return false;
105  }
106
107  return HasSubOverflow(cast<ConstantInt>(Result),
108                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
109                        IsSigned);
110}
111
112/// isSignBitCheck - Given an exploded icmp instruction, return true if the
113/// comparison only checks the sign bit.  If it only checks the sign bit, set
114/// TrueIfSigned if the result of the comparison is true when the input value is
115/// signed.
116static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
117                           bool &TrueIfSigned) {
118  switch (pred) {
119  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
120    TrueIfSigned = true;
121    return RHS->isZero();
122  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
123    TrueIfSigned = true;
124    return RHS->isAllOnesValue();
125  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
126    TrueIfSigned = false;
127    return RHS->isAllOnesValue();
128  case ICmpInst::ICMP_UGT:
129    // True if LHS u> RHS and RHS == high-bit-mask - 1
130    TrueIfSigned = true;
131    return RHS->getValue() ==
132      APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
133  case ICmpInst::ICMP_UGE:
134    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
135    TrueIfSigned = true;
136    return RHS->getValue().isSignBit();
137  default:
138    return false;
139  }
140}
141
142// isHighOnes - Return true if the constant is of the form 1+0+.
143// This is the same as lowones(~X).
144static bool isHighOnes(const ConstantInt *CI) {
145  return (~CI->getValue() + 1).isPowerOf2();
146}
147
148/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
149/// set of known zero and one bits, compute the maximum and minimum values that
150/// could have the specified known zero and known one bits, returning them in
151/// min/max.
152static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
153                                                   const APInt& KnownOne,
154                                                   APInt& Min, APInt& Max) {
155  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
156         KnownZero.getBitWidth() == Min.getBitWidth() &&
157         KnownZero.getBitWidth() == Max.getBitWidth() &&
158         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
159  APInt UnknownBits = ~(KnownZero|KnownOne);
160
161  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
162  // bit if it is unknown.
163  Min = KnownOne;
164  Max = KnownOne|UnknownBits;
165
166  if (UnknownBits.isNegative()) { // Sign bit is unknown
167    Min.setBit(Min.getBitWidth()-1);
168    Max.clearBit(Max.getBitWidth()-1);
169  }
170}
171
172// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
173// a set of known zero and one bits, compute the maximum and minimum values that
174// could have the specified known zero and known one bits, returning them in
175// min/max.
176static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
177                                                     const APInt &KnownOne,
178                                                     APInt &Min, APInt &Max) {
179  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
180         KnownZero.getBitWidth() == Min.getBitWidth() &&
181         KnownZero.getBitWidth() == Max.getBitWidth() &&
182         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
183  APInt UnknownBits = ~(KnownZero|KnownOne);
184
185  // The minimum value is when the unknown bits are all zeros.
186  Min = KnownOne;
187  // The maximum value is when the unknown bits are all ones.
188  Max = KnownOne|UnknownBits;
189}
190
191
192
193/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
194///   cmp pred (load (gep GV, ...)), cmpcst
195/// where GV is a global variable with a constant initializer.  Try to simplify
196/// this into some simple computation that does not need the load.  For example
197/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
198///
199/// If AndCst is non-null, then the loaded value is masked with that constant
200/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
201Instruction *InstCombiner::
202FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
203                             CmpInst &ICI, ConstantInt *AndCst) {
204  // We need TD information to know the pointer size unless this is inbounds.
205  if (!GEP->isInBounds() && TD == 0) return 0;
206
207  ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
208  if (Init == 0 || Init->getNumOperands() > 1024) return 0;
209
210  // There are many forms of this optimization we can handle, for now, just do
211  // the simple index into a single-dimensional array.
212  //
213  // Require: GEP GV, 0, i {{, constant indices}}
214  if (GEP->getNumOperands() < 3 ||
215      !isa<ConstantInt>(GEP->getOperand(1)) ||
216      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
217      isa<Constant>(GEP->getOperand(2)))
218    return 0;
219
220  // Check that indices after the variable are constants and in-range for the
221  // type they index.  Collect the indices.  This is typically for arrays of
222  // structs.
223  SmallVector<unsigned, 4> LaterIndices;
224
225  const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
226  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
227    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
228    if (Idx == 0) return 0;  // Variable index.
229
230    uint64_t IdxVal = Idx->getZExtValue();
231    if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
232
233    if (const StructType *STy = dyn_cast<StructType>(EltTy))
234      EltTy = STy->getElementType(IdxVal);
235    else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
236      if (IdxVal >= ATy->getNumElements()) return 0;
237      EltTy = ATy->getElementType();
238    } else {
239      return 0; // Unknown type.
240    }
241
242    LaterIndices.push_back(IdxVal);
243  }
244
245  enum { Overdefined = -3, Undefined = -2 };
246
247  // Variables for our state machines.
248
249  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
250  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
251  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
252  // undefined, otherwise set to the first true element.  SecondTrueElement is
253  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
254  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
255
256  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
257  // form "i != 47 & i != 87".  Same state transitions as for true elements.
258  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
259
260  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
261  /// define a state machine that triggers for ranges of values that the index
262  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
263  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
264  /// index in the range (inclusive).  We use -2 for undefined here because we
265  /// use relative comparisons and don't want 0-1 to match -1.
266  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
267
268  // MagicBitvector - This is a magic bitvector where we set a bit if the
269  // comparison is true for element 'i'.  If there are 64 elements or less in
270  // the array, this will fully represent all the comparison results.
271  uint64_t MagicBitvector = 0;
272
273
274  // Scan the array and see if one of our patterns matches.
275  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
276  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
277    Constant *Elt = Init->getOperand(i);
278
279    // If this is indexing an array of structures, get the structure element.
280    if (!LaterIndices.empty())
281      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices.data(),
282                                          LaterIndices.size());
283
284    // If the element is masked, handle it.
285    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
286
287    // Find out if the comparison would be true or false for the i'th element.
288    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
289                                                  CompareRHS, TD);
290    // If the result is undef for this element, ignore it.
291    if (isa<UndefValue>(C)) {
292      // Extend range state machines to cover this element in case there is an
293      // undef in the middle of the range.
294      if (TrueRangeEnd == (int)i-1)
295        TrueRangeEnd = i;
296      if (FalseRangeEnd == (int)i-1)
297        FalseRangeEnd = i;
298      continue;
299    }
300
301    // If we can't compute the result for any of the elements, we have to give
302    // up evaluating the entire conditional.
303    if (!isa<ConstantInt>(C)) return 0;
304
305    // Otherwise, we know if the comparison is true or false for this element,
306    // update our state machines.
307    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
308
309    // State machine for single/double/range index comparison.
310    if (IsTrueForElt) {
311      // Update the TrueElement state machine.
312      if (FirstTrueElement == Undefined)
313        FirstTrueElement = TrueRangeEnd = i;  // First true element.
314      else {
315        // Update double-compare state machine.
316        if (SecondTrueElement == Undefined)
317          SecondTrueElement = i;
318        else
319          SecondTrueElement = Overdefined;
320
321        // Update range state machine.
322        if (TrueRangeEnd == (int)i-1)
323          TrueRangeEnd = i;
324        else
325          TrueRangeEnd = Overdefined;
326      }
327    } else {
328      // Update the FalseElement state machine.
329      if (FirstFalseElement == Undefined)
330        FirstFalseElement = FalseRangeEnd = i; // First false element.
331      else {
332        // Update double-compare state machine.
333        if (SecondFalseElement == Undefined)
334          SecondFalseElement = i;
335        else
336          SecondFalseElement = Overdefined;
337
338        // Update range state machine.
339        if (FalseRangeEnd == (int)i-1)
340          FalseRangeEnd = i;
341        else
342          FalseRangeEnd = Overdefined;
343      }
344    }
345
346
347    // If this element is in range, update our magic bitvector.
348    if (i < 64 && IsTrueForElt)
349      MagicBitvector |= 1ULL << i;
350
351    // If all of our states become overdefined, bail out early.  Since the
352    // predicate is expensive, only check it every 8 elements.  This is only
353    // really useful for really huge arrays.
354    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
355        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
356        FalseRangeEnd == Overdefined)
357      return 0;
358  }
359
360  // Now that we've scanned the entire array, emit our new comparison(s).  We
361  // order the state machines in complexity of the generated code.
362  Value *Idx = GEP->getOperand(2);
363
364  // If the index is larger than the pointer size of the target, truncate the
365  // index down like the GEP would do implicitly.  We don't have to do this for
366  // an inbounds GEP because the index can't be out of range.
367  if (!GEP->isInBounds() &&
368      Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
369    Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
370
371  // If the comparison is only true for one or two elements, emit direct
372  // comparisons.
373  if (SecondTrueElement != Overdefined) {
374    // None true -> false.
375    if (FirstTrueElement == Undefined)
376      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
377
378    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
379
380    // True for one element -> 'i == 47'.
381    if (SecondTrueElement == Undefined)
382      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
383
384    // True for two elements -> 'i == 47 | i == 72'.
385    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
386    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
387    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
388    return BinaryOperator::CreateOr(C1, C2);
389  }
390
391  // If the comparison is only false for one or two elements, emit direct
392  // comparisons.
393  if (SecondFalseElement != Overdefined) {
394    // None false -> true.
395    if (FirstFalseElement == Undefined)
396      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
397
398    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
399
400    // False for one element -> 'i != 47'.
401    if (SecondFalseElement == Undefined)
402      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
403
404    // False for two elements -> 'i != 47 & i != 72'.
405    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
406    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
407    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
408    return BinaryOperator::CreateAnd(C1, C2);
409  }
410
411  // If the comparison can be replaced with a range comparison for the elements
412  // where it is true, emit the range check.
413  if (TrueRangeEnd != Overdefined) {
414    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
415
416    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
417    if (FirstTrueElement) {
418      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
419      Idx = Builder->CreateAdd(Idx, Offs);
420    }
421
422    Value *End = ConstantInt::get(Idx->getType(),
423                                  TrueRangeEnd-FirstTrueElement+1);
424    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
425  }
426
427  // False range check.
428  if (FalseRangeEnd != Overdefined) {
429    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
430    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
431    if (FirstFalseElement) {
432      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
433      Idx = Builder->CreateAdd(Idx, Offs);
434    }
435
436    Value *End = ConstantInt::get(Idx->getType(),
437                                  FalseRangeEnd-FirstFalseElement);
438    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
439  }
440
441
442  // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
443  // of this load, replace it with computation that does:
444  //   ((magic_cst >> i) & 1) != 0
445  if (Init->getNumOperands() <= 32 ||
446      (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
447    const Type *Ty;
448    if (Init->getNumOperands() <= 32)
449      Ty = Type::getInt32Ty(Init->getContext());
450    else
451      Ty = Type::getInt64Ty(Init->getContext());
452    Value *V = Builder->CreateIntCast(Idx, Ty, false);
453    V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
454    V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
455    return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
456  }
457
458  return 0;
459}
460
461
462/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
463/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
464/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
465/// be complex, and scales are involved.  The above expression would also be
466/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
467/// This later form is less amenable to optimization though, and we are allowed
468/// to generate the first by knowing that pointer arithmetic doesn't overflow.
469///
470/// If we can't emit an optimized form for this expression, this returns null.
471///
472static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
473                                          InstCombiner &IC) {
474  TargetData &TD = *IC.getTargetData();
475  gep_type_iterator GTI = gep_type_begin(GEP);
476
477  // Check to see if this gep only has a single variable index.  If so, and if
478  // any constant indices are a multiple of its scale, then we can compute this
479  // in terms of the scale of the variable index.  For example, if the GEP
480  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
481  // because the expression will cross zero at the same point.
482  unsigned i, e = GEP->getNumOperands();
483  int64_t Offset = 0;
484  for (i = 1; i != e; ++i, ++GTI) {
485    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
486      // Compute the aggregate offset of constant indices.
487      if (CI->isZero()) continue;
488
489      // Handle a struct index, which adds its field offset to the pointer.
490      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
491        Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
492      } else {
493        uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
494        Offset += Size*CI->getSExtValue();
495      }
496    } else {
497      // Found our variable index.
498      break;
499    }
500  }
501
502  // If there are no variable indices, we must have a constant offset, just
503  // evaluate it the general way.
504  if (i == e) return 0;
505
506  Value *VariableIdx = GEP->getOperand(i);
507  // Determine the scale factor of the variable element.  For example, this is
508  // 4 if the variable index is into an array of i32.
509  uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
510
511  // Verify that there are no other variable indices.  If so, emit the hard way.
512  for (++i, ++GTI; i != e; ++i, ++GTI) {
513    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
514    if (!CI) return 0;
515
516    // Compute the aggregate offset of constant indices.
517    if (CI->isZero()) continue;
518
519    // Handle a struct index, which adds its field offset to the pointer.
520    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
521      Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
522    } else {
523      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
524      Offset += Size*CI->getSExtValue();
525    }
526  }
527
528  // Okay, we know we have a single variable index, which must be a
529  // pointer/array/vector index.  If there is no offset, life is simple, return
530  // the index.
531  unsigned IntPtrWidth = TD.getPointerSizeInBits();
532  if (Offset == 0) {
533    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
534    // we don't need to bother extending: the extension won't affect where the
535    // computation crosses zero.
536    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
537      VariableIdx = new TruncInst(VariableIdx,
538                                  TD.getIntPtrType(VariableIdx->getContext()),
539                                  VariableIdx->getName(), &I);
540    return VariableIdx;
541  }
542
543  // Otherwise, there is an index.  The computation we will do will be modulo
544  // the pointer size, so get it.
545  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
546
547  Offset &= PtrSizeMask;
548  VariableScale &= PtrSizeMask;
549
550  // To do this transformation, any constant index must be a multiple of the
551  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
552  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
553  // multiple of the variable scale.
554  int64_t NewOffs = Offset / (int64_t)VariableScale;
555  if (Offset != NewOffs*(int64_t)VariableScale)
556    return 0;
557
558  // Okay, we can do this evaluation.  Start by converting the index to intptr.
559  const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
560  if (VariableIdx->getType() != IntPtrTy)
561    VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
562                                              true /*SExt*/,
563                                              VariableIdx->getName(), &I);
564  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
565  return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
566}
567
568/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
569/// else.  At this point we know that the GEP is on the LHS of the comparison.
570Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
571                                       ICmpInst::Predicate Cond,
572                                       Instruction &I) {
573  // Look through bitcasts.
574  if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
575    RHS = BCI->getOperand(0);
576
577  Value *PtrBase = GEPLHS->getOperand(0);
578  if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
579    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
580    // This transformation (ignoring the base and scales) is valid because we
581    // know pointers can't overflow since the gep is inbounds.  See if we can
582    // output an optimized form.
583    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
584
585    // If not, synthesize the offset the hard way.
586    if (Offset == 0)
587      Offset = EmitGEPOffset(GEPLHS);
588    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
589                        Constant::getNullValue(Offset->getType()));
590  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
591    // If the base pointers are different, but the indices are the same, just
592    // compare the base pointer.
593    if (PtrBase != GEPRHS->getOperand(0)) {
594      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
595      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
596                        GEPRHS->getOperand(0)->getType();
597      if (IndicesTheSame)
598        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
599          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
600            IndicesTheSame = false;
601            break;
602          }
603
604      // If all indices are the same, just compare the base pointers.
605      if (IndicesTheSame)
606        return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
607                            GEPLHS->getOperand(0), GEPRHS->getOperand(0));
608
609      // Otherwise, the base pointers are different and the indices are
610      // different, bail out.
611      return 0;
612    }
613
614    // If one of the GEPs has all zero indices, recurse.
615    bool AllZeros = true;
616    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
617      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
618          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
619        AllZeros = false;
620        break;
621      }
622    if (AllZeros)
623      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
624                          ICmpInst::getSwappedPredicate(Cond), I);
625
626    // If the other GEP has all zero indices, recurse.
627    AllZeros = true;
628    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
629      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
630          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
631        AllZeros = false;
632        break;
633      }
634    if (AllZeros)
635      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
636
637    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
638      // If the GEPs only differ by one index, compare it.
639      unsigned NumDifferences = 0;  // Keep track of # differences.
640      unsigned DiffOperand = 0;     // The operand that differs.
641      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
642        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
643          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
644                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
645            // Irreconcilable differences.
646            NumDifferences = 2;
647            break;
648          } else {
649            if (NumDifferences++) break;
650            DiffOperand = i;
651          }
652        }
653
654      if (NumDifferences == 0)   // SAME GEP?
655        return ReplaceInstUsesWith(I, // No comparison is needed here.
656                               ConstantInt::get(Type::getInt1Ty(I.getContext()),
657                                             ICmpInst::isTrueWhenEqual(Cond)));
658
659      else if (NumDifferences == 1) {
660        Value *LHSV = GEPLHS->getOperand(DiffOperand);
661        Value *RHSV = GEPRHS->getOperand(DiffOperand);
662        // Make sure we do a signed comparison here.
663        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
664      }
665    }
666
667    // Only lower this if the icmp is the only user of the GEP or if we expect
668    // the result to fold to a constant!
669    if (TD &&
670        (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
671        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
672      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
673      Value *L = EmitGEPOffset(GEPLHS);
674      Value *R = EmitGEPOffset(GEPRHS);
675      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
676    }
677  }
678  return 0;
679}
680
681/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
682Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
683                                            Value *X, ConstantInt *CI,
684                                            ICmpInst::Predicate Pred,
685                                            Value *TheAdd) {
686  // If we have X+0, exit early (simplifying logic below) and let it get folded
687  // elsewhere.   icmp X+0, X  -> icmp X, X
688  if (CI->isZero()) {
689    bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
690    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
691  }
692
693  // (X+4) == X -> false.
694  if (Pred == ICmpInst::ICMP_EQ)
695    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
696
697  // (X+4) != X -> true.
698  if (Pred == ICmpInst::ICMP_NE)
699    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
700
701  // If this is an instruction (as opposed to constantexpr) get NUW/NSW info.
702  bool isNUW = false, isNSW = false;
703  if (BinaryOperator *Add = dyn_cast<BinaryOperator>(TheAdd)) {
704    isNUW = Add->hasNoUnsignedWrap();
705    isNSW = Add->hasNoSignedWrap();
706  }
707
708  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
709  // so the values can never be equal.  Similiarly for all other "or equals"
710  // operators.
711
712  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
713  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
714  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
715  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
716    // If this is an NUW add, then this is always false.
717    if (isNUW)
718      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
719
720    Value *R =
721      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
722    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
723  }
724
725  // (X+1) >u X        --> X <u (0-1)        --> X != 255
726  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
727  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
728  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
729    // If this is an NUW add, then this is always true.
730    if (isNUW)
731      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
732    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
733  }
734
735  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
736  ConstantInt *SMax = ConstantInt::get(X->getContext(),
737                                       APInt::getSignedMaxValue(BitWidth));
738
739  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
740  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
741  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
742  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
743  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
744  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
745  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
746    // If this is an NSW add, then we have two cases: if the constant is
747    // positive, then this is always false, if negative, this is always true.
748    if (isNSW) {
749      bool isTrue = CI->getValue().isNegative();
750      return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
751    }
752
753    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
754  }
755
756  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
757  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
758  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
759  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
760  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
761  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
762
763  // If this is an NSW add, then we have two cases: if the constant is
764  // positive, then this is always true, if negative, this is always false.
765  if (isNSW) {
766    bool isTrue = !CI->getValue().isNegative();
767    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
768  }
769
770  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
771  Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
772  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
773}
774
775/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
776/// and CmpRHS are both known to be integer constants.
777Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
778                                          ConstantInt *DivRHS) {
779  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
780  const APInt &CmpRHSV = CmpRHS->getValue();
781
782  // FIXME: If the operand types don't match the type of the divide
783  // then don't attempt this transform. The code below doesn't have the
784  // logic to deal with a signed divide and an unsigned compare (and
785  // vice versa). This is because (x /s C1) <s C2  produces different
786  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
787  // (x /u C1) <u C2.  Simply casting the operands and result won't
788  // work. :(  The if statement below tests that condition and bails
789  // if it finds it.
790  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
791  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
792    return 0;
793  if (DivRHS->isZero())
794    return 0; // The ProdOV computation fails on divide by zero.
795  if (DivIsSigned && DivRHS->isAllOnesValue())
796    return 0; // The overflow computation also screws up here
797  if (DivRHS->isOne()) {
798    // This eliminates some funny cases with INT_MIN.
799    ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
800    return &ICI;
801  }
802
803  // Compute Prod = CI * DivRHS. We are essentially solving an equation
804  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
805  // C2 (CI). By solving for X we can turn this into a range check
806  // instead of computing a divide.
807  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
808
809  // Determine if the product overflows by seeing if the product is
810  // not equal to the divide. Make sure we do the same kind of divide
811  // as in the LHS instruction that we're folding.
812  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
813                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
814
815  // Get the ICmp opcode
816  ICmpInst::Predicate Pred = ICI.getPredicate();
817
818  /// If the division is known to be exact, then there is no remainder from the
819  /// divide, so the covered range size is unit, otherwise it is the divisor.
820  ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
821
822  // Figure out the interval that is being checked.  For example, a comparison
823  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
824  // Compute this interval based on the constants involved and the signedness of
825  // the compare/divide.  This computes a half-open interval, keeping track of
826  // whether either value in the interval overflows.  After analysis each
827  // overflow variable is set to 0 if it's corresponding bound variable is valid
828  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
829  int LoOverflow = 0, HiOverflow = 0;
830  Constant *LoBound = 0, *HiBound = 0;
831
832  if (!DivIsSigned) {  // udiv
833    // e.g. X/5 op 3  --> [15, 20)
834    LoBound = Prod;
835    HiOverflow = LoOverflow = ProdOV;
836    if (!HiOverflow) {
837      // If this is not an exact divide, then many values in the range collapse
838      // to the same result value.
839      HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
840    }
841
842  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
843    if (CmpRHSV == 0) {       // (X / pos) op 0
844      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
845      LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
846      HiBound = RangeSize;
847    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
848      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
849      HiOverflow = LoOverflow = ProdOV;
850      if (!HiOverflow)
851        HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
852    } else {                       // (X / pos) op neg
853      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
854      HiBound = AddOne(Prod);
855      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
856      if (!LoOverflow) {
857        ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
858        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
859      }
860    }
861  } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
862    if (DivI->isExact())
863      RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
864    if (CmpRHSV == 0) {       // (X / neg) op 0
865      // e.g. X/-5 op 0  --> [-4, 5)
866      LoBound = AddOne(RangeSize);
867      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
868      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
869        HiOverflow = 1;            // [INTMIN+1, overflow)
870        HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
871      }
872    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
873      // e.g. X/-5 op 3  --> [-19, -14)
874      HiBound = AddOne(Prod);
875      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
876      if (!LoOverflow)
877        LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
878    } else {                       // (X / neg) op neg
879      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
880      LoOverflow = HiOverflow = ProdOV;
881      if (!HiOverflow)
882        HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
883    }
884
885    // Dividing by a negative swaps the condition.  LT <-> GT
886    Pred = ICmpInst::getSwappedPredicate(Pred);
887  }
888
889  Value *X = DivI->getOperand(0);
890  switch (Pred) {
891  default: llvm_unreachable("Unhandled icmp opcode!");
892  case ICmpInst::ICMP_EQ:
893    if (LoOverflow && HiOverflow)
894      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
895    if (HiOverflow)
896      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
897                          ICmpInst::ICMP_UGE, X, LoBound);
898    if (LoOverflow)
899      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
900                          ICmpInst::ICMP_ULT, X, HiBound);
901    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
902                                                    DivIsSigned, true));
903  case ICmpInst::ICMP_NE:
904    if (LoOverflow && HiOverflow)
905      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
906    if (HiOverflow)
907      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
908                          ICmpInst::ICMP_ULT, X, LoBound);
909    if (LoOverflow)
910      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
911                          ICmpInst::ICMP_UGE, X, HiBound);
912    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
913                                                    DivIsSigned, false));
914  case ICmpInst::ICMP_ULT:
915  case ICmpInst::ICMP_SLT:
916    if (LoOverflow == +1)   // Low bound is greater than input range.
917      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
918    if (LoOverflow == -1)   // Low bound is less than input range.
919      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
920    return new ICmpInst(Pred, X, LoBound);
921  case ICmpInst::ICMP_UGT:
922  case ICmpInst::ICMP_SGT:
923    if (HiOverflow == +1)       // High bound greater than input range.
924      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
925    if (HiOverflow == -1)       // High bound less than input range.
926      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
927    if (Pred == ICmpInst::ICMP_UGT)
928      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
929    return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
930  }
931}
932
933/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
934Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
935                                          ConstantInt *ShAmt) {
936  const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
937
938  // Check that the shift amount is in range.  If not, don't perform
939  // undefined shifts.  When the shift is visited it will be
940  // simplified.
941  uint32_t TypeBits = CmpRHSV.getBitWidth();
942  uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
943  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
944    return 0;
945
946  if (!ICI.isEquality()) {
947    // If we have an unsigned comparison and an ashr, we can't simplify this.
948    // Similarly for signed comparisons with lshr.
949    if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
950      return 0;
951
952    // Otherwise, all lshr and all exact ashr's are equivalent to a udiv/sdiv by
953    // a power of 2.  Since we already have logic to simplify these, transform
954    // to div and then simplify the resultant comparison.
955    if (Shr->getOpcode() == Instruction::AShr &&
956        !Shr->isExact())
957      return 0;
958
959    // Revisit the shift (to delete it).
960    Worklist.Add(Shr);
961
962    Constant *DivCst =
963      ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
964
965    Value *Tmp =
966      Shr->getOpcode() == Instruction::AShr ?
967      Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
968      Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
969
970    ICI.setOperand(0, Tmp);
971
972    // If the builder folded the binop, just return it.
973    BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
974    if (TheDiv == 0)
975      return &ICI;
976
977    // Otherwise, fold this div/compare.
978    assert(TheDiv->getOpcode() == Instruction::SDiv ||
979           TheDiv->getOpcode() == Instruction::UDiv);
980
981    Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
982    assert(Res && "This div/cst should have folded!");
983    return Res;
984  }
985
986
987  // If we are comparing against bits always shifted out, the
988  // comparison cannot succeed.
989  APInt Comp = CmpRHSV << ShAmtVal;
990  ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
991  if (Shr->getOpcode() == Instruction::LShr)
992    Comp = Comp.lshr(ShAmtVal);
993  else
994    Comp = Comp.ashr(ShAmtVal);
995
996  if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
997    bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
998    Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
999                                     IsICMP_NE);
1000    return ReplaceInstUsesWith(ICI, Cst);
1001  }
1002
1003  // Otherwise, check to see if the bits shifted out are known to be zero.
1004  // If so, we can compare against the unshifted value:
1005  //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1006  if (Shr->hasOneUse() && cast<BinaryOperator>(Shr)->isExact())
1007    return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1008
1009  if (Shr->hasOneUse()) {
1010    // Otherwise strength reduce the shift into an and.
1011    APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1012    Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
1013
1014    Value *And = Builder->CreateAnd(Shr->getOperand(0),
1015                                    Mask, Shr->getName()+".mask");
1016    return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1017  }
1018  return 0;
1019}
1020
1021
1022/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1023///
1024Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1025                                                          Instruction *LHSI,
1026                                                          ConstantInt *RHS) {
1027  const APInt &RHSV = RHS->getValue();
1028
1029  switch (LHSI->getOpcode()) {
1030  case Instruction::Trunc:
1031    if (ICI.isEquality() && LHSI->hasOneUse()) {
1032      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1033      // of the high bits truncated out of x are known.
1034      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1035             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1036      APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
1037      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1038      ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
1039
1040      // If all the high bits are known, we can do this xform.
1041      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1042        // Pull in the high bits from known-ones set.
1043        APInt NewRHS = RHS->getValue().zext(SrcBits);
1044        NewRHS |= KnownOne;
1045        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1046                            ConstantInt::get(ICI.getContext(), NewRHS));
1047      }
1048    }
1049    break;
1050
1051  case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
1052    if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1053      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1054      // fold the xor.
1055      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1056          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1057        Value *CompareVal = LHSI->getOperand(0);
1058
1059        // If the sign bit of the XorCST is not set, there is no change to
1060        // the operation, just stop using the Xor.
1061        if (!XorCST->getValue().isNegative()) {
1062          ICI.setOperand(0, CompareVal);
1063          Worklist.Add(LHSI);
1064          return &ICI;
1065        }
1066
1067        // Was the old condition true if the operand is positive?
1068        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1069
1070        // If so, the new one isn't.
1071        isTrueIfPositive ^= true;
1072
1073        if (isTrueIfPositive)
1074          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1075                              SubOne(RHS));
1076        else
1077          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1078                              AddOne(RHS));
1079      }
1080
1081      if (LHSI->hasOneUse()) {
1082        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1083        if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
1084          const APInt &SignBit = XorCST->getValue();
1085          ICmpInst::Predicate Pred = ICI.isSigned()
1086                                         ? ICI.getUnsignedPredicate()
1087                                         : ICI.getSignedPredicate();
1088          return new ICmpInst(Pred, LHSI->getOperand(0),
1089                              ConstantInt::get(ICI.getContext(),
1090                                               RHSV ^ SignBit));
1091        }
1092
1093        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1094        if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) {
1095          const APInt &NotSignBit = XorCST->getValue();
1096          ICmpInst::Predicate Pred = ICI.isSigned()
1097                                         ? ICI.getUnsignedPredicate()
1098                                         : ICI.getSignedPredicate();
1099          Pred = ICI.getSwappedPredicate(Pred);
1100          return new ICmpInst(Pred, LHSI->getOperand(0),
1101                              ConstantInt::get(ICI.getContext(),
1102                                               RHSV ^ NotSignBit));
1103        }
1104      }
1105    }
1106    break;
1107  case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
1108    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1109        LHSI->getOperand(0)->hasOneUse()) {
1110      ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
1111
1112      // If the LHS is an AND of a truncating cast, we can widen the
1113      // and/compare to be the input width without changing the value
1114      // produced, eliminating a cast.
1115      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1116        // We can do this transformation if either the AND constant does not
1117        // have its sign bit set or if it is an equality comparison.
1118        // Extending a relational comparison when we're checking the sign
1119        // bit would not work.
1120        if (Cast->hasOneUse() &&
1121            (ICI.isEquality() ||
1122             (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
1123          uint32_t BitWidth =
1124            cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
1125          APInt NewCST = AndCST->getValue().zext(BitWidth);
1126          APInt NewCI = RHSV.zext(BitWidth);
1127          Value *NewAnd =
1128            Builder->CreateAnd(Cast->getOperand(0),
1129                           ConstantInt::get(ICI.getContext(), NewCST),
1130                               LHSI->getName());
1131          return new ICmpInst(ICI.getPredicate(), NewAnd,
1132                              ConstantInt::get(ICI.getContext(), NewCI));
1133        }
1134      }
1135
1136      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1137      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1138      // happens a LOT in code produced by the C front-end, for bitfield
1139      // access.
1140      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1141      if (Shift && !Shift->isShift())
1142        Shift = 0;
1143
1144      ConstantInt *ShAmt;
1145      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
1146      const Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
1147      const Type *AndTy = AndCST->getType();          // Type of the and.
1148
1149      // We can fold this as long as we can't shift unknown bits
1150      // into the mask.  This can only happen with signed shift
1151      // rights, as they sign-extend.
1152      if (ShAmt) {
1153        bool CanFold = Shift->isLogicalShift();
1154        if (!CanFold) {
1155          // To test for the bad case of the signed shr, see if any
1156          // of the bits shifted in could be tested after the mask.
1157          uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1158          int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
1159
1160          uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
1161          if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
1162               AndCST->getValue()) == 0)
1163            CanFold = true;
1164        }
1165
1166        if (CanFold) {
1167          Constant *NewCst;
1168          if (Shift->getOpcode() == Instruction::Shl)
1169            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1170          else
1171            NewCst = ConstantExpr::getShl(RHS, ShAmt);
1172
1173          // Check to see if we are shifting out any of the bits being
1174          // compared.
1175          if (ConstantExpr::get(Shift->getOpcode(),
1176                                       NewCst, ShAmt) != RHS) {
1177            // If we shifted bits out, the fold is not going to work out.
1178            // As a special case, check to see if this means that the
1179            // result is always true or false now.
1180            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1181              return ReplaceInstUsesWith(ICI,
1182                                       ConstantInt::getFalse(ICI.getContext()));
1183            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1184              return ReplaceInstUsesWith(ICI,
1185                                       ConstantInt::getTrue(ICI.getContext()));
1186          } else {
1187            ICI.setOperand(1, NewCst);
1188            Constant *NewAndCST;
1189            if (Shift->getOpcode() == Instruction::Shl)
1190              NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1191            else
1192              NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1193            LHSI->setOperand(1, NewAndCST);
1194            LHSI->setOperand(0, Shift->getOperand(0));
1195            Worklist.Add(Shift); // Shift is dead.
1196            return &ICI;
1197          }
1198        }
1199      }
1200
1201      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1202      // preferable because it allows the C<<Y expression to be hoisted out
1203      // of a loop if Y is invariant and X is not.
1204      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1205          ICI.isEquality() && !Shift->isArithmeticShift() &&
1206          !isa<Constant>(Shift->getOperand(0))) {
1207        // Compute C << Y.
1208        Value *NS;
1209        if (Shift->getOpcode() == Instruction::LShr) {
1210          NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
1211        } else {
1212          // Insert a logical shift.
1213          NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
1214        }
1215
1216        // Compute X & (C << Y).
1217        Value *NewAnd =
1218          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1219
1220        ICI.setOperand(0, NewAnd);
1221        return &ICI;
1222      }
1223    }
1224
1225    // Try to optimize things like "A[i]&42 == 0" to index computations.
1226    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1227      if (GetElementPtrInst *GEP =
1228          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1229        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1230          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1231              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1232            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1233            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1234              return Res;
1235          }
1236    }
1237    break;
1238
1239  case Instruction::Or: {
1240    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1241      break;
1242    Value *P, *Q;
1243    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1244      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1245      // -> and (icmp eq P, null), (icmp eq Q, null).
1246      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1247                                        Constant::getNullValue(P->getType()));
1248      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1249                                        Constant::getNullValue(Q->getType()));
1250      Instruction *Op;
1251      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1252        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1253      else
1254        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1255      return Op;
1256    }
1257    break;
1258  }
1259
1260  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1261    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1262    if (!ShAmt) break;
1263
1264    uint32_t TypeBits = RHSV.getBitWidth();
1265
1266    // Check that the shift amount is in range.  If not, don't perform
1267    // undefined shifts.  When the shift is visited it will be
1268    // simplified.
1269    if (ShAmt->uge(TypeBits))
1270      break;
1271
1272    if (ICI.isEquality()) {
1273      // If we are comparing against bits always shifted out, the
1274      // comparison cannot succeed.
1275      Constant *Comp =
1276        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1277                                                                 ShAmt);
1278      if (Comp != RHS) {// Comparing against a bit that we know is zero.
1279        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1280        Constant *Cst =
1281          ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
1282        return ReplaceInstUsesWith(ICI, Cst);
1283      }
1284
1285      // If the shift is NUW, then it is just shifting out zeros, no need for an
1286      // AND.
1287      if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1288        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1289                            ConstantExpr::getLShr(RHS, ShAmt));
1290
1291      if (LHSI->hasOneUse()) {
1292        // Otherwise strength reduce the shift into an and.
1293        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1294        Constant *Mask =
1295          ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
1296                                                       TypeBits-ShAmtVal));
1297
1298        Value *And =
1299          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1300        return new ICmpInst(ICI.getPredicate(), And,
1301                            ConstantExpr::getLShr(RHS, ShAmt));
1302      }
1303    }
1304
1305    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1306    bool TrueIfSigned = false;
1307    if (LHSI->hasOneUse() &&
1308        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1309      // (X << 31) <s 0  --> (X&1) != 0
1310      Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1311                                        APInt::getOneBitSet(TypeBits,
1312                                            TypeBits-ShAmt->getZExtValue()-1));
1313      Value *And =
1314        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1315      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1316                          And, Constant::getNullValue(And->getType()));
1317    }
1318    break;
1319  }
1320
1321  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1322  case Instruction::AShr:
1323    // Only handle equality comparisons of shift-by-constant.
1324    if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1325      if (Instruction *Res = FoldICmpShrCst(ICI, cast<BinaryOperator>(LHSI),
1326                                            ShAmt))
1327        return Res;
1328    break;
1329
1330  case Instruction::SDiv:
1331  case Instruction::UDiv:
1332    // Fold: icmp pred ([us]div X, C1), C2 -> range test
1333    // Fold this div into the comparison, producing a range check.
1334    // Determine, based on the divide type, what the range is being
1335    // checked.  If there is an overflow on the low or high side, remember
1336    // it, otherwise compute the range [low, hi) bounding the new value.
1337    // See: InsertRangeTest above for the kinds of replacements possible.
1338    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1339      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1340                                          DivRHS))
1341        return R;
1342    break;
1343
1344  case Instruction::Add:
1345    // Fold: icmp pred (add X, C1), C2
1346    if (!ICI.isEquality()) {
1347      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1348      if (!LHSC) break;
1349      const APInt &LHSV = LHSC->getValue();
1350
1351      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1352                            .subtract(LHSV);
1353
1354      if (ICI.isSigned()) {
1355        if (CR.getLower().isSignBit()) {
1356          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1357                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1358        } else if (CR.getUpper().isSignBit()) {
1359          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1360                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1361        }
1362      } else {
1363        if (CR.getLower().isMinValue()) {
1364          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1365                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1366        } else if (CR.getUpper().isMinValue()) {
1367          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1368                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1369        }
1370      }
1371    }
1372    break;
1373  }
1374
1375  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1376  if (ICI.isEquality()) {
1377    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1378
1379    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1380    // the second operand is a constant, simplify a bit.
1381    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1382      switch (BO->getOpcode()) {
1383      case Instruction::SRem:
1384        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1385        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1386          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1387          if (V.sgt(1) && V.isPowerOf2()) {
1388            Value *NewRem =
1389              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1390                                  BO->getName());
1391            return new ICmpInst(ICI.getPredicate(), NewRem,
1392                                Constant::getNullValue(BO->getType()));
1393          }
1394        }
1395        break;
1396      case Instruction::Add:
1397        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1398        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1399          if (BO->hasOneUse())
1400            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1401                                ConstantExpr::getSub(RHS, BOp1C));
1402        } else if (RHSV == 0) {
1403          // Replace ((add A, B) != 0) with (A != -B) if A or B is
1404          // efficiently invertible, or if the add has just this one use.
1405          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1406
1407          if (Value *NegVal = dyn_castNegVal(BOp1))
1408            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1409          else if (Value *NegVal = dyn_castNegVal(BOp0))
1410            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1411          else if (BO->hasOneUse()) {
1412            Value *Neg = Builder->CreateNeg(BOp1);
1413            Neg->takeName(BO);
1414            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1415          }
1416        }
1417        break;
1418      case Instruction::Xor:
1419        // For the xor case, we can xor two constants together, eliminating
1420        // the explicit xor.
1421        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
1422          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1423                              ConstantExpr::getXor(RHS, BOC));
1424
1425        // FALLTHROUGH
1426      case Instruction::Sub:
1427        // Replace (([sub|xor] A, B) != 0) with (A != B)
1428        if (RHSV == 0)
1429          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1430                              BO->getOperand(1));
1431        break;
1432
1433      case Instruction::Or:
1434        // If bits are being or'd in that are not present in the constant we
1435        // are comparing against, then the comparison could never succeed!
1436        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1437          Constant *NotCI = ConstantExpr::getNot(RHS);
1438          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1439            return ReplaceInstUsesWith(ICI,
1440                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1441                                       isICMP_NE));
1442        }
1443        break;
1444
1445      case Instruction::And:
1446        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1447          // If bits are being compared against that are and'd out, then the
1448          // comparison can never succeed!
1449          if ((RHSV & ~BOC->getValue()) != 0)
1450            return ReplaceInstUsesWith(ICI,
1451                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1452                                       isICMP_NE));
1453
1454          // If we have ((X & C) == C), turn it into ((X & C) != 0).
1455          if (RHS == BOC && RHSV.isPowerOf2())
1456            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1457                                ICmpInst::ICMP_NE, LHSI,
1458                                Constant::getNullValue(RHS->getType()));
1459
1460          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1461          if (BOC->getValue().isSignBit()) {
1462            Value *X = BO->getOperand(0);
1463            Constant *Zero = Constant::getNullValue(X->getType());
1464            ICmpInst::Predicate pred = isICMP_NE ?
1465              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1466            return new ICmpInst(pred, X, Zero);
1467          }
1468
1469          // ((X & ~7) == 0) --> X < 8
1470          if (RHSV == 0 && isHighOnes(BOC)) {
1471            Value *X = BO->getOperand(0);
1472            Constant *NegX = ConstantExpr::getNeg(BOC);
1473            ICmpInst::Predicate pred = isICMP_NE ?
1474              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1475            return new ICmpInst(pred, X, NegX);
1476          }
1477        }
1478      default: break;
1479      }
1480    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1481      // Handle icmp {eq|ne} <intrinsic>, intcst.
1482      switch (II->getIntrinsicID()) {
1483      case Intrinsic::bswap:
1484        Worklist.Add(II);
1485        ICI.setOperand(0, II->getArgOperand(0));
1486        ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
1487        return &ICI;
1488      case Intrinsic::ctlz:
1489      case Intrinsic::cttz:
1490        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1491        if (RHSV == RHS->getType()->getBitWidth()) {
1492          Worklist.Add(II);
1493          ICI.setOperand(0, II->getArgOperand(0));
1494          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1495          return &ICI;
1496        }
1497        break;
1498      case Intrinsic::ctpop:
1499        // popcount(A) == 0  ->  A == 0 and likewise for !=
1500        if (RHS->isZero()) {
1501          Worklist.Add(II);
1502          ICI.setOperand(0, II->getArgOperand(0));
1503          ICI.setOperand(1, RHS);
1504          return &ICI;
1505        }
1506        break;
1507      default:
1508        break;
1509      }
1510    }
1511  }
1512  return 0;
1513}
1514
1515/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1516/// We only handle extending casts so far.
1517///
1518Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1519  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1520  Value *LHSCIOp        = LHSCI->getOperand(0);
1521  const Type *SrcTy     = LHSCIOp->getType();
1522  const Type *DestTy    = LHSCI->getType();
1523  Value *RHSCIOp;
1524
1525  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1526  // integer type is the same size as the pointer type.
1527  if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1528      TD->getPointerSizeInBits() ==
1529         cast<IntegerType>(DestTy)->getBitWidth()) {
1530    Value *RHSOp = 0;
1531    if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1532      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1533    } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1534      RHSOp = RHSC->getOperand(0);
1535      // If the pointer types don't match, insert a bitcast.
1536      if (LHSCIOp->getType() != RHSOp->getType())
1537        RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1538    }
1539
1540    if (RHSOp)
1541      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1542  }
1543
1544  // The code below only handles extension cast instructions, so far.
1545  // Enforce this.
1546  if (LHSCI->getOpcode() != Instruction::ZExt &&
1547      LHSCI->getOpcode() != Instruction::SExt)
1548    return 0;
1549
1550  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1551  bool isSignedCmp = ICI.isSigned();
1552
1553  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1554    // Not an extension from the same type?
1555    RHSCIOp = CI->getOperand(0);
1556    if (RHSCIOp->getType() != LHSCIOp->getType())
1557      return 0;
1558
1559    // If the signedness of the two casts doesn't agree (i.e. one is a sext
1560    // and the other is a zext), then we can't handle this.
1561    if (CI->getOpcode() != LHSCI->getOpcode())
1562      return 0;
1563
1564    // Deal with equality cases early.
1565    if (ICI.isEquality())
1566      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1567
1568    // A signed comparison of sign extended values simplifies into a
1569    // signed comparison.
1570    if (isSignedCmp && isSignedExt)
1571      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1572
1573    // The other three cases all fold into an unsigned comparison.
1574    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1575  }
1576
1577  // If we aren't dealing with a constant on the RHS, exit early
1578  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1579  if (!CI)
1580    return 0;
1581
1582  // Compute the constant that would happen if we truncated to SrcTy then
1583  // reextended to DestTy.
1584  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1585  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1586                                                Res1, DestTy);
1587
1588  // If the re-extended constant didn't change...
1589  if (Res2 == CI) {
1590    // Deal with equality cases early.
1591    if (ICI.isEquality())
1592      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1593
1594    // A signed comparison of sign extended values simplifies into a
1595    // signed comparison.
1596    if (isSignedExt && isSignedCmp)
1597      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1598
1599    // The other three cases all fold into an unsigned comparison.
1600    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1601  }
1602
1603  // The re-extended constant changed so the constant cannot be represented
1604  // in the shorter type. Consequently, we cannot emit a simple comparison.
1605  // All the cases that fold to true or false will have already been handled
1606  // by SimplifyICmpInst, so only deal with the tricky case.
1607
1608  if (isSignedCmp || !isSignedExt)
1609    return 0;
1610
1611  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1612  // should have been folded away previously and not enter in here.
1613
1614  // We're performing an unsigned comp with a sign extended value.
1615  // This is true if the input is >= 0. [aka >s -1]
1616  Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1617  Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1618
1619  // Finally, return the value computed.
1620  if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
1621    return ReplaceInstUsesWith(ICI, Result);
1622
1623  assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
1624  return BinaryOperator::CreateNot(Result);
1625}
1626
1627/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1628///   I = icmp ugt (add (add A, B), CI2), CI1
1629/// If this is of the form:
1630///   sum = a + b
1631///   if (sum+128 >u 255)
1632/// Then replace it with llvm.sadd.with.overflow.i8.
1633///
1634static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1635                                          ConstantInt *CI2, ConstantInt *CI1,
1636                                          InstCombiner &IC) {
1637  // The transformation we're trying to do here is to transform this into an
1638  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1639  // with a narrower add, and discard the add-with-constant that is part of the
1640  // range check (if we can't eliminate it, this isn't profitable).
1641
1642  // In order to eliminate the add-with-constant, the compare can be its only
1643  // use.
1644  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1645  if (!AddWithCst->hasOneUse()) return 0;
1646
1647  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1648  if (!CI2->getValue().isPowerOf2()) return 0;
1649  unsigned NewWidth = CI2->getValue().countTrailingZeros();
1650  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
1651
1652  // The width of the new add formed is 1 more than the bias.
1653  ++NewWidth;
1654
1655  // Check to see that CI1 is an all-ones value with NewWidth bits.
1656  if (CI1->getBitWidth() == NewWidth ||
1657      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1658    return 0;
1659
1660  // In order to replace the original add with a narrower
1661  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1662  // and truncates that discard the high bits of the add.  Verify that this is
1663  // the case.
1664  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1665  for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1666       UI != E; ++UI) {
1667    if (*UI == AddWithCst) continue;
1668
1669    // Only accept truncates for now.  We would really like a nice recursive
1670    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1671    // chain to see which bits of a value are actually demanded.  If the
1672    // original add had another add which was then immediately truncated, we
1673    // could still do the transformation.
1674    TruncInst *TI = dyn_cast<TruncInst>(*UI);
1675    if (TI == 0 ||
1676        TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1677  }
1678
1679  // If the pattern matches, truncate the inputs to the narrower type and
1680  // use the sadd_with_overflow intrinsic to efficiently compute both the
1681  // result and the overflow bit.
1682  Module *M = I.getParent()->getParent()->getParent();
1683
1684  const Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1685  Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
1686                                       &NewType, 1);
1687
1688  InstCombiner::BuilderTy *Builder = IC.Builder;
1689
1690  // Put the new code above the original add, in case there are any uses of the
1691  // add between the add and the compare.
1692  Builder->SetInsertPoint(OrigAdd);
1693
1694  Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1695  Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1696  CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1697  Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1698  Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1699
1700  // The inner add was the result of the narrow add, zero extended to the
1701  // wider type.  Replace it with the result computed by the intrinsic.
1702  IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
1703
1704  // The original icmp gets replaced with the overflow value.
1705  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1706}
1707
1708static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1709                                     InstCombiner &IC) {
1710  // Don't bother doing this transformation for pointers, don't do it for
1711  // vectors.
1712  if (!isa<IntegerType>(OrigAddV->getType())) return 0;
1713
1714  // If the add is a constant expr, then we don't bother transforming it.
1715  Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1716  if (OrigAdd == 0) return 0;
1717
1718  Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
1719
1720  // Put the new code above the original add, in case there are any uses of the
1721  // add between the add and the compare.
1722  InstCombiner::BuilderTy *Builder = IC.Builder;
1723  Builder->SetInsertPoint(OrigAdd);
1724
1725  Module *M = I.getParent()->getParent()->getParent();
1726  const Type *Ty = LHS->getType();
1727  Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, &Ty,1);
1728  CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
1729  Value *Add = Builder->CreateExtractValue(Call, 0);
1730
1731  IC.ReplaceInstUsesWith(*OrigAdd, Add);
1732
1733  // The original icmp gets replaced with the overflow value.
1734  return ExtractValueInst::Create(Call, 1, "uadd.overflow");
1735}
1736
1737// DemandedBitsLHSMask - When performing a comparison against a constant,
1738// it is possible that not all the bits in the LHS are demanded.  This helper
1739// method computes the mask that IS demanded.
1740static APInt DemandedBitsLHSMask(ICmpInst &I,
1741                                 unsigned BitWidth, bool isSignCheck) {
1742  if (isSignCheck)
1743    return APInt::getSignBit(BitWidth);
1744
1745  ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
1746  if (!CI) return APInt::getAllOnesValue(BitWidth);
1747  const APInt &RHS = CI->getValue();
1748
1749  switch (I.getPredicate()) {
1750  // For a UGT comparison, we don't care about any bits that
1751  // correspond to the trailing ones of the comparand.  The value of these
1752  // bits doesn't impact the outcome of the comparison, because any value
1753  // greater than the RHS must differ in a bit higher than these due to carry.
1754  case ICmpInst::ICMP_UGT: {
1755    unsigned trailingOnes = RHS.countTrailingOnes();
1756    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
1757    return ~lowBitsSet;
1758  }
1759
1760  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
1761  // Any value less than the RHS must differ in a higher bit because of carries.
1762  case ICmpInst::ICMP_ULT: {
1763    unsigned trailingZeros = RHS.countTrailingZeros();
1764    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
1765    return ~lowBitsSet;
1766  }
1767
1768  default:
1769    return APInt::getAllOnesValue(BitWidth);
1770  }
1771
1772}
1773
1774Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
1775  bool Changed = false;
1776  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1777
1778  /// Orders the operands of the compare so that they are listed from most
1779  /// complex to least complex.  This puts constants before unary operators,
1780  /// before binary operators.
1781  if (getComplexity(Op0) < getComplexity(Op1)) {
1782    I.swapOperands();
1783    std::swap(Op0, Op1);
1784    Changed = true;
1785  }
1786
1787  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
1788    return ReplaceInstUsesWith(I, V);
1789
1790  const Type *Ty = Op0->getType();
1791
1792  // icmp's with boolean values can always be turned into bitwise operations
1793  if (Ty->isIntegerTy(1)) {
1794    switch (I.getPredicate()) {
1795    default: llvm_unreachable("Invalid icmp instruction!");
1796    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
1797      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
1798      return BinaryOperator::CreateNot(Xor);
1799    }
1800    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
1801      return BinaryOperator::CreateXor(Op0, Op1);
1802
1803    case ICmpInst::ICMP_UGT:
1804      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
1805      // FALL THROUGH
1806    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
1807      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1808      return BinaryOperator::CreateAnd(Not, Op1);
1809    }
1810    case ICmpInst::ICMP_SGT:
1811      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
1812      // FALL THROUGH
1813    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
1814      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1815      return BinaryOperator::CreateAnd(Not, Op0);
1816    }
1817    case ICmpInst::ICMP_UGE:
1818      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
1819      // FALL THROUGH
1820    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
1821      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1822      return BinaryOperator::CreateOr(Not, Op1);
1823    }
1824    case ICmpInst::ICMP_SGE:
1825      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
1826      // FALL THROUGH
1827    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
1828      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1829      return BinaryOperator::CreateOr(Not, Op0);
1830    }
1831    }
1832  }
1833
1834  unsigned BitWidth = 0;
1835  if (Ty->isIntOrIntVectorTy())
1836    BitWidth = Ty->getScalarSizeInBits();
1837  else if (TD)  // Pointers require TD info to get their size.
1838    BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
1839
1840  bool isSignBit = false;
1841
1842  // See if we are doing a comparison with a constant.
1843  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1844    Value *A = 0, *B = 0;
1845
1846    // Match the following pattern, which is a common idiom when writing
1847    // overflow-safe integer arithmetic function.  The source performs an
1848    // addition in wider type, and explicitly checks for overflow using
1849    // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
1850    // sadd_with_overflow intrinsic.
1851    //
1852    // TODO: This could probably be generalized to handle other overflow-safe
1853    // operations if we worked out the formulas to compute the appropriate
1854    // magic constants.
1855    //
1856    // sum = a + b
1857    // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1858    {
1859    ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
1860    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
1861        match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1862      if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
1863        return Res;
1864    }
1865
1866    // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
1867    if (I.isEquality() && CI->isZero() &&
1868        match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
1869      // (icmp cond A B) if cond is equality
1870      return new ICmpInst(I.getPredicate(), A, B);
1871    }
1872
1873    // If we have an icmp le or icmp ge instruction, turn it into the
1874    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
1875    // them being folded in the code below.  The SimplifyICmpInst code has
1876    // already handled the edge cases for us, so we just assert on them.
1877    switch (I.getPredicate()) {
1878    default: break;
1879    case ICmpInst::ICMP_ULE:
1880      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
1881      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
1882                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1883    case ICmpInst::ICMP_SLE:
1884      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
1885      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1886                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1887    case ICmpInst::ICMP_UGE:
1888      assert(!CI->isMinValue(false));                  // A >=u MIN -> TRUE
1889      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
1890                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1891    case ICmpInst::ICMP_SGE:
1892      assert(!CI->isMinValue(true));                   // A >=s MIN -> TRUE
1893      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1894                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1895    }
1896
1897    // If this comparison is a normal comparison, it demands all
1898    // bits, if it is a sign bit comparison, it only demands the sign bit.
1899    bool UnusedBit;
1900    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
1901  }
1902
1903  // See if we can fold the comparison based on range information we can get
1904  // by checking whether bits are known to be zero or one in the input.
1905  if (BitWidth != 0) {
1906    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
1907    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
1908
1909    if (SimplifyDemandedBits(I.getOperandUse(0),
1910                             DemandedBitsLHSMask(I, BitWidth, isSignBit),
1911                             Op0KnownZero, Op0KnownOne, 0))
1912      return &I;
1913    if (SimplifyDemandedBits(I.getOperandUse(1),
1914                             APInt::getAllOnesValue(BitWidth),
1915                             Op1KnownZero, Op1KnownOne, 0))
1916      return &I;
1917
1918    // Given the known and unknown bits, compute a range that the LHS could be
1919    // in.  Compute the Min, Max and RHS values based on the known bits. For the
1920    // EQ and NE we use unsigned values.
1921    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
1922    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
1923    if (I.isSigned()) {
1924      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1925                                             Op0Min, Op0Max);
1926      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1927                                             Op1Min, Op1Max);
1928    } else {
1929      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1930                                               Op0Min, Op0Max);
1931      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1932                                               Op1Min, Op1Max);
1933    }
1934
1935    // If Min and Max are known to be the same, then SimplifyDemandedBits
1936    // figured out that the LHS is a constant.  Just constant fold this now so
1937    // that code below can assume that Min != Max.
1938    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
1939      return new ICmpInst(I.getPredicate(),
1940                          ConstantInt::get(I.getContext(), Op0Min), Op1);
1941    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
1942      return new ICmpInst(I.getPredicate(), Op0,
1943                          ConstantInt::get(I.getContext(), Op1Min));
1944
1945    // Based on the range information we know about the LHS, see if we can
1946    // simplify this comparison.  For example, (x&4) < 8  is always true.
1947    switch (I.getPredicate()) {
1948    default: llvm_unreachable("Unknown icmp opcode!");
1949    case ICmpInst::ICMP_EQ: {
1950      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1951        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1952
1953      // If all bits are known zero except for one, then we know at most one
1954      // bit is set.   If the comparison is against zero, then this is a check
1955      // to see if *that* bit is set.
1956      APInt Op0KnownZeroInverted = ~Op0KnownZero;
1957      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1958        // If the LHS is an AND with the same constant, look through it.
1959        Value *LHS = 0;
1960        ConstantInt *LHSC = 0;
1961        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1962            LHSC->getValue() != Op0KnownZeroInverted)
1963          LHS = Op0;
1964
1965        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
1966        // then turn "((1 << x)&8) == 0" into "x != 3".
1967        Value *X = 0;
1968        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
1969          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
1970          return new ICmpInst(ICmpInst::ICMP_NE, X,
1971                              ConstantInt::get(X->getType(), CmpVal));
1972        }
1973
1974        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
1975        // then turn "((8 >>u x)&1) == 0" into "x != 3".
1976        const APInt *CI;
1977        if (Op0KnownZeroInverted == 1 &&
1978            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
1979          return new ICmpInst(ICmpInst::ICMP_NE, X,
1980                              ConstantInt::get(X->getType(),
1981                                               CI->countTrailingZeros()));
1982      }
1983
1984      break;
1985    }
1986    case ICmpInst::ICMP_NE: {
1987      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1988        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1989
1990      // If all bits are known zero except for one, then we know at most one
1991      // bit is set.   If the comparison is against zero, then this is a check
1992      // to see if *that* bit is set.
1993      APInt Op0KnownZeroInverted = ~Op0KnownZero;
1994      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1995        // If the LHS is an AND with the same constant, look through it.
1996        Value *LHS = 0;
1997        ConstantInt *LHSC = 0;
1998        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1999            LHSC->getValue() != Op0KnownZeroInverted)
2000          LHS = Op0;
2001
2002        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2003        // then turn "((1 << x)&8) != 0" into "x == 3".
2004        Value *X = 0;
2005        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2006          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
2007          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2008                              ConstantInt::get(X->getType(), CmpVal));
2009        }
2010
2011        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2012        // then turn "((8 >>u x)&1) != 0" into "x == 3".
2013        const APInt *CI;
2014        if (Op0KnownZeroInverted == 1 &&
2015            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2016          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2017                              ConstantInt::get(X->getType(),
2018                                               CI->countTrailingZeros()));
2019      }
2020
2021      break;
2022    }
2023    case ICmpInst::ICMP_ULT:
2024      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
2025        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2026      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
2027        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2028      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
2029        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2030      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2031        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
2032          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2033                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
2034
2035        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
2036        if (CI->isMinValue(true))
2037          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2038                           Constant::getAllOnesValue(Op0->getType()));
2039      }
2040      break;
2041    case ICmpInst::ICMP_UGT:
2042      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
2043        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2044      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
2045        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2046
2047      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
2048        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2049      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2050        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
2051          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2052                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
2053
2054        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
2055        if (CI->isMaxValue(true))
2056          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2057                              Constant::getNullValue(Op0->getType()));
2058      }
2059      break;
2060    case ICmpInst::ICMP_SLT:
2061      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
2062        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2063      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
2064        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2065      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
2066        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2067      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2068        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
2069          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2070                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
2071      }
2072      break;
2073    case ICmpInst::ICMP_SGT:
2074      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
2075        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2076      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
2077        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2078
2079      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
2080        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2081      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2082        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
2083          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2084                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
2085      }
2086      break;
2087    case ICmpInst::ICMP_SGE:
2088      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2089      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
2090        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2091      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
2092        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2093      break;
2094    case ICmpInst::ICMP_SLE:
2095      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2096      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
2097        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2098      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
2099        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2100      break;
2101    case ICmpInst::ICMP_UGE:
2102      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2103      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
2104        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2105      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
2106        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2107      break;
2108    case ICmpInst::ICMP_ULE:
2109      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2110      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
2111        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2112      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
2113        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2114      break;
2115    }
2116
2117    // Turn a signed comparison into an unsigned one if both operands
2118    // are known to have the same sign.
2119    if (I.isSigned() &&
2120        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2121         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2122      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2123  }
2124
2125  // Test if the ICmpInst instruction is used exclusively by a select as
2126  // part of a minimum or maximum operation. If so, refrain from doing
2127  // any other folding. This helps out other analyses which understand
2128  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2129  // and CodeGen. And in this case, at least one of the comparison
2130  // operands has at least one user besides the compare (the select),
2131  // which would often largely negate the benefit of folding anyway.
2132  if (I.hasOneUse())
2133    if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2134      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2135          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2136        return 0;
2137
2138  // See if we are doing a comparison between a constant and an instruction that
2139  // can be folded into the comparison.
2140  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2141    // Since the RHS is a ConstantInt (CI), if the left hand side is an
2142    // instruction, see if that instruction also has constants so that the
2143    // instruction can be folded into the icmp
2144    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2145      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2146        return Res;
2147  }
2148
2149  // Handle icmp with constant (but not simple integer constant) RHS
2150  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2151    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2152      switch (LHSI->getOpcode()) {
2153      case Instruction::GetElementPtr:
2154          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2155        if (RHSC->isNullValue() &&
2156            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2157          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2158                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
2159        break;
2160      case Instruction::PHI:
2161        // Only fold icmp into the PHI if the phi and icmp are in the same
2162        // block.  If in the same block, we're encouraging jump threading.  If
2163        // not, we are just pessimizing the code by making an i1 phi.
2164        if (LHSI->getParent() == I.getParent())
2165          if (Instruction *NV = FoldOpIntoPhi(I))
2166            return NV;
2167        break;
2168      case Instruction::Select: {
2169        // If either operand of the select is a constant, we can fold the
2170        // comparison into the select arms, which will cause one to be
2171        // constant folded and the select turned into a bitwise or.
2172        Value *Op1 = 0, *Op2 = 0;
2173        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2174          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2175        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2176          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2177
2178        // We only want to perform this transformation if it will not lead to
2179        // additional code. This is true if either both sides of the select
2180        // fold to a constant (in which case the icmp is replaced with a select
2181        // which will usually simplify) or this is the only user of the
2182        // select (in which case we are trading a select+icmp for a simpler
2183        // select+icmp).
2184        if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2185          if (!Op1)
2186            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2187                                      RHSC, I.getName());
2188          if (!Op2)
2189            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2190                                      RHSC, I.getName());
2191          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2192        }
2193        break;
2194      }
2195      case Instruction::IntToPtr:
2196        // icmp pred inttoptr(X), null -> icmp pred X, 0
2197        if (RHSC->isNullValue() && TD &&
2198            TD->getIntPtrType(RHSC->getContext()) ==
2199               LHSI->getOperand(0)->getType())
2200          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2201                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
2202        break;
2203
2204      case Instruction::Load:
2205        // Try to optimize things like "A[i] > 4" to index computations.
2206        if (GetElementPtrInst *GEP =
2207              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2208          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2209            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2210                !cast<LoadInst>(LHSI)->isVolatile())
2211              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2212                return Res;
2213        }
2214        break;
2215      }
2216  }
2217
2218  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2219  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2220    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2221      return NI;
2222  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2223    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2224                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2225      return NI;
2226
2227  // Test to see if the operands of the icmp are casted versions of other
2228  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
2229  // now.
2230  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
2231    if (Op0->getType()->isPointerTy() &&
2232        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2233      // We keep moving the cast from the left operand over to the right
2234      // operand, where it can often be eliminated completely.
2235      Op0 = CI->getOperand(0);
2236
2237      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2238      // so eliminate it as well.
2239      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2240        Op1 = CI2->getOperand(0);
2241
2242      // If Op1 is a constant, we can fold the cast into the constant.
2243      if (Op0->getType() != Op1->getType()) {
2244        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2245          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2246        } else {
2247          // Otherwise, cast the RHS right before the icmp
2248          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2249        }
2250      }
2251      return new ICmpInst(I.getPredicate(), Op0, Op1);
2252    }
2253  }
2254
2255  if (isa<CastInst>(Op0)) {
2256    // Handle the special case of: icmp (cast bool to X), <cst>
2257    // This comes up when you have code like
2258    //   int X = A < B;
2259    //   if (X) ...
2260    // For generality, we handle any zero-extension of any operand comparison
2261    // with a constant or another cast from the same type.
2262    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2263      if (Instruction *R = visitICmpInstWithCastAndCast(I))
2264        return R;
2265  }
2266
2267  // See if it's the same type of instruction on the left and right.
2268  if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2269    if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2270      if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
2271          Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) {
2272        switch (Op0I->getOpcode()) {
2273        default: break;
2274        case Instruction::Add:
2275        case Instruction::Sub:
2276        case Instruction::Xor:
2277          if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
2278            return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
2279                                Op1I->getOperand(0));
2280          // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2281          if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2282            if (CI->getValue().isSignBit()) {
2283              ICmpInst::Predicate Pred = I.isSigned()
2284                                             ? I.getUnsignedPredicate()
2285                                             : I.getSignedPredicate();
2286              return new ICmpInst(Pred, Op0I->getOperand(0),
2287                                  Op1I->getOperand(0));
2288            }
2289
2290            if (CI->getValue().isMaxSignedValue()) {
2291              ICmpInst::Predicate Pred = I.isSigned()
2292                                             ? I.getUnsignedPredicate()
2293                                             : I.getSignedPredicate();
2294              Pred = I.getSwappedPredicate(Pred);
2295              return new ICmpInst(Pred, Op0I->getOperand(0),
2296                                  Op1I->getOperand(0));
2297            }
2298          }
2299          break;
2300        case Instruction::Mul:
2301          if (!I.isEquality())
2302            break;
2303
2304          if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2305            // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2306            // Mask = -1 >> count-trailing-zeros(Cst).
2307            if (!CI->isZero() && !CI->isOne()) {
2308              const APInt &AP = CI->getValue();
2309              ConstantInt *Mask = ConstantInt::get(I.getContext(),
2310                                      APInt::getLowBitsSet(AP.getBitWidth(),
2311                                                           AP.getBitWidth() -
2312                                                      AP.countTrailingZeros()));
2313              Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
2314              Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
2315              return new ICmpInst(I.getPredicate(), And1, And2);
2316            }
2317          }
2318          break;
2319        }
2320      }
2321    }
2322  }
2323
2324  { Value *A, *B;
2325    // ~x < ~y --> y < x
2326    // ~x < cst --> ~cst < x
2327    if (match(Op0, m_Not(m_Value(A)))) {
2328      if (match(Op1, m_Not(m_Value(B))))
2329        return new ICmpInst(I.getPredicate(), B, A);
2330      if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2331        return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2332    }
2333
2334    // (a+b) <u a  --> llvm.uadd.with.overflow.
2335    // (a+b) <u b  --> llvm.uadd.with.overflow.
2336    if (I.getPredicate() == ICmpInst::ICMP_ULT &&
2337        match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2338        (Op1 == A || Op1 == B))
2339      if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2340        return R;
2341
2342    // a >u (a+b)  --> llvm.uadd.with.overflow.
2343    // b >u (a+b)  --> llvm.uadd.with.overflow.
2344    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2345        match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2346        (Op0 == A || Op0 == B))
2347      if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2348        return R;
2349  }
2350
2351  if (I.isEquality()) {
2352    Value *A, *B, *C, *D;
2353
2354    // -x == -y --> x == y
2355    if (match(Op0, m_Neg(m_Value(A))) &&
2356        match(Op1, m_Neg(m_Value(B))))
2357      return new ICmpInst(I.getPredicate(), A, B);
2358
2359    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2360      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
2361        Value *OtherVal = A == Op1 ? B : A;
2362        return new ICmpInst(I.getPredicate(), OtherVal,
2363                            Constant::getNullValue(A->getType()));
2364      }
2365
2366      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2367        // A^c1 == C^c2 --> A == C^(c1^c2)
2368        ConstantInt *C1, *C2;
2369        if (match(B, m_ConstantInt(C1)) &&
2370            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2371          Constant *NC = ConstantInt::get(I.getContext(),
2372                                          C1->getValue() ^ C2->getValue());
2373          Value *Xor = Builder->CreateXor(C, NC, "tmp");
2374          return new ICmpInst(I.getPredicate(), A, Xor);
2375        }
2376
2377        // A^B == A^D -> B == D
2378        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2379        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2380        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2381        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2382      }
2383    }
2384
2385    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2386        (A == Op0 || B == Op0)) {
2387      // A == (A^B)  ->  B == 0
2388      Value *OtherVal = A == Op0 ? B : A;
2389      return new ICmpInst(I.getPredicate(), OtherVal,
2390                          Constant::getNullValue(A->getType()));
2391    }
2392
2393    // (A-B) == A  ->  B == 0
2394    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
2395      return new ICmpInst(I.getPredicate(), B,
2396                          Constant::getNullValue(B->getType()));
2397
2398    // A == (A-B)  ->  B == 0
2399    if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
2400      return new ICmpInst(I.getPredicate(), B,
2401                          Constant::getNullValue(B->getType()));
2402
2403    // (A+B) == A  ->  B == 0
2404    if (match(Op0, m_Add(m_Specific(Op1), m_Value(B))) ||
2405        match(Op0, m_Add(m_Value(B), m_Specific(Op1))))
2406      return new ICmpInst(I.getPredicate(), B,
2407                          Constant::getNullValue(B->getType()));
2408
2409    // A == (A+B)  ->  B == 0
2410    if (match(Op1, m_Add(m_Specific(Op0), m_Value(B))) ||
2411        match(Op1, m_Add(m_Value(B), m_Specific(Op0))))
2412      return new ICmpInst(I.getPredicate(), B,
2413                          Constant::getNullValue(B->getType()));
2414
2415    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2416    if (Op0->hasOneUse() && Op1->hasOneUse() &&
2417        match(Op0, m_And(m_Value(A), m_Value(B))) &&
2418        match(Op1, m_And(m_Value(C), m_Value(D)))) {
2419      Value *X = 0, *Y = 0, *Z = 0;
2420
2421      if (A == C) {
2422        X = B; Y = D; Z = A;
2423      } else if (A == D) {
2424        X = B; Y = C; Z = A;
2425      } else if (B == C) {
2426        X = A; Y = D; Z = B;
2427      } else if (B == D) {
2428        X = A; Y = C; Z = B;
2429      }
2430
2431      if (X) {   // Build (X^Y) & Z
2432        Op1 = Builder->CreateXor(X, Y, "tmp");
2433        Op1 = Builder->CreateAnd(Op1, Z, "tmp");
2434        I.setOperand(0, Op1);
2435        I.setOperand(1, Constant::getNullValue(Op1->getType()));
2436        return &I;
2437      }
2438    }
2439  }
2440
2441  {
2442    Value *X; ConstantInt *Cst;
2443    // icmp X+Cst, X
2444    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2445      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2446
2447    // icmp X, X+Cst
2448    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2449      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2450  }
2451  return Changed ? &I : 0;
2452}
2453
2454
2455
2456
2457
2458
2459/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2460///
2461Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2462                                                Instruction *LHSI,
2463                                                Constant *RHSC) {
2464  if (!isa<ConstantFP>(RHSC)) return 0;
2465  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
2466
2467  // Get the width of the mantissa.  We don't want to hack on conversions that
2468  // might lose information from the integer, e.g. "i64 -> float"
2469  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2470  if (MantissaWidth == -1) return 0;  // Unknown.
2471
2472  // Check to see that the input is converted from an integer type that is small
2473  // enough that preserves all bits.  TODO: check here for "known" sign bits.
2474  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2475  unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
2476
2477  // If this is a uitofp instruction, we need an extra bit to hold the sign.
2478  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2479  if (LHSUnsigned)
2480    ++InputSize;
2481
2482  // If the conversion would lose info, don't hack on this.
2483  if ((int)InputSize > MantissaWidth)
2484    return 0;
2485
2486  // Otherwise, we can potentially simplify the comparison.  We know that it
2487  // will always come through as an integer value and we know the constant is
2488  // not a NAN (it would have been previously simplified).
2489  assert(!RHS.isNaN() && "NaN comparison not already folded!");
2490
2491  ICmpInst::Predicate Pred;
2492  switch (I.getPredicate()) {
2493  default: llvm_unreachable("Unexpected predicate!");
2494  case FCmpInst::FCMP_UEQ:
2495  case FCmpInst::FCMP_OEQ:
2496    Pred = ICmpInst::ICMP_EQ;
2497    break;
2498  case FCmpInst::FCMP_UGT:
2499  case FCmpInst::FCMP_OGT:
2500    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2501    break;
2502  case FCmpInst::FCMP_UGE:
2503  case FCmpInst::FCMP_OGE:
2504    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2505    break;
2506  case FCmpInst::FCMP_ULT:
2507  case FCmpInst::FCMP_OLT:
2508    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2509    break;
2510  case FCmpInst::FCMP_ULE:
2511  case FCmpInst::FCMP_OLE:
2512    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2513    break;
2514  case FCmpInst::FCMP_UNE:
2515  case FCmpInst::FCMP_ONE:
2516    Pred = ICmpInst::ICMP_NE;
2517    break;
2518  case FCmpInst::FCMP_ORD:
2519    return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2520  case FCmpInst::FCMP_UNO:
2521    return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2522  }
2523
2524  const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
2525
2526  // Now we know that the APFloat is a normal number, zero or inf.
2527
2528  // See if the FP constant is too large for the integer.  For example,
2529  // comparing an i8 to 300.0.
2530  unsigned IntWidth = IntTy->getScalarSizeInBits();
2531
2532  if (!LHSUnsigned) {
2533    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
2534    // and large values.
2535    APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
2536    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
2537                          APFloat::rmNearestTiesToEven);
2538    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
2539      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
2540          Pred == ICmpInst::ICMP_SLE)
2541        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2542      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2543    }
2544  } else {
2545    // If the RHS value is > UnsignedMax, fold the comparison. This handles
2546    // +INF and large values.
2547    APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
2548    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
2549                          APFloat::rmNearestTiesToEven);
2550    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
2551      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
2552          Pred == ICmpInst::ICMP_ULE)
2553        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2554      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2555    }
2556  }
2557
2558  if (!LHSUnsigned) {
2559    // See if the RHS value is < SignedMin.
2560    APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2561    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
2562                          APFloat::rmNearestTiesToEven);
2563    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
2564      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
2565          Pred == ICmpInst::ICMP_SGE)
2566        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2567      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2568    }
2569  }
2570
2571  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2572  // [0, UMAX], but it may still be fractional.  See if it is fractional by
2573  // casting the FP value to the integer value and back, checking for equality.
2574  // Don't do this for zero, because -0.0 is not fractional.
2575  Constant *RHSInt = LHSUnsigned
2576    ? ConstantExpr::getFPToUI(RHSC, IntTy)
2577    : ConstantExpr::getFPToSI(RHSC, IntTy);
2578  if (!RHS.isZero()) {
2579    bool Equal = LHSUnsigned
2580      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
2581      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
2582    if (!Equal) {
2583      // If we had a comparison against a fractional value, we have to adjust
2584      // the compare predicate and sometimes the value.  RHSC is rounded towards
2585      // zero at this point.
2586      switch (Pred) {
2587      default: llvm_unreachable("Unexpected integer comparison!");
2588      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
2589        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2590      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
2591        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2592      case ICmpInst::ICMP_ULE:
2593        // (float)int <= 4.4   --> int <= 4
2594        // (float)int <= -4.4  --> false
2595        if (RHS.isNegative())
2596          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2597        break;
2598      case ICmpInst::ICMP_SLE:
2599        // (float)int <= 4.4   --> int <= 4
2600        // (float)int <= -4.4  --> int < -4
2601        if (RHS.isNegative())
2602          Pred = ICmpInst::ICMP_SLT;
2603        break;
2604      case ICmpInst::ICMP_ULT:
2605        // (float)int < -4.4   --> false
2606        // (float)int < 4.4    --> int <= 4
2607        if (RHS.isNegative())
2608          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2609        Pred = ICmpInst::ICMP_ULE;
2610        break;
2611      case ICmpInst::ICMP_SLT:
2612        // (float)int < -4.4   --> int < -4
2613        // (float)int < 4.4    --> int <= 4
2614        if (!RHS.isNegative())
2615          Pred = ICmpInst::ICMP_SLE;
2616        break;
2617      case ICmpInst::ICMP_UGT:
2618        // (float)int > 4.4    --> int > 4
2619        // (float)int > -4.4   --> true
2620        if (RHS.isNegative())
2621          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2622        break;
2623      case ICmpInst::ICMP_SGT:
2624        // (float)int > 4.4    --> int > 4
2625        // (float)int > -4.4   --> int >= -4
2626        if (RHS.isNegative())
2627          Pred = ICmpInst::ICMP_SGE;
2628        break;
2629      case ICmpInst::ICMP_UGE:
2630        // (float)int >= -4.4   --> true
2631        // (float)int >= 4.4    --> int > 4
2632        if (!RHS.isNegative())
2633          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2634        Pred = ICmpInst::ICMP_UGT;
2635        break;
2636      case ICmpInst::ICMP_SGE:
2637        // (float)int >= -4.4   --> int >= -4
2638        // (float)int >= 4.4    --> int > 4
2639        if (!RHS.isNegative())
2640          Pred = ICmpInst::ICMP_SGT;
2641        break;
2642      }
2643    }
2644  }
2645
2646  // Lower this FP comparison into an appropriate integer version of the
2647  // comparison.
2648  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
2649}
2650
2651Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
2652  bool Changed = false;
2653
2654  /// Orders the operands of the compare so that they are listed from most
2655  /// complex to least complex.  This puts constants before unary operators,
2656  /// before binary operators.
2657  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
2658    I.swapOperands();
2659    Changed = true;
2660  }
2661
2662  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2663
2664  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
2665    return ReplaceInstUsesWith(I, V);
2666
2667  // Simplify 'fcmp pred X, X'
2668  if (Op0 == Op1) {
2669    switch (I.getPredicate()) {
2670    default: llvm_unreachable("Unknown predicate!");
2671    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
2672    case FCmpInst::FCMP_ULT:    // True if unordered or less than
2673    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
2674    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
2675      // Canonicalize these to be 'fcmp uno %X, 0.0'.
2676      I.setPredicate(FCmpInst::FCMP_UNO);
2677      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2678      return &I;
2679
2680    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
2681    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
2682    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
2683    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
2684      // Canonicalize these to be 'fcmp ord %X, 0.0'.
2685      I.setPredicate(FCmpInst::FCMP_ORD);
2686      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2687      return &I;
2688    }
2689  }
2690
2691  // Handle fcmp with constant RHS
2692  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2693    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2694      switch (LHSI->getOpcode()) {
2695      case Instruction::PHI:
2696        // Only fold fcmp into the PHI if the phi and fcmp are in the same
2697        // block.  If in the same block, we're encouraging jump threading.  If
2698        // not, we are just pessimizing the code by making an i1 phi.
2699        if (LHSI->getParent() == I.getParent())
2700          if (Instruction *NV = FoldOpIntoPhi(I))
2701            return NV;
2702        break;
2703      case Instruction::SIToFP:
2704      case Instruction::UIToFP:
2705        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
2706          return NV;
2707        break;
2708      case Instruction::Select: {
2709        // If either operand of the select is a constant, we can fold the
2710        // comparison into the select arms, which will cause one to be
2711        // constant folded and the select turned into a bitwise or.
2712        Value *Op1 = 0, *Op2 = 0;
2713        if (LHSI->hasOneUse()) {
2714          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2715            // Fold the known value into the constant operand.
2716            Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2717            // Insert a new FCmp of the other select operand.
2718            Op2 = Builder->CreateFCmp(I.getPredicate(),
2719                                      LHSI->getOperand(2), RHSC, I.getName());
2720          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2721            // Fold the known value into the constant operand.
2722            Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2723            // Insert a new FCmp of the other select operand.
2724            Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
2725                                      RHSC, I.getName());
2726          }
2727        }
2728
2729        if (Op1)
2730          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2731        break;
2732      }
2733      case Instruction::Load:
2734        if (GetElementPtrInst *GEP =
2735            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2736          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2737            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2738                !cast<LoadInst>(LHSI)->isVolatile())
2739              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2740                return Res;
2741        }
2742        break;
2743      }
2744  }
2745
2746  return Changed ? &I : 0;
2747}
2748