1//===- InstCombineVectorOps.cpp -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements instcombine for ExtractElement, InsertElement and
11// ShuffleVector.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
16#include "llvm/Support/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
21/// is to leave as a vector operation.  isConstant indicates whether we're
22/// extracting one known element.  If false we're extracting a variable index.
23static bool CheapToScalarize(Value *V, bool isConstant) {
24  if (Constant *C = dyn_cast<Constant>(V)) {
25    if (isConstant) return true;
26
27    // If all elts are the same, we can extract it and use any of the values.
28    Constant *Op0 = C->getAggregateElement(0U);
29    for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; ++i)
30      if (C->getAggregateElement(i) != Op0)
31        return false;
32    return true;
33  }
34  Instruction *I = dyn_cast<Instruction>(V);
35  if (!I) return false;
36
37  // Insert element gets simplified to the inserted element or is deleted if
38  // this is constant idx extract element and its a constant idx insertelt.
39  if (I->getOpcode() == Instruction::InsertElement && isConstant &&
40      isa<ConstantInt>(I->getOperand(2)))
41    return true;
42  if (I->getOpcode() == Instruction::Load && I->hasOneUse())
43    return true;
44  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
45    if (BO->hasOneUse() &&
46        (CheapToScalarize(BO->getOperand(0), isConstant) ||
47         CheapToScalarize(BO->getOperand(1), isConstant)))
48      return true;
49  if (CmpInst *CI = dyn_cast<CmpInst>(I))
50    if (CI->hasOneUse() &&
51        (CheapToScalarize(CI->getOperand(0), isConstant) ||
52         CheapToScalarize(CI->getOperand(1), isConstant)))
53      return true;
54
55  return false;
56}
57
58/// FindScalarElement - Given a vector and an element number, see if the scalar
59/// value is already around as a register, for example if it were inserted then
60/// extracted from the vector.
61static Value *FindScalarElement(Value *V, unsigned EltNo) {
62  assert(V->getType()->isVectorTy() && "Not looking at a vector?");
63  VectorType *VTy = cast<VectorType>(V->getType());
64  unsigned Width = VTy->getNumElements();
65  if (EltNo >= Width)  // Out of range access.
66    return UndefValue::get(VTy->getElementType());
67
68  if (Constant *C = dyn_cast<Constant>(V))
69    return C->getAggregateElement(EltNo);
70
71  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
72    // If this is an insert to a variable element, we don't know what it is.
73    if (!isa<ConstantInt>(III->getOperand(2)))
74      return 0;
75    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
76
77    // If this is an insert to the element we are looking for, return the
78    // inserted value.
79    if (EltNo == IIElt)
80      return III->getOperand(1);
81
82    // Otherwise, the insertelement doesn't modify the value, recurse on its
83    // vector input.
84    return FindScalarElement(III->getOperand(0), EltNo);
85  }
86
87  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
88    unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
89    int InEl = SVI->getMaskValue(EltNo);
90    if (InEl < 0)
91      return UndefValue::get(VTy->getElementType());
92    if (InEl < (int)LHSWidth)
93      return FindScalarElement(SVI->getOperand(0), InEl);
94    return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
95  }
96
97  // Extract a value from a vector add operation with a constant zero.
98  Value *Val = 0; Constant *Con = 0;
99  if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) {
100    if (Con->getAggregateElement(EltNo)->isNullValue())
101      return FindScalarElement(Val, EltNo);
102  }
103
104  // Otherwise, we don't know.
105  return 0;
106}
107
108// If we have a PHI node with a vector type that has only 2 uses: feed
109// itself and be an operand of extractelemnt at a constant location,
110// try to replace the PHI of the vector type with a PHI of a scalar type
111Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
112  // Verify that the PHI node has exactly 2 uses. Otherwise return NULL.
113  if (!PN->hasNUses(2))
114    return NULL;
115
116  // If so, it's known at this point that one operand is PHI and the other is
117  // an extractelement node. Find the PHI user that is not the extractelement
118  // node.
119  Value::use_iterator iu = PN->use_begin();
120  Instruction *PHIUser = dyn_cast<Instruction>(*iu);
121  if (PHIUser == cast<Instruction>(&EI))
122    PHIUser = cast<Instruction>(*(++iu));
123
124  // Verify that this PHI user has one use, which is the PHI itself,
125  // and that it is a binary operation which is cheap to scalarize.
126  // otherwise return NULL.
127  if (!PHIUser->hasOneUse() || !(PHIUser->use_back() == PN) ||
128      !(isa<BinaryOperator>(PHIUser)) || !CheapToScalarize(PHIUser, true))
129    return NULL;
130
131  // Create a scalar PHI node that will replace the vector PHI node
132  // just before the current PHI node.
133  PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
134      PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
135  // Scalarize each PHI operand.
136  for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
137    Value *PHIInVal = PN->getIncomingValue(i);
138    BasicBlock *inBB = PN->getIncomingBlock(i);
139    Value *Elt = EI.getIndexOperand();
140    // If the operand is the PHI induction variable:
141    if (PHIInVal == PHIUser) {
142      // Scalarize the binary operation. Its first operand is the
143      // scalar PHI and the second operand is extracted from the other
144      // vector operand.
145      BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
146      unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
147      Value *Op = InsertNewInstWith(
148          ExtractElementInst::Create(B0->getOperand(opId), Elt,
149                                     B0->getOperand(opId)->getName() + ".Elt"),
150          *B0);
151      Value *newPHIUser = InsertNewInstWith(
152          BinaryOperator::Create(B0->getOpcode(), scalarPHI, Op), *B0);
153      scalarPHI->addIncoming(newPHIUser, inBB);
154    } else {
155      // Scalarize PHI input:
156      Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
157      // Insert the new instruction into the predecessor basic block.
158      Instruction *pos = dyn_cast<Instruction>(PHIInVal);
159      BasicBlock::iterator InsertPos;
160      if (pos && !isa<PHINode>(pos)) {
161        InsertPos = pos;
162        ++InsertPos;
163      } else {
164        InsertPos = inBB->getFirstInsertionPt();
165      }
166
167      InsertNewInstWith(newEI, *InsertPos);
168
169      scalarPHI->addIncoming(newEI, inBB);
170    }
171  }
172  return ReplaceInstUsesWith(EI, scalarPHI);
173}
174
175Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
176  // If vector val is constant with all elements the same, replace EI with
177  // that element.  We handle a known element # below.
178  if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
179    if (CheapToScalarize(C, false))
180      return ReplaceInstUsesWith(EI, C->getAggregateElement(0U));
181
182  // If extracting a specified index from the vector, see if we can recursively
183  // find a previously computed scalar that was inserted into the vector.
184  if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
185    unsigned IndexVal = IdxC->getZExtValue();
186    unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
187
188    // If this is extracting an invalid index, turn this into undef, to avoid
189    // crashing the code below.
190    if (IndexVal >= VectorWidth)
191      return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
192
193    // This instruction only demands the single element from the input vector.
194    // If the input vector has a single use, simplify it based on this use
195    // property.
196    if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
197      APInt UndefElts(VectorWidth, 0);
198      APInt DemandedMask(VectorWidth, 0);
199      DemandedMask.setBit(IndexVal);
200      if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
201                                                DemandedMask, UndefElts)) {
202        EI.setOperand(0, V);
203        return &EI;
204      }
205    }
206
207    if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
208      return ReplaceInstUsesWith(EI, Elt);
209
210    // If the this extractelement is directly using a bitcast from a vector of
211    // the same number of elements, see if we can find the source element from
212    // it.  In this case, we will end up needing to bitcast the scalars.
213    if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
214      if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
215        if (VT->getNumElements() == VectorWidth)
216          if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
217            return new BitCastInst(Elt, EI.getType());
218    }
219
220    // If there's a vector PHI feeding a scalar use through this extractelement
221    // instruction, try to scalarize the PHI.
222    if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
223      Instruction *scalarPHI = scalarizePHI(EI, PN);
224      if (scalarPHI)
225        return scalarPHI;
226    }
227  }
228
229  if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
230    // Push extractelement into predecessor operation if legal and
231    // profitable to do so
232    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
233      if (I->hasOneUse() &&
234          CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
235        Value *newEI0 =
236          Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
237                                        EI.getName()+".lhs");
238        Value *newEI1 =
239          Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
240                                        EI.getName()+".rhs");
241        return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
242      }
243    } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
244      // Extracting the inserted element?
245      if (IE->getOperand(2) == EI.getOperand(1))
246        return ReplaceInstUsesWith(EI, IE->getOperand(1));
247      // If the inserted and extracted elements are constants, they must not
248      // be the same value, extract from the pre-inserted value instead.
249      if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
250        Worklist.AddValue(EI.getOperand(0));
251        EI.setOperand(0, IE->getOperand(0));
252        return &EI;
253      }
254    } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
255      // If this is extracting an element from a shufflevector, figure out where
256      // it came from and extract from the appropriate input element instead.
257      if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
258        int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
259        Value *Src;
260        unsigned LHSWidth =
261          SVI->getOperand(0)->getType()->getVectorNumElements();
262
263        if (SrcIdx < 0)
264          return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
265        if (SrcIdx < (int)LHSWidth)
266          Src = SVI->getOperand(0);
267        else {
268          SrcIdx -= LHSWidth;
269          Src = SVI->getOperand(1);
270        }
271        Type *Int32Ty = Type::getInt32Ty(EI.getContext());
272        return ExtractElementInst::Create(Src,
273                                          ConstantInt::get(Int32Ty,
274                                                           SrcIdx, false));
275      }
276    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
277      // Canonicalize extractelement(cast) -> cast(extractelement)
278      // bitcasts can change the number of vector elements and they cost nothing
279      if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
280        Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
281                                                  EI.getIndexOperand());
282        Worklist.AddValue(EE);
283        return CastInst::Create(CI->getOpcode(), EE, EI.getType());
284      }
285    }
286  }
287  return 0;
288}
289
290/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
291/// elements from either LHS or RHS, return the shuffle mask and true.
292/// Otherwise, return false.
293static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
294                                         SmallVectorImpl<Constant*> &Mask) {
295  assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
296         "Invalid CollectSingleShuffleElements");
297  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
298
299  if (isa<UndefValue>(V)) {
300    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
301    return true;
302  }
303
304  if (V == LHS) {
305    for (unsigned i = 0; i != NumElts; ++i)
306      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
307    return true;
308  }
309
310  if (V == RHS) {
311    for (unsigned i = 0; i != NumElts; ++i)
312      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
313                                      i+NumElts));
314    return true;
315  }
316
317  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
318    // If this is an insert of an extract from some other vector, include it.
319    Value *VecOp    = IEI->getOperand(0);
320    Value *ScalarOp = IEI->getOperand(1);
321    Value *IdxOp    = IEI->getOperand(2);
322
323    if (!isa<ConstantInt>(IdxOp))
324      return false;
325    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
326
327    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
328      // Okay, we can handle this if the vector we are insertinting into is
329      // transitively ok.
330      if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
331        // If so, update the mask to reflect the inserted undef.
332        Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
333        return true;
334      }
335    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
336      if (isa<ConstantInt>(EI->getOperand(1)) &&
337          EI->getOperand(0)->getType() == V->getType()) {
338        unsigned ExtractedIdx =
339        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
340
341        // This must be extracting from either LHS or RHS.
342        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
343          // Okay, we can handle this if the vector we are insertinting into is
344          // transitively ok.
345          if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
346            // If so, update the mask to reflect the inserted value.
347            if (EI->getOperand(0) == LHS) {
348              Mask[InsertedIdx % NumElts] =
349              ConstantInt::get(Type::getInt32Ty(V->getContext()),
350                               ExtractedIdx);
351            } else {
352              assert(EI->getOperand(0) == RHS);
353              Mask[InsertedIdx % NumElts] =
354              ConstantInt::get(Type::getInt32Ty(V->getContext()),
355                               ExtractedIdx+NumElts);
356            }
357            return true;
358          }
359        }
360      }
361    }
362  }
363  // TODO: Handle shufflevector here!
364
365  return false;
366}
367
368/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
369/// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask
370/// that computes V and the LHS value of the shuffle.
371static Value *CollectShuffleElements(Value *V, SmallVectorImpl<Constant*> &Mask,
372                                     Value *&RHS) {
373  assert(V->getType()->isVectorTy() &&
374         (RHS == 0 || V->getType() == RHS->getType()) &&
375         "Invalid shuffle!");
376  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
377
378  if (isa<UndefValue>(V)) {
379    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
380    return V;
381  }
382
383  if (isa<ConstantAggregateZero>(V)) {
384    Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
385    return V;
386  }
387
388  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
389    // If this is an insert of an extract from some other vector, include it.
390    Value *VecOp    = IEI->getOperand(0);
391    Value *ScalarOp = IEI->getOperand(1);
392    Value *IdxOp    = IEI->getOperand(2);
393
394    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
395      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
396          EI->getOperand(0)->getType() == V->getType()) {
397        unsigned ExtractedIdx =
398          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
399        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
400
401        // Either the extracted from or inserted into vector must be RHSVec,
402        // otherwise we'd end up with a shuffle of three inputs.
403        if (EI->getOperand(0) == RHS || RHS == 0) {
404          RHS = EI->getOperand(0);
405          Value *V = CollectShuffleElements(VecOp, Mask, RHS);
406          Mask[InsertedIdx % NumElts] =
407            ConstantInt::get(Type::getInt32Ty(V->getContext()),
408                             NumElts+ExtractedIdx);
409          return V;
410        }
411
412        if (VecOp == RHS) {
413          Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
414          // Update Mask to reflect that `ScalarOp' has been inserted at
415          // position `InsertedIdx' within the vector returned by IEI.
416          Mask[InsertedIdx % NumElts] = Mask[ExtractedIdx];
417
418          // Everything but the extracted element is replaced with the RHS.
419          for (unsigned i = 0; i != NumElts; ++i) {
420            if (i != InsertedIdx)
421              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()),
422                                         NumElts+i);
423          }
424          return V;
425        }
426
427        // If this insertelement is a chain that comes from exactly these two
428        // vectors, return the vector and the effective shuffle.
429        if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
430          return EI->getOperand(0);
431      }
432    }
433  }
434  // TODO: Handle shufflevector here!
435
436  // Otherwise, can't do anything fancy.  Return an identity vector.
437  for (unsigned i = 0; i != NumElts; ++i)
438    Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
439  return V;
440}
441
442Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
443  Value *VecOp    = IE.getOperand(0);
444  Value *ScalarOp = IE.getOperand(1);
445  Value *IdxOp    = IE.getOperand(2);
446
447  // Inserting an undef or into an undefined place, remove this.
448  if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
449    ReplaceInstUsesWith(IE, VecOp);
450
451  // If the inserted element was extracted from some other vector, and if the
452  // indexes are constant, try to turn this into a shufflevector operation.
453  if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
454    if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
455        EI->getOperand(0)->getType() == IE.getType()) {
456      unsigned NumVectorElts = IE.getType()->getNumElements();
457      unsigned ExtractedIdx =
458        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
459      unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
460
461      if (ExtractedIdx >= NumVectorElts) // Out of range extract.
462        return ReplaceInstUsesWith(IE, VecOp);
463
464      if (InsertedIdx >= NumVectorElts)  // Out of range insert.
465        return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
466
467      // If we are extracting a value from a vector, then inserting it right
468      // back into the same place, just use the input vector.
469      if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
470        return ReplaceInstUsesWith(IE, VecOp);
471
472      // If this insertelement isn't used by some other insertelement, turn it
473      // (and any insertelements it points to), into one big shuffle.
474      if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
475        SmallVector<Constant*, 16> Mask;
476        Value *RHS = 0;
477        Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
478        if (RHS == 0) RHS = UndefValue::get(LHS->getType());
479        // We now have a shuffle of LHS, RHS, Mask.
480        return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
481      }
482    }
483  }
484
485  unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
486  APInt UndefElts(VWidth, 0);
487  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
488  if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
489    if (V != &IE)
490      return ReplaceInstUsesWith(IE, V);
491    return &IE;
492  }
493
494  return 0;
495}
496
497/// Return true if we can evaluate the specified expression tree if the vector
498/// elements were shuffled in a different order.
499static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
500                                unsigned Depth = 5) {
501  // We can always reorder the elements of a constant.
502  if (isa<Constant>(V))
503    return true;
504
505  // We won't reorder vector arguments. No IPO here.
506  Instruction *I = dyn_cast<Instruction>(V);
507  if (!I) return false;
508
509  // Two users may expect different orders of the elements. Don't try it.
510  if (!I->hasOneUse())
511    return false;
512
513  if (Depth == 0) return false;
514
515  switch (I->getOpcode()) {
516    case Instruction::Add:
517    case Instruction::FAdd:
518    case Instruction::Sub:
519    case Instruction::FSub:
520    case Instruction::Mul:
521    case Instruction::FMul:
522    case Instruction::UDiv:
523    case Instruction::SDiv:
524    case Instruction::FDiv:
525    case Instruction::URem:
526    case Instruction::SRem:
527    case Instruction::FRem:
528    case Instruction::Shl:
529    case Instruction::LShr:
530    case Instruction::AShr:
531    case Instruction::And:
532    case Instruction::Or:
533    case Instruction::Xor:
534    case Instruction::ICmp:
535    case Instruction::FCmp:
536    case Instruction::Trunc:
537    case Instruction::ZExt:
538    case Instruction::SExt:
539    case Instruction::FPToUI:
540    case Instruction::FPToSI:
541    case Instruction::UIToFP:
542    case Instruction::SIToFP:
543    case Instruction::FPTrunc:
544    case Instruction::FPExt:
545    case Instruction::GetElementPtr: {
546      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
547        if (!CanEvaluateShuffled(I->getOperand(i), Mask, Depth-1))
548          return false;
549      }
550      return true;
551    }
552    case Instruction::InsertElement: {
553      ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
554      if (!CI) return false;
555      int ElementNumber = CI->getLimitedValue();
556
557      // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
558      // can't put an element into multiple indices.
559      bool SeenOnce = false;
560      for (int i = 0, e = Mask.size(); i != e; ++i) {
561        if (Mask[i] == ElementNumber) {
562          if (SeenOnce)
563            return false;
564          SeenOnce = true;
565        }
566      }
567      return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
568    }
569  }
570  return false;
571}
572
573/// Rebuild a new instruction just like 'I' but with the new operands given.
574/// In the event of type mismatch, the type of the operands is correct.
575static Value *BuildNew(Instruction *I, ArrayRef<Value*> NewOps) {
576  // We don't want to use the IRBuilder here because we want the replacement
577  // instructions to appear next to 'I', not the builder's insertion point.
578  switch (I->getOpcode()) {
579    case Instruction::Add:
580    case Instruction::FAdd:
581    case Instruction::Sub:
582    case Instruction::FSub:
583    case Instruction::Mul:
584    case Instruction::FMul:
585    case Instruction::UDiv:
586    case Instruction::SDiv:
587    case Instruction::FDiv:
588    case Instruction::URem:
589    case Instruction::SRem:
590    case Instruction::FRem:
591    case Instruction::Shl:
592    case Instruction::LShr:
593    case Instruction::AShr:
594    case Instruction::And:
595    case Instruction::Or:
596    case Instruction::Xor: {
597      BinaryOperator *BO = cast<BinaryOperator>(I);
598      assert(NewOps.size() == 2 && "binary operator with #ops != 2");
599      BinaryOperator *New =
600          BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
601                                 NewOps[0], NewOps[1], "", BO);
602      if (isa<OverflowingBinaryOperator>(BO)) {
603        New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
604        New->setHasNoSignedWrap(BO->hasNoSignedWrap());
605      }
606      if (isa<PossiblyExactOperator>(BO)) {
607        New->setIsExact(BO->isExact());
608      }
609      return New;
610    }
611    case Instruction::ICmp:
612      assert(NewOps.size() == 2 && "icmp with #ops != 2");
613      return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
614                          NewOps[0], NewOps[1]);
615    case Instruction::FCmp:
616      assert(NewOps.size() == 2 && "fcmp with #ops != 2");
617      return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
618                          NewOps[0], NewOps[1]);
619    case Instruction::Trunc:
620    case Instruction::ZExt:
621    case Instruction::SExt:
622    case Instruction::FPToUI:
623    case Instruction::FPToSI:
624    case Instruction::UIToFP:
625    case Instruction::SIToFP:
626    case Instruction::FPTrunc:
627    case Instruction::FPExt: {
628      // It's possible that the mask has a different number of elements from
629      // the original cast. We recompute the destination type to match the mask.
630      Type *DestTy =
631          VectorType::get(I->getType()->getScalarType(),
632                          NewOps[0]->getType()->getVectorNumElements());
633      assert(NewOps.size() == 1 && "cast with #ops != 1");
634      return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
635                              "", I);
636    }
637    case Instruction::GetElementPtr: {
638      Value *Ptr = NewOps[0];
639      ArrayRef<Value*> Idx = NewOps.slice(1);
640      GetElementPtrInst *GEP = GetElementPtrInst::Create(Ptr, Idx, "", I);
641      GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
642      return GEP;
643    }
644  }
645  llvm_unreachable("failed to rebuild vector instructions");
646}
647
648Value *
649InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
650  // Mask.size() does not need to be equal to the number of vector elements.
651
652  assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
653  if (isa<UndefValue>(V)) {
654    return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
655                                           Mask.size()));
656  }
657  if (isa<ConstantAggregateZero>(V)) {
658    return ConstantAggregateZero::get(
659               VectorType::get(V->getType()->getScalarType(),
660                               Mask.size()));
661  }
662  if (Constant *C = dyn_cast<Constant>(V)) {
663    SmallVector<Constant *, 16> MaskValues;
664    for (int i = 0, e = Mask.size(); i != e; ++i) {
665      if (Mask[i] == -1)
666        MaskValues.push_back(UndefValue::get(Builder->getInt32Ty()));
667      else
668        MaskValues.push_back(Builder->getInt32(Mask[i]));
669    }
670    return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
671                                          ConstantVector::get(MaskValues));
672  }
673
674  Instruction *I = cast<Instruction>(V);
675  switch (I->getOpcode()) {
676    case Instruction::Add:
677    case Instruction::FAdd:
678    case Instruction::Sub:
679    case Instruction::FSub:
680    case Instruction::Mul:
681    case Instruction::FMul:
682    case Instruction::UDiv:
683    case Instruction::SDiv:
684    case Instruction::FDiv:
685    case Instruction::URem:
686    case Instruction::SRem:
687    case Instruction::FRem:
688    case Instruction::Shl:
689    case Instruction::LShr:
690    case Instruction::AShr:
691    case Instruction::And:
692    case Instruction::Or:
693    case Instruction::Xor:
694    case Instruction::ICmp:
695    case Instruction::FCmp:
696    case Instruction::Trunc:
697    case Instruction::ZExt:
698    case Instruction::SExt:
699    case Instruction::FPToUI:
700    case Instruction::FPToSI:
701    case Instruction::UIToFP:
702    case Instruction::SIToFP:
703    case Instruction::FPTrunc:
704    case Instruction::FPExt:
705    case Instruction::Select:
706    case Instruction::GetElementPtr: {
707      SmallVector<Value*, 8> NewOps;
708      bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
709      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
710        Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
711        NewOps.push_back(V);
712        NeedsRebuild |= (V != I->getOperand(i));
713      }
714      if (NeedsRebuild) {
715        return BuildNew(I, NewOps);
716      }
717      return I;
718    }
719    case Instruction::InsertElement: {
720      int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
721
722      // The insertelement was inserting at Element. Figure out which element
723      // that becomes after shuffling. The answer is guaranteed to be unique
724      // by CanEvaluateShuffled.
725      bool Found = false;
726      int Index = 0;
727      for (int e = Mask.size(); Index != e; ++Index) {
728        if (Mask[Index] == Element) {
729          Found = true;
730          break;
731        }
732      }
733
734      if (!Found)
735        return UndefValue::get(
736            VectorType::get(V->getType()->getScalarType(), Mask.size()));
737
738      Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
739      return InsertElementInst::Create(V, I->getOperand(1),
740                                       Builder->getInt32(Index), "", I);
741    }
742  }
743  llvm_unreachable("failed to reorder elements of vector instruction!");
744}
745
746Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
747  Value *LHS = SVI.getOperand(0);
748  Value *RHS = SVI.getOperand(1);
749  SmallVector<int, 16> Mask = SVI.getShuffleMask();
750
751  bool MadeChange = false;
752
753  // Undefined shuffle mask -> undefined value.
754  if (isa<UndefValue>(SVI.getOperand(2)))
755    return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
756
757  unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
758
759  APInt UndefElts(VWidth, 0);
760  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
761  if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
762    if (V != &SVI)
763      return ReplaceInstUsesWith(SVI, V);
764    LHS = SVI.getOperand(0);
765    RHS = SVI.getOperand(1);
766    MadeChange = true;
767  }
768
769  unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
770
771  // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
772  // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
773  if (LHS == RHS || isa<UndefValue>(LHS)) {
774    if (isa<UndefValue>(LHS) && LHS == RHS) {
775      // shuffle(undef,undef,mask) -> undef.
776      Value *Result = (VWidth == LHSWidth)
777                      ? LHS : UndefValue::get(SVI.getType());
778      return ReplaceInstUsesWith(SVI, Result);
779    }
780
781    // Remap any references to RHS to use LHS.
782    SmallVector<Constant*, 16> Elts;
783    for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
784      if (Mask[i] < 0) {
785        Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
786        continue;
787      }
788
789      if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
790          (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
791        Mask[i] = -1;     // Turn into undef.
792        Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
793      } else {
794        Mask[i] = Mask[i] % e;  // Force to LHS.
795        Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
796                                        Mask[i]));
797      }
798    }
799    SVI.setOperand(0, SVI.getOperand(1));
800    SVI.setOperand(1, UndefValue::get(RHS->getType()));
801    SVI.setOperand(2, ConstantVector::get(Elts));
802    LHS = SVI.getOperand(0);
803    RHS = SVI.getOperand(1);
804    MadeChange = true;
805  }
806
807  if (VWidth == LHSWidth) {
808    // Analyze the shuffle, are the LHS or RHS and identity shuffles?
809    bool isLHSID = true, isRHSID = true;
810
811    for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
812      if (Mask[i] < 0) continue;  // Ignore undef values.
813      // Is this an identity shuffle of the LHS value?
814      isLHSID &= (Mask[i] == (int)i);
815
816      // Is this an identity shuffle of the RHS value?
817      isRHSID &= (Mask[i]-e == i);
818    }
819
820    // Eliminate identity shuffles.
821    if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
822    if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
823  }
824
825  if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
826    Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
827    return ReplaceInstUsesWith(SVI, V);
828  }
829
830  // If the LHS is a shufflevector itself, see if we can combine it with this
831  // one without producing an unusual shuffle.
832  // Cases that might be simplified:
833  // 1.
834  // x1=shuffle(v1,v2,mask1)
835  //  x=shuffle(x1,undef,mask)
836  //        ==>
837  //  x=shuffle(v1,undef,newMask)
838  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
839  // 2.
840  // x1=shuffle(v1,undef,mask1)
841  //  x=shuffle(x1,x2,mask)
842  // where v1.size() == mask1.size()
843  //        ==>
844  //  x=shuffle(v1,x2,newMask)
845  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
846  // 3.
847  // x2=shuffle(v2,undef,mask2)
848  //  x=shuffle(x1,x2,mask)
849  // where v2.size() == mask2.size()
850  //        ==>
851  //  x=shuffle(x1,v2,newMask)
852  // newMask[i] = (mask[i] < x1.size())
853  //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
854  // 4.
855  // x1=shuffle(v1,undef,mask1)
856  // x2=shuffle(v2,undef,mask2)
857  //  x=shuffle(x1,x2,mask)
858  // where v1.size() == v2.size()
859  //        ==>
860  //  x=shuffle(v1,v2,newMask)
861  // newMask[i] = (mask[i] < x1.size())
862  //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
863  //
864  // Here we are really conservative:
865  // we are absolutely afraid of producing a shuffle mask not in the input
866  // program, because the code gen may not be smart enough to turn a merged
867  // shuffle into two specific shuffles: it may produce worse code.  As such,
868  // we only merge two shuffles if the result is either a splat or one of the
869  // input shuffle masks.  In this case, merging the shuffles just removes
870  // one instruction, which we know is safe.  This is good for things like
871  // turning: (splat(splat)) -> splat, or
872  // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
873  ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
874  ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
875  if (LHSShuffle)
876    if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
877      LHSShuffle = NULL;
878  if (RHSShuffle)
879    if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
880      RHSShuffle = NULL;
881  if (!LHSShuffle && !RHSShuffle)
882    return MadeChange ? &SVI : 0;
883
884  Value* LHSOp0 = NULL;
885  Value* LHSOp1 = NULL;
886  Value* RHSOp0 = NULL;
887  unsigned LHSOp0Width = 0;
888  unsigned RHSOp0Width = 0;
889  if (LHSShuffle) {
890    LHSOp0 = LHSShuffle->getOperand(0);
891    LHSOp1 = LHSShuffle->getOperand(1);
892    LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
893  }
894  if (RHSShuffle) {
895    RHSOp0 = RHSShuffle->getOperand(0);
896    RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
897  }
898  Value* newLHS = LHS;
899  Value* newRHS = RHS;
900  if (LHSShuffle) {
901    // case 1
902    if (isa<UndefValue>(RHS)) {
903      newLHS = LHSOp0;
904      newRHS = LHSOp1;
905    }
906    // case 2 or 4
907    else if (LHSOp0Width == LHSWidth) {
908      newLHS = LHSOp0;
909    }
910  }
911  // case 3 or 4
912  if (RHSShuffle && RHSOp0Width == LHSWidth) {
913    newRHS = RHSOp0;
914  }
915  // case 4
916  if (LHSOp0 == RHSOp0) {
917    newLHS = LHSOp0;
918    newRHS = NULL;
919  }
920
921  if (newLHS == LHS && newRHS == RHS)
922    return MadeChange ? &SVI : 0;
923
924  SmallVector<int, 16> LHSMask;
925  SmallVector<int, 16> RHSMask;
926  if (newLHS != LHS)
927    LHSMask = LHSShuffle->getShuffleMask();
928  if (RHSShuffle && newRHS != RHS)
929    RHSMask = RHSShuffle->getShuffleMask();
930
931  unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
932  SmallVector<int, 16> newMask;
933  bool isSplat = true;
934  int SplatElt = -1;
935  // Create a new mask for the new ShuffleVectorInst so that the new
936  // ShuffleVectorInst is equivalent to the original one.
937  for (unsigned i = 0; i < VWidth; ++i) {
938    int eltMask;
939    if (Mask[i] < 0) {
940      // This element is an undef value.
941      eltMask = -1;
942    } else if (Mask[i] < (int)LHSWidth) {
943      // This element is from left hand side vector operand.
944      //
945      // If LHS is going to be replaced (case 1, 2, or 4), calculate the
946      // new mask value for the element.
947      if (newLHS != LHS) {
948        eltMask = LHSMask[Mask[i]];
949        // If the value selected is an undef value, explicitly specify it
950        // with a -1 mask value.
951        if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
952          eltMask = -1;
953      } else
954        eltMask = Mask[i];
955    } else {
956      // This element is from right hand side vector operand
957      //
958      // If the value selected is an undef value, explicitly specify it
959      // with a -1 mask value. (case 1)
960      if (isa<UndefValue>(RHS))
961        eltMask = -1;
962      // If RHS is going to be replaced (case 3 or 4), calculate the
963      // new mask value for the element.
964      else if (newRHS != RHS) {
965        eltMask = RHSMask[Mask[i]-LHSWidth];
966        // If the value selected is an undef value, explicitly specify it
967        // with a -1 mask value.
968        if (eltMask >= (int)RHSOp0Width) {
969          assert(isa<UndefValue>(RHSShuffle->getOperand(1))
970                 && "should have been check above");
971          eltMask = -1;
972        }
973      } else
974        eltMask = Mask[i]-LHSWidth;
975
976      // If LHS's width is changed, shift the mask value accordingly.
977      // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
978      // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
979      // If newRHS == newLHS, we want to remap any references from newRHS to
980      // newLHS so that we can properly identify splats that may occur due to
981      // obfuscation accross the two vectors.
982      if (eltMask >= 0 && newRHS != NULL && newLHS != newRHS)
983        eltMask += newLHSWidth;
984    }
985
986    // Check if this could still be a splat.
987    if (eltMask >= 0) {
988      if (SplatElt >= 0 && SplatElt != eltMask)
989        isSplat = false;
990      SplatElt = eltMask;
991    }
992
993    newMask.push_back(eltMask);
994  }
995
996  // If the result mask is equal to one of the original shuffle masks,
997  // or is a splat, do the replacement.
998  if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
999    SmallVector<Constant*, 16> Elts;
1000    Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1001    for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
1002      if (newMask[i] < 0) {
1003        Elts.push_back(UndefValue::get(Int32Ty));
1004      } else {
1005        Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
1006      }
1007    }
1008    if (newRHS == NULL)
1009      newRHS = UndefValue::get(newLHS->getType());
1010    return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
1011  }
1012
1013  return MadeChange ? &SVI : 0;
1014}
1015