DeadStoreElimination.cpp revision 1582e7f1e255c19595f82cb447e52869196dec58
1//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a trivial dead store elimination that only considers
11// basic-block local redundant stores.
12//
13// FIXME: This should eventually be extended to be a post-dominator tree
14// traversal.  Doing so would be pretty trivial.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "dse"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/Constants.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/Dominators.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/MemoryDependenceAnalysis.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Transforms/Utils/Local.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/Statistic.h"
36using namespace llvm;
37
38STATISTIC(NumFastStores, "Number of stores deleted");
39STATISTIC(NumFastOther , "Number of other instrs removed");
40
41namespace {
42  struct DSE : public FunctionPass {
43    AliasAnalysis *AA;
44    MemoryDependenceAnalysis *MD;
45
46    static char ID; // Pass identification, replacement for typeid
47    DSE() : FunctionPass(ID), AA(0), MD(0) {
48      initializeDSEPass(*PassRegistry::getPassRegistry());
49    }
50
51    virtual bool runOnFunction(Function &F) {
52      AA = &getAnalysis<AliasAnalysis>();
53      MD = &getAnalysis<MemoryDependenceAnalysis>();
54      DominatorTree &DT = getAnalysis<DominatorTree>();
55
56      bool Changed = false;
57      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
58        // Only check non-dead blocks.  Dead blocks may have strange pointer
59        // cycles that will confuse alias analysis.
60        if (DT.isReachableFromEntry(I))
61          Changed |= runOnBasicBlock(*I);
62
63      AA = 0; MD = 0;
64      return Changed;
65    }
66
67    bool runOnBasicBlock(BasicBlock &BB);
68    bool HandleFree(CallInst *F);
69    bool handleEndBlock(BasicBlock &BB);
70    void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
71                               SmallPtrSet<Value*, 16> &DeadStackObjects);
72
73    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
74      AU.setPreservesCFG();
75      AU.addRequired<DominatorTree>();
76      AU.addRequired<AliasAnalysis>();
77      AU.addRequired<MemoryDependenceAnalysis>();
78      AU.addPreserved<AliasAnalysis>();
79      AU.addPreserved<DominatorTree>();
80      AU.addPreserved<MemoryDependenceAnalysis>();
81    }
82  };
83}
84
85char DSE::ID = 0;
86INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
87INITIALIZE_PASS_DEPENDENCY(DominatorTree)
88INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
89INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
90INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
91
92FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
93
94//===----------------------------------------------------------------------===//
95// Helper functions
96//===----------------------------------------------------------------------===//
97
98/// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
99/// and zero out all the operands of this instruction.  If any of them become
100/// dead, delete them and the computation tree that feeds them.
101///
102/// If ValueSet is non-null, remove any deleted instructions from it as well.
103///
104static void DeleteDeadInstruction(Instruction *I,
105                                  MemoryDependenceAnalysis &MD,
106                                  SmallPtrSet<Value*, 16> *ValueSet = 0) {
107  SmallVector<Instruction*, 32> NowDeadInsts;
108
109  NowDeadInsts.push_back(I);
110  --NumFastOther;
111
112  // Before we touch this instruction, remove it from memdep!
113  do {
114    Instruction *DeadInst = NowDeadInsts.pop_back_val();
115    ++NumFastOther;
116
117    // This instruction is dead, zap it, in stages.  Start by removing it from
118    // MemDep, which needs to know the operands and needs it to be in the
119    // function.
120    MD.removeInstruction(DeadInst);
121
122    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
123      Value *Op = DeadInst->getOperand(op);
124      DeadInst->setOperand(op, 0);
125
126      // If this operand just became dead, add it to the NowDeadInsts list.
127      if (!Op->use_empty()) continue;
128
129      if (Instruction *OpI = dyn_cast<Instruction>(Op))
130        if (isInstructionTriviallyDead(OpI))
131          NowDeadInsts.push_back(OpI);
132    }
133
134    DeadInst->eraseFromParent();
135
136    if (ValueSet) ValueSet->erase(DeadInst);
137  } while (!NowDeadInsts.empty());
138}
139
140
141/// hasMemoryWrite - Does this instruction write some memory?  This only returns
142/// true for things that we can analyze with other helpers below.
143static bool hasMemoryWrite(Instruction *I) {
144  if (isa<StoreInst>(I))
145    return true;
146  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
147    switch (II->getIntrinsicID()) {
148    default:
149      return false;
150    case Intrinsic::memset:
151    case Intrinsic::memmove:
152    case Intrinsic::memcpy:
153    case Intrinsic::init_trampoline:
154    case Intrinsic::lifetime_end:
155      return true;
156    }
157  }
158  return false;
159}
160
161/// getLocForWrite - Return a Location stored to by the specified instruction.
162/// If isRemovable returns true, this function and getLocForRead completely
163/// describe the memory operations for this instruction.
164static AliasAnalysis::Location
165getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
166  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
167    return AA.getLocation(SI);
168
169  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
170    // memcpy/memmove/memset.
171    AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
172    // If we don't have target data around, an unknown size in Location means
173    // that we should use the size of the pointee type.  This isn't valid for
174    // memset/memcpy, which writes more than an i8.
175    if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
176      return AliasAnalysis::Location();
177    return Loc;
178  }
179
180  IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
181  if (II == 0) return AliasAnalysis::Location();
182
183  switch (II->getIntrinsicID()) {
184  default: return AliasAnalysis::Location(); // Unhandled intrinsic.
185  case Intrinsic::init_trampoline:
186    // If we don't have target data around, an unknown size in Location means
187    // that we should use the size of the pointee type.  This isn't valid for
188    // init.trampoline, which writes more than an i8.
189    if (AA.getTargetData() == 0) return AliasAnalysis::Location();
190
191    // FIXME: We don't know the size of the trampoline, so we can't really
192    // handle it here.
193    return AliasAnalysis::Location(II->getArgOperand(0));
194  case Intrinsic::lifetime_end: {
195    uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
196    return AliasAnalysis::Location(II->getArgOperand(1), Len);
197  }
198  }
199}
200
201/// getLocForRead - Return the location read by the specified "hasMemoryWrite"
202/// instruction if any.
203static AliasAnalysis::Location
204getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
205  assert(hasMemoryWrite(Inst) && "Unknown instruction case");
206
207  // The only instructions that both read and write are the mem transfer
208  // instructions (memcpy/memmove).
209  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
210    return AA.getLocationForSource(MTI);
211  return AliasAnalysis::Location();
212}
213
214
215/// isRemovable - If the value of this instruction and the memory it writes to
216/// is unused, may we delete this instruction?
217static bool isRemovable(Instruction *I) {
218  // Don't remove volatile/atomic stores.
219  if (StoreInst *SI = dyn_cast<StoreInst>(I))
220    return SI->isUnordered();
221
222  IntrinsicInst *II = cast<IntrinsicInst>(I);
223  switch (II->getIntrinsicID()) {
224  default: assert(0 && "doesn't pass 'hasMemoryWrite' predicate");
225  case Intrinsic::lifetime_end:
226    // Never remove dead lifetime_end's, e.g. because it is followed by a
227    // free.
228    return false;
229  case Intrinsic::init_trampoline:
230    // Always safe to remove init_trampoline.
231    return true;
232
233  case Intrinsic::memset:
234  case Intrinsic::memmove:
235  case Intrinsic::memcpy:
236    // Don't remove volatile memory intrinsics.
237    return !cast<MemIntrinsic>(II)->isVolatile();
238  }
239}
240
241/// getStoredPointerOperand - Return the pointer that is being written to.
242static Value *getStoredPointerOperand(Instruction *I) {
243  if (StoreInst *SI = dyn_cast<StoreInst>(I))
244    return SI->getPointerOperand();
245  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
246    return MI->getDest();
247
248  IntrinsicInst *II = cast<IntrinsicInst>(I);
249  switch (II->getIntrinsicID()) {
250  default: assert(false && "Unexpected intrinsic!");
251  case Intrinsic::init_trampoline:
252    return II->getArgOperand(0);
253  }
254}
255
256static uint64_t getPointerSize(Value *V, AliasAnalysis &AA) {
257  const TargetData *TD = AA.getTargetData();
258  if (TD == 0)
259    return AliasAnalysis::UnknownSize;
260
261  if (AllocaInst *A = dyn_cast<AllocaInst>(V)) {
262    // Get size information for the alloca
263    if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
264      return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
265    return AliasAnalysis::UnknownSize;
266  }
267
268  assert(isa<Argument>(V) && "Expected AllocaInst or Argument!");
269  PointerType *PT = cast<PointerType>(V->getType());
270  return TD->getTypeAllocSize(PT->getElementType());
271}
272
273/// isObjectPointerWithTrustworthySize - Return true if the specified Value* is
274/// pointing to an object with a pointer size we can trust.
275static bool isObjectPointerWithTrustworthySize(const Value *V) {
276  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
277    return !AI->isArrayAllocation();
278  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
279    return !GV->mayBeOverridden();
280  if (const Argument *A = dyn_cast<Argument>(V))
281    return A->hasByValAttr();
282  return false;
283}
284
285/// isCompleteOverwrite - Return true if a store to the 'Later' location
286/// completely overwrites a store to the 'Earlier' location.
287static bool isCompleteOverwrite(const AliasAnalysis::Location &Later,
288                                const AliasAnalysis::Location &Earlier,
289                                AliasAnalysis &AA) {
290  const Value *P1 = Earlier.Ptr->stripPointerCasts();
291  const Value *P2 = Later.Ptr->stripPointerCasts();
292
293  // If the start pointers are the same, we just have to compare sizes to see if
294  // the later store was larger than the earlier store.
295  if (P1 == P2) {
296    // If we don't know the sizes of either access, then we can't do a
297    // comparison.
298    if (Later.Size == AliasAnalysis::UnknownSize ||
299        Earlier.Size == AliasAnalysis::UnknownSize) {
300      // If we have no TargetData information around, then the size of the store
301      // is inferrable from the pointee type.  If they are the same type, then
302      // we know that the store is safe.
303      if (AA.getTargetData() == 0)
304        return Later.Ptr->getType() == Earlier.Ptr->getType();
305      return false;
306    }
307
308    // Make sure that the Later size is >= the Earlier size.
309    if (Later.Size < Earlier.Size)
310      return false;
311    return true;
312  }
313
314  // Otherwise, we have to have size information, and the later store has to be
315  // larger than the earlier one.
316  if (Later.Size == AliasAnalysis::UnknownSize ||
317      Earlier.Size == AliasAnalysis::UnknownSize ||
318      Later.Size <= Earlier.Size || AA.getTargetData() == 0)
319    return false;
320
321  // Check to see if the later store is to the entire object (either a global,
322  // an alloca, or a byval argument).  If so, then it clearly overwrites any
323  // other store to the same object.
324  const TargetData &TD = *AA.getTargetData();
325
326  const Value *UO1 = GetUnderlyingObject(P1, &TD),
327              *UO2 = GetUnderlyingObject(P2, &TD);
328
329  // If we can't resolve the same pointers to the same object, then we can't
330  // analyze them at all.
331  if (UO1 != UO2)
332    return false;
333
334  // If the "Later" store is to a recognizable object, get its size.
335  if (isObjectPointerWithTrustworthySize(UO2)) {
336    uint64_t ObjectSize =
337      TD.getTypeAllocSize(cast<PointerType>(UO2->getType())->getElementType());
338    if (ObjectSize == Later.Size)
339      return true;
340  }
341
342  // Okay, we have stores to two completely different pointers.  Try to
343  // decompose the pointer into a "base + constant_offset" form.  If the base
344  // pointers are equal, then we can reason about the two stores.
345  int64_t EarlierOff = 0, LaterOff = 0;
346  const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, TD);
347  const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, TD);
348
349  // If the base pointers still differ, we have two completely different stores.
350  if (BP1 != BP2)
351    return false;
352
353  // The later store completely overlaps the earlier store if:
354  //
355  // 1. Both start at the same offset and the later one's size is greater than
356  //    or equal to the earlier one's, or
357  //
358  //      |--earlier--|
359  //      |--   later   --|
360  //
361  // 2. The earlier store has an offset greater than the later offset, but which
362  //    still lies completely within the later store.
363  //
364  //        |--earlier--|
365  //    |-----  later  ------|
366  //
367  // We have to be careful here as *Off is signed while *.Size is unsigned.
368  if (EarlierOff >= LaterOff &&
369      uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
370    return true;
371
372  // Otherwise, they don't completely overlap.
373  return false;
374}
375
376/// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
377/// memory region into an identical pointer) then it doesn't actually make its
378/// input dead in the traditional sense.  Consider this case:
379///
380///   memcpy(A <- B)
381///   memcpy(A <- A)
382///
383/// In this case, the second store to A does not make the first store to A dead.
384/// The usual situation isn't an explicit A<-A store like this (which can be
385/// trivially removed) but a case where two pointers may alias.
386///
387/// This function detects when it is unsafe to remove a dependent instruction
388/// because the DSE inducing instruction may be a self-read.
389static bool isPossibleSelfRead(Instruction *Inst,
390                               const AliasAnalysis::Location &InstStoreLoc,
391                               Instruction *DepWrite, AliasAnalysis &AA) {
392  // Self reads can only happen for instructions that read memory.  Get the
393  // location read.
394  AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
395  if (InstReadLoc.Ptr == 0) return false;  // Not a reading instruction.
396
397  // If the read and written loc obviously don't alias, it isn't a read.
398  if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
399
400  // Okay, 'Inst' may copy over itself.  However, we can still remove a the
401  // DepWrite instruction if we can prove that it reads from the same location
402  // as Inst.  This handles useful cases like:
403  //   memcpy(A <- B)
404  //   memcpy(A <- B)
405  // Here we don't know if A/B may alias, but we do know that B/B are must
406  // aliases, so removing the first memcpy is safe (assuming it writes <= #
407  // bytes as the second one.
408  AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
409
410  if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
411    return false;
412
413  // If DepWrite doesn't read memory or if we can't prove it is a must alias,
414  // then it can't be considered dead.
415  return true;
416}
417
418
419//===----------------------------------------------------------------------===//
420// DSE Pass
421//===----------------------------------------------------------------------===//
422
423bool DSE::runOnBasicBlock(BasicBlock &BB) {
424  bool MadeChange = false;
425
426  // Do a top-down walk on the BB.
427  for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
428    Instruction *Inst = BBI++;
429
430    // Handle 'free' calls specially.
431    if (CallInst *F = isFreeCall(Inst)) {
432      MadeChange |= HandleFree(F);
433      continue;
434    }
435
436    // If we find something that writes memory, get its memory dependence.
437    if (!hasMemoryWrite(Inst))
438      continue;
439
440    MemDepResult InstDep = MD->getDependency(Inst);
441
442    // Ignore any store where we can't find a local dependence.
443    // FIXME: cross-block DSE would be fun. :)
444    if (InstDep.isNonLocal() || InstDep.isUnknown())
445      continue;
446
447    // If we're storing the same value back to a pointer that we just
448    // loaded from, then the store can be removed.
449    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
450      if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
451        if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
452            SI->getOperand(0) == DepLoad && isRemovable(SI)) {
453          DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
454                       << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
455
456          // DeleteDeadInstruction can delete the current instruction.  Save BBI
457          // in case we need it.
458          WeakVH NextInst(BBI);
459
460          DeleteDeadInstruction(SI, *MD);
461
462          if (NextInst == 0)  // Next instruction deleted.
463            BBI = BB.begin();
464          else if (BBI != BB.begin())  // Revisit this instruction if possible.
465            --BBI;
466          ++NumFastStores;
467          MadeChange = true;
468          continue;
469        }
470      }
471    }
472
473    // Figure out what location is being stored to.
474    AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
475
476    // If we didn't get a useful location, fail.
477    if (Loc.Ptr == 0)
478      continue;
479
480    while (!InstDep.isNonLocal() && !InstDep.isUnknown()) {
481      // Get the memory clobbered by the instruction we depend on.  MemDep will
482      // skip any instructions that 'Loc' clearly doesn't interact with.  If we
483      // end up depending on a may- or must-aliased load, then we can't optimize
484      // away the store and we bail out.  However, if we depend on on something
485      // that overwrites the memory location we *can* potentially optimize it.
486      //
487      // Find out what memory location the dependent instruction stores.
488      Instruction *DepWrite = InstDep.getInst();
489      AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
490      // If we didn't get a useful location, or if it isn't a size, bail out.
491      if (DepLoc.Ptr == 0)
492        break;
493
494      // If we find a write that is a) removable (i.e., non-volatile), b) is
495      // completely obliterated by the store to 'Loc', and c) which we know that
496      // 'Inst' doesn't load from, then we can remove it.
497      if (isRemovable(DepWrite) && isCompleteOverwrite(Loc, DepLoc, *AA) &&
498          !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
499        DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
500              << *DepWrite << "\n  KILLER: " << *Inst << '\n');
501
502        // Delete the store and now-dead instructions that feed it.
503        DeleteDeadInstruction(DepWrite, *MD);
504        ++NumFastStores;
505        MadeChange = true;
506
507        // DeleteDeadInstruction can delete the current instruction in loop
508        // cases, reset BBI.
509        BBI = Inst;
510        if (BBI != BB.begin())
511          --BBI;
512        break;
513      }
514
515      // If this is a may-aliased store that is clobbering the store value, we
516      // can keep searching past it for another must-aliased pointer that stores
517      // to the same location.  For example, in:
518      //   store -> P
519      //   store -> Q
520      //   store -> P
521      // we can remove the first store to P even though we don't know if P and Q
522      // alias.
523      if (DepWrite == &BB.front()) break;
524
525      // Can't look past this instruction if it might read 'Loc'.
526      if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
527        break;
528
529      InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
530    }
531  }
532
533  // If this block ends in a return, unwind, or unreachable, all allocas are
534  // dead at its end, which means stores to them are also dead.
535  if (BB.getTerminator()->getNumSuccessors() == 0)
536    MadeChange |= handleEndBlock(BB);
537
538  return MadeChange;
539}
540
541/// HandleFree - Handle frees of entire structures whose dependency is a store
542/// to a field of that structure.
543bool DSE::HandleFree(CallInst *F) {
544  bool MadeChange = false;
545
546  MemDepResult Dep = MD->getDependency(F);
547
548  while (!Dep.isNonLocal() && !Dep.isUnknown()) {
549    Instruction *Dependency = Dep.getInst();
550    if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
551      return MadeChange;
552
553    Value *DepPointer =
554      GetUnderlyingObject(getStoredPointerOperand(Dependency));
555
556    // Check for aliasing.
557    if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
558      return MadeChange;
559
560    // DCE instructions only used to calculate that store
561    DeleteDeadInstruction(Dependency, *MD);
562    ++NumFastStores;
563    MadeChange = true;
564
565    // Inst's old Dependency is now deleted. Compute the next dependency,
566    // which may also be dead, as in
567    //    s[0] = 0;
568    //    s[1] = 0; // This has just been deleted.
569    //    free(s);
570    Dep = MD->getDependency(F);
571  };
572
573  return MadeChange;
574}
575
576/// handleEndBlock - Remove dead stores to stack-allocated locations in the
577/// function end block.  Ex:
578/// %A = alloca i32
579/// ...
580/// store i32 1, i32* %A
581/// ret void
582bool DSE::handleEndBlock(BasicBlock &BB) {
583  bool MadeChange = false;
584
585  // Keep track of all of the stack objects that are dead at the end of the
586  // function.
587  SmallPtrSet<Value*, 16> DeadStackObjects;
588
589  // Find all of the alloca'd pointers in the entry block.
590  BasicBlock *Entry = BB.getParent()->begin();
591  for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I)
592    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
593      DeadStackObjects.insert(AI);
594
595  // Treat byval arguments the same, stores to them are dead at the end of the
596  // function.
597  for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
598       AE = BB.getParent()->arg_end(); AI != AE; ++AI)
599    if (AI->hasByValAttr())
600      DeadStackObjects.insert(AI);
601
602  // Scan the basic block backwards
603  for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
604    --BBI;
605
606    // If we find a store, check to see if it points into a dead stack value.
607    if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
608      // See through pointer-to-pointer bitcasts
609      Value *Pointer = GetUnderlyingObject(getStoredPointerOperand(BBI));
610
611      // Stores to stack values are valid candidates for removal.
612      if (DeadStackObjects.count(Pointer)) {
613        Instruction *Dead = BBI++;
614
615        DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
616                     << *Dead << "\n  Object: " << *Pointer << '\n');
617
618        // DCE instructions only used to calculate that store.
619        DeleteDeadInstruction(Dead, *MD, &DeadStackObjects);
620        ++NumFastStores;
621        MadeChange = true;
622        continue;
623      }
624    }
625
626    // Remove any dead non-memory-mutating instructions.
627    if (isInstructionTriviallyDead(BBI)) {
628      Instruction *Inst = BBI++;
629      DeleteDeadInstruction(Inst, *MD, &DeadStackObjects);
630      ++NumFastOther;
631      MadeChange = true;
632      continue;
633    }
634
635    if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
636      DeadStackObjects.erase(A);
637      continue;
638    }
639
640    if (CallSite CS = cast<Value>(BBI)) {
641      // If this call does not access memory, it can't be loading any of our
642      // pointers.
643      if (AA->doesNotAccessMemory(CS))
644        continue;
645
646      // If the call might load from any of our allocas, then any store above
647      // the call is live.
648      SmallVector<Value*, 8> LiveAllocas;
649      for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
650           E = DeadStackObjects.end(); I != E; ++I) {
651        // See if the call site touches it.
652        AliasAnalysis::ModRefResult A =
653          AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
654
655        if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
656          LiveAllocas.push_back(*I);
657      }
658
659      for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
660           E = LiveAllocas.end(); I != E; ++I)
661        DeadStackObjects.erase(*I);
662
663      // If all of the allocas were clobbered by the call then we're not going
664      // to find anything else to process.
665      if (DeadStackObjects.empty())
666        return MadeChange;
667
668      continue;
669    }
670
671    AliasAnalysis::Location LoadedLoc;
672
673    // If we encounter a use of the pointer, it is no longer considered dead
674    if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
675      if (!L->isUnordered()) // Be conservative with atomic/volatile load
676        break;
677      LoadedLoc = AA->getLocation(L);
678    } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
679      LoadedLoc = AA->getLocation(V);
680    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
681      LoadedLoc = AA->getLocationForSource(MTI);
682    } else if (!BBI->mayReadFromMemory()) {
683      // Instruction doesn't read memory.  Note that stores that weren't removed
684      // above will hit this case.
685      continue;
686    } else {
687      // Unknown inst; assume it clobbers everything.
688      break;
689    }
690
691    // Remove any allocas from the DeadPointer set that are loaded, as this
692    // makes any stores above the access live.
693    RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
694
695    // If all of the allocas were clobbered by the access then we're not going
696    // to find anything else to process.
697    if (DeadStackObjects.empty())
698      break;
699  }
700
701  return MadeChange;
702}
703
704/// RemoveAccessedObjects - Check to see if the specified location may alias any
705/// of the stack objects in the DeadStackObjects set.  If so, they become live
706/// because the location is being loaded.
707void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
708                                SmallPtrSet<Value*, 16> &DeadStackObjects) {
709  const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
710
711  // A constant can't be in the dead pointer set.
712  if (isa<Constant>(UnderlyingPointer))
713    return;
714
715  // If the kill pointer can be easily reduced to an alloca, don't bother doing
716  // extraneous AA queries.
717  if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
718    DeadStackObjects.erase(const_cast<Value*>(UnderlyingPointer));
719    return;
720  }
721
722  SmallVector<Value*, 16> NowLive;
723  for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
724       E = DeadStackObjects.end(); I != E; ++I) {
725    // See if the loaded location could alias the stack location.
726    AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
727    if (!AA->isNoAlias(StackLoc, LoadedLoc))
728      NowLive.push_back(*I);
729  }
730
731  for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
732       I != E; ++I)
733    DeadStackObjects.erase(*I);
734}
735
736