JumpThreading.cpp revision 01abcf339f8d42921c680fefb2ff988cfeee1198
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LazyValueInfo.h"
21#include "llvm/Analysis/Loads.h"
22#include "llvm/Transforms/Utils/BasicBlockUtils.h"
23#include "llvm/Transforms/Utils/Local.h"
24#include "llvm/Transforms/Utils/SSAUpdater.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DenseSet.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ValueHandle.h"
35#include "llvm/Support/raw_ostream.h"
36using namespace llvm;
37
38STATISTIC(NumThreads, "Number of jumps threaded");
39STATISTIC(NumFolds,   "Number of terminators folded");
40STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
41
42static cl::opt<unsigned>
43Threshold("jump-threading-threshold",
44          cl::desc("Max block size to duplicate for jump threading"),
45          cl::init(6), cl::Hidden);
46
47namespace {
48  // These are at global scope so static functions can use them too.
49  typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
50  typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
51
52  // This is used to keep track of what kind of constant we're currently hoping
53  // to find.
54  enum ConstantPreference {
55    WantInteger,
56    WantBlockAddress
57  };
58
59  /// This pass performs 'jump threading', which looks at blocks that have
60  /// multiple predecessors and multiple successors.  If one or more of the
61  /// predecessors of the block can be proven to always jump to one of the
62  /// successors, we forward the edge from the predecessor to the successor by
63  /// duplicating the contents of this block.
64  ///
65  /// An example of when this can occur is code like this:
66  ///
67  ///   if () { ...
68  ///     X = 4;
69  ///   }
70  ///   if (X < 3) {
71  ///
72  /// In this case, the unconditional branch at the end of the first if can be
73  /// revectored to the false side of the second if.
74  ///
75  class JumpThreading : public FunctionPass {
76    TargetData *TD;
77    LazyValueInfo *LVI;
78#ifdef NDEBUG
79    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
80#else
81    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
82#endif
83    DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
84
85    // RAII helper for updating the recursion stack.
86    struct RecursionSetRemover {
87      DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
88      std::pair<Value*, BasicBlock*> ThePair;
89
90      RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
91                          std::pair<Value*, BasicBlock*> P)
92        : TheSet(S), ThePair(P) { }
93
94      ~RecursionSetRemover() {
95        TheSet.erase(ThePair);
96      }
97    };
98  public:
99    static char ID; // Pass identification
100    JumpThreading() : FunctionPass(ID) {
101      initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
102    }
103
104    bool runOnFunction(Function &F);
105
106    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
107      AU.addRequired<LazyValueInfo>();
108      AU.addPreserved<LazyValueInfo>();
109    }
110
111    void FindLoopHeaders(Function &F);
112    bool ProcessBlock(BasicBlock *BB);
113    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
114                    BasicBlock *SuccBB);
115    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
116                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
117
118    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
119                                         PredValueInfo &Result,
120                                         ConstantPreference Preference);
121    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
122                                ConstantPreference Preference);
123
124    bool ProcessBranchOnPHI(PHINode *PN);
125    bool ProcessBranchOnXOR(BinaryOperator *BO);
126
127    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
128  };
129}
130
131char JumpThreading::ID = 0;
132INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
133                "Jump Threading", false, false)
134INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
135INITIALIZE_PASS_END(JumpThreading, "jump-threading",
136                "Jump Threading", false, false)
137
138// Public interface to the Jump Threading pass
139FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
140
141/// runOnFunction - Top level algorithm.
142///
143bool JumpThreading::runOnFunction(Function &F) {
144  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
145  TD = getAnalysisIfAvailable<TargetData>();
146  LVI = &getAnalysis<LazyValueInfo>();
147
148  FindLoopHeaders(F);
149
150  bool Changed, EverChanged = false;
151  do {
152    Changed = false;
153    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
154      BasicBlock *BB = I;
155      // Thread all of the branches we can over this block.
156      while (ProcessBlock(BB))
157        Changed = true;
158
159      ++I;
160
161      // If the block is trivially dead, zap it.  This eliminates the successor
162      // edges which simplifies the CFG.
163      if (pred_begin(BB) == pred_end(BB) &&
164          BB != &BB->getParent()->getEntryBlock()) {
165        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
166              << "' with terminator: " << *BB->getTerminator() << '\n');
167        LoopHeaders.erase(BB);
168        LVI->eraseBlock(BB);
169        DeleteDeadBlock(BB);
170        Changed = true;
171        continue;
172      }
173
174      BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
175
176      // Can't thread an unconditional jump, but if the block is "almost
177      // empty", we can replace uses of it with uses of the successor and make
178      // this dead.
179      if (BI && BI->isUnconditional() &&
180          BB != &BB->getParent()->getEntryBlock() &&
181          // If the terminator is the only non-phi instruction, try to nuke it.
182          BB->getFirstNonPHIOrDbg()->isTerminator()) {
183        // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
184        // block, we have to make sure it isn't in the LoopHeaders set.  We
185        // reinsert afterward if needed.
186        bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
187        BasicBlock *Succ = BI->getSuccessor(0);
188
189        // FIXME: It is always conservatively correct to drop the info
190        // for a block even if it doesn't get erased.  This isn't totally
191        // awesome, but it allows us to use AssertingVH to prevent nasty
192        // dangling pointer issues within LazyValueInfo.
193        LVI->eraseBlock(BB);
194        if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
195          Changed = true;
196          // If we deleted BB and BB was the header of a loop, then the
197          // successor is now the header of the loop.
198          BB = Succ;
199        }
200
201        if (ErasedFromLoopHeaders)
202          LoopHeaders.insert(BB);
203      }
204    }
205    EverChanged |= Changed;
206  } while (Changed);
207
208  LoopHeaders.clear();
209  return EverChanged;
210}
211
212/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
213/// thread across it.
214static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
215  /// Ignore PHI nodes, these will be flattened when duplication happens.
216  BasicBlock::const_iterator I = BB->getFirstNonPHI();
217
218  // FIXME: THREADING will delete values that are just used to compute the
219  // branch, so they shouldn't count against the duplication cost.
220
221
222  // Sum up the cost of each instruction until we get to the terminator.  Don't
223  // include the terminator because the copy won't include it.
224  unsigned Size = 0;
225  for (; !isa<TerminatorInst>(I); ++I) {
226    // Debugger intrinsics don't incur code size.
227    if (isa<DbgInfoIntrinsic>(I)) continue;
228
229    // If this is a pointer->pointer bitcast, it is free.
230    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
231      continue;
232
233    // All other instructions count for at least one unit.
234    ++Size;
235
236    // Calls are more expensive.  If they are non-intrinsic calls, we model them
237    // as having cost of 4.  If they are a non-vector intrinsic, we model them
238    // as having cost of 2 total, and if they are a vector intrinsic, we model
239    // them as having cost 1.
240    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
241      if (!isa<IntrinsicInst>(CI))
242        Size += 3;
243      else if (!CI->getType()->isVectorTy())
244        Size += 1;
245    }
246  }
247
248  // Threading through a switch statement is particularly profitable.  If this
249  // block ends in a switch, decrease its cost to make it more likely to happen.
250  if (isa<SwitchInst>(I))
251    Size = Size > 6 ? Size-6 : 0;
252
253  // The same holds for indirect branches, but slightly more so.
254  if (isa<IndirectBrInst>(I))
255    Size = Size > 8 ? Size-8 : 0;
256
257  return Size;
258}
259
260/// FindLoopHeaders - We do not want jump threading to turn proper loop
261/// structures into irreducible loops.  Doing this breaks up the loop nesting
262/// hierarchy and pessimizes later transformations.  To prevent this from
263/// happening, we first have to find the loop headers.  Here we approximate this
264/// by finding targets of backedges in the CFG.
265///
266/// Note that there definitely are cases when we want to allow threading of
267/// edges across a loop header.  For example, threading a jump from outside the
268/// loop (the preheader) to an exit block of the loop is definitely profitable.
269/// It is also almost always profitable to thread backedges from within the loop
270/// to exit blocks, and is often profitable to thread backedges to other blocks
271/// within the loop (forming a nested loop).  This simple analysis is not rich
272/// enough to track all of these properties and keep it up-to-date as the CFG
273/// mutates, so we don't allow any of these transformations.
274///
275void JumpThreading::FindLoopHeaders(Function &F) {
276  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
277  FindFunctionBackedges(F, Edges);
278
279  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
280    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
281}
282
283/// getKnownConstant - Helper method to determine if we can thread over a
284/// terminator with the given value as its condition, and if so what value to
285/// use for that. What kind of value this is depends on whether we want an
286/// integer or a block address, but an undef is always accepted.
287/// Returns null if Val is null or not an appropriate constant.
288static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
289  if (!Val)
290    return 0;
291
292  // Undef is "known" enough.
293  if (UndefValue *U = dyn_cast<UndefValue>(Val))
294    return U;
295
296  if (Preference == WantBlockAddress)
297    return dyn_cast<BlockAddress>(Val->stripPointerCasts());
298
299  return dyn_cast<ConstantInt>(Val);
300}
301
302/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
303/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
304/// in any of our predecessors.  If so, return the known list of value and pred
305/// BB in the result vector.
306///
307/// This returns true if there were any known values.
308///
309bool JumpThreading::
310ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
311                                ConstantPreference Preference) {
312  // This method walks up use-def chains recursively.  Because of this, we could
313  // get into an infinite loop going around loops in the use-def chain.  To
314  // prevent this, keep track of what (value, block) pairs we've already visited
315  // and terminate the search if we loop back to them
316  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
317    return false;
318
319  // An RAII help to remove this pair from the recursion set once the recursion
320  // stack pops back out again.
321  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
322
323  // If V is a constant, then it is known in all predecessors.
324  if (Constant *KC = getKnownConstant(V, Preference)) {
325    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
326      Result.push_back(std::make_pair(KC, *PI));
327
328    return true;
329  }
330
331  // If V is a non-instruction value, or an instruction in a different block,
332  // then it can't be derived from a PHI.
333  Instruction *I = dyn_cast<Instruction>(V);
334  if (I == 0 || I->getParent() != BB) {
335
336    // Okay, if this is a live-in value, see if it has a known value at the end
337    // of any of our predecessors.
338    //
339    // FIXME: This should be an edge property, not a block end property.
340    /// TODO: Per PR2563, we could infer value range information about a
341    /// predecessor based on its terminator.
342    //
343    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
344    // "I" is a non-local compare-with-a-constant instruction.  This would be
345    // able to handle value inequalities better, for example if the compare is
346    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
347    // Perhaps getConstantOnEdge should be smart enough to do this?
348
349    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
350      BasicBlock *P = *PI;
351      // If the value is known by LazyValueInfo to be a constant in a
352      // predecessor, use that information to try to thread this block.
353      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
354      if (Constant *KC = getKnownConstant(PredCst, Preference))
355        Result.push_back(std::make_pair(KC, P));
356    }
357
358    return !Result.empty();
359  }
360
361  /// If I is a PHI node, then we know the incoming values for any constants.
362  if (PHINode *PN = dyn_cast<PHINode>(I)) {
363    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
364      Value *InVal = PN->getIncomingValue(i);
365      if (Constant *KC = getKnownConstant(InVal, Preference)) {
366        Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
367      } else {
368        Constant *CI = LVI->getConstantOnEdge(InVal,
369                                              PN->getIncomingBlock(i), BB);
370        if (Constant *KC = getKnownConstant(CI, Preference))
371          Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
372      }
373    }
374
375    return !Result.empty();
376  }
377
378  PredValueInfoTy LHSVals, RHSVals;
379
380  // Handle some boolean conditions.
381  if (I->getType()->getPrimitiveSizeInBits() == 1) {
382    assert(Preference == WantInteger && "One-bit non-integer type?");
383    // X | true -> true
384    // X & false -> false
385    if (I->getOpcode() == Instruction::Or ||
386        I->getOpcode() == Instruction::And) {
387      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
388                                      WantInteger);
389      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
390                                      WantInteger);
391
392      if (LHSVals.empty() && RHSVals.empty())
393        return false;
394
395      ConstantInt *InterestingVal;
396      if (I->getOpcode() == Instruction::Or)
397        InterestingVal = ConstantInt::getTrue(I->getContext());
398      else
399        InterestingVal = ConstantInt::getFalse(I->getContext());
400
401      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
402
403      // Scan for the sentinel.  If we find an undef, force it to the
404      // interesting value: x|undef -> true and x&undef -> false.
405      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
406        if (LHSVals[i].first == InterestingVal ||
407            isa<UndefValue>(LHSVals[i].first)) {
408          Result.push_back(LHSVals[i]);
409          Result.back().first = InterestingVal;
410          LHSKnownBBs.insert(LHSVals[i].second);
411        }
412      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
413        if (RHSVals[i].first == InterestingVal ||
414            isa<UndefValue>(RHSVals[i].first)) {
415          // If we already inferred a value for this block on the LHS, don't
416          // re-add it.
417          if (!LHSKnownBBs.count(RHSVals[i].second)) {
418            Result.push_back(RHSVals[i]);
419            Result.back().first = InterestingVal;
420          }
421        }
422
423      return !Result.empty();
424    }
425
426    // Handle the NOT form of XOR.
427    if (I->getOpcode() == Instruction::Xor &&
428        isa<ConstantInt>(I->getOperand(1)) &&
429        cast<ConstantInt>(I->getOperand(1))->isOne()) {
430      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
431                                      WantInteger);
432      if (Result.empty())
433        return false;
434
435      // Invert the known values.
436      for (unsigned i = 0, e = Result.size(); i != e; ++i)
437        Result[i].first = ConstantExpr::getNot(Result[i].first);
438
439      return true;
440    }
441
442  // Try to simplify some other binary operator values.
443  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
444    assert(Preference != WantBlockAddress
445            && "A binary operator creating a block address?");
446    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
447      PredValueInfoTy LHSVals;
448      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
449                                      WantInteger);
450
451      // Try to use constant folding to simplify the binary operator.
452      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
453        Constant *V = LHSVals[i].first;
454        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
455
456        if (Constant *KC = getKnownConstant(Folded, WantInteger))
457          Result.push_back(std::make_pair(KC, LHSVals[i].second));
458      }
459    }
460
461    return !Result.empty();
462  }
463
464  // Handle compare with phi operand, where the PHI is defined in this block.
465  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
466    assert(Preference == WantInteger && "Compares only produce integers");
467    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
468    if (PN && PN->getParent() == BB) {
469      // We can do this simplification if any comparisons fold to true or false.
470      // See if any do.
471      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
472        BasicBlock *PredBB = PN->getIncomingBlock(i);
473        Value *LHS = PN->getIncomingValue(i);
474        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
475
476        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
477        if (Res == 0) {
478          if (!isa<Constant>(RHS))
479            continue;
480
481          LazyValueInfo::Tristate
482            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
483                                           cast<Constant>(RHS), PredBB, BB);
484          if (ResT == LazyValueInfo::Unknown)
485            continue;
486          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
487        }
488
489        if (Constant *KC = getKnownConstant(Res, WantInteger))
490          Result.push_back(std::make_pair(KC, PredBB));
491      }
492
493      return !Result.empty();
494    }
495
496
497    // If comparing a live-in value against a constant, see if we know the
498    // live-in value on any predecessors.
499    if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
500      if (!isa<Instruction>(Cmp->getOperand(0)) ||
501          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
502        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
503
504        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
505          BasicBlock *P = *PI;
506          // If the value is known by LazyValueInfo to be a constant in a
507          // predecessor, use that information to try to thread this block.
508          LazyValueInfo::Tristate Res =
509            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
510                                    RHSCst, P, BB);
511          if (Res == LazyValueInfo::Unknown)
512            continue;
513
514          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
515          Result.push_back(std::make_pair(ResC, P));
516        }
517
518        return !Result.empty();
519      }
520
521      // Try to find a constant value for the LHS of a comparison,
522      // and evaluate it statically if we can.
523      if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
524        PredValueInfoTy LHSVals;
525        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
526                                        WantInteger);
527
528        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
529          Constant *V = LHSVals[i].first;
530          Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
531                                                      V, CmpConst);
532          if (Constant *KC = getKnownConstant(Folded, WantInteger))
533            Result.push_back(std::make_pair(KC, LHSVals[i].second));
534        }
535
536        return !Result.empty();
537      }
538    }
539  }
540
541  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
542    // Handle select instructions where at least one operand is a known constant
543    // and we can figure out the condition value for any predecessor block.
544    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
545    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
546    PredValueInfoTy Conds;
547    if ((TrueVal || FalseVal) &&
548        ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
549                                        WantInteger)) {
550      for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
551        Constant *Cond = Conds[i].first;
552
553        // Figure out what value to use for the condition.
554        bool KnownCond;
555        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
556          // A known boolean.
557          KnownCond = CI->isOne();
558        } else {
559          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
560          // Either operand will do, so be sure to pick the one that's a known
561          // constant.
562          // FIXME: Do this more cleverly if both values are known constants?
563          KnownCond = (TrueVal != 0);
564        }
565
566        // See if the select has a known constant value for this predecessor.
567        if (Constant *Val = KnownCond ? TrueVal : FalseVal)
568          Result.push_back(std::make_pair(Val, Conds[i].second));
569      }
570
571      return !Result.empty();
572    }
573  }
574
575  // If all else fails, see if LVI can figure out a constant value for us.
576  Constant *CI = LVI->getConstant(V, BB);
577  if (Constant *KC = getKnownConstant(CI, Preference)) {
578    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
579      Result.push_back(std::make_pair(KC, *PI));
580  }
581
582  return !Result.empty();
583}
584
585
586
587/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
588/// in an undefined jump, decide which block is best to revector to.
589///
590/// Since we can pick an arbitrary destination, we pick the successor with the
591/// fewest predecessors.  This should reduce the in-degree of the others.
592///
593static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
594  TerminatorInst *BBTerm = BB->getTerminator();
595  unsigned MinSucc = 0;
596  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
597  // Compute the successor with the minimum number of predecessors.
598  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
599  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
600    TestBB = BBTerm->getSuccessor(i);
601    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
602    if (NumPreds < MinNumPreds)
603      MinSucc = i;
604  }
605
606  return MinSucc;
607}
608
609/// ProcessBlock - If there are any predecessors whose control can be threaded
610/// through to a successor, transform them now.
611bool JumpThreading::ProcessBlock(BasicBlock *BB) {
612  // If the block is trivially dead, just return and let the caller nuke it.
613  // This simplifies other transformations.
614  if (pred_begin(BB) == pred_end(BB) &&
615      BB != &BB->getParent()->getEntryBlock())
616    return false;
617
618  // If this block has a single predecessor, and if that pred has a single
619  // successor, merge the blocks.  This encourages recursive jump threading
620  // because now the condition in this block can be threaded through
621  // predecessors of our predecessor block.
622  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
623    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
624        SinglePred != BB) {
625      // If SinglePred was a loop header, BB becomes one.
626      if (LoopHeaders.erase(SinglePred))
627        LoopHeaders.insert(BB);
628
629      // Remember if SinglePred was the entry block of the function.  If so, we
630      // will need to move BB back to the entry position.
631      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
632      LVI->eraseBlock(SinglePred);
633      MergeBasicBlockIntoOnlyPred(BB);
634
635      if (isEntry && BB != &BB->getParent()->getEntryBlock())
636        BB->moveBefore(&BB->getParent()->getEntryBlock());
637      return true;
638    }
639  }
640
641  // What kind of constant we're looking for.
642  ConstantPreference Preference = WantInteger;
643
644  // Look to see if the terminator is a conditional branch, switch or indirect
645  // branch, if not we can't thread it.
646  Value *Condition;
647  Instruction *Terminator = BB->getTerminator();
648  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
649    // Can't thread an unconditional jump.
650    if (BI->isUnconditional()) return false;
651    Condition = BI->getCondition();
652  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
653    Condition = SI->getCondition();
654  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
655    Condition = IB->getAddress()->stripPointerCasts();
656    Preference = WantBlockAddress;
657  } else {
658    return false; // Must be an invoke.
659  }
660
661  // If the terminator is branching on an undef, we can pick any of the
662  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
663  if (isa<UndefValue>(Condition)) {
664    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
665
666    // Fold the branch/switch.
667    TerminatorInst *BBTerm = BB->getTerminator();
668    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
669      if (i == BestSucc) continue;
670      BBTerm->getSuccessor(i)->removePredecessor(BB, true);
671    }
672
673    DEBUG(dbgs() << "  In block '" << BB->getName()
674          << "' folding undef terminator: " << *BBTerm << '\n');
675    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
676    BBTerm->eraseFromParent();
677    return true;
678  }
679
680  // If the terminator of this block is branching on a constant, simplify the
681  // terminator to an unconditional branch.  This can occur due to threading in
682  // other blocks.
683  if (getKnownConstant(Condition, Preference)) {
684    DEBUG(dbgs() << "  In block '" << BB->getName()
685          << "' folding terminator: " << *BB->getTerminator() << '\n');
686    ++NumFolds;
687    ConstantFoldTerminator(BB);
688    return true;
689  }
690
691  Instruction *CondInst = dyn_cast<Instruction>(Condition);
692
693  // All the rest of our checks depend on the condition being an instruction.
694  if (CondInst == 0) {
695    // FIXME: Unify this with code below.
696    if (ProcessThreadableEdges(Condition, BB, Preference))
697      return true;
698    return false;
699  }
700
701
702  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
703    // For a comparison where the LHS is outside this block, it's possible
704    // that we've branched on it before.  Used LVI to see if we can simplify
705    // the branch based on that.
706    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
707    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
708    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
709    if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
710        (!isa<Instruction>(CondCmp->getOperand(0)) ||
711         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
712      // For predecessor edge, determine if the comparison is true or false
713      // on that edge.  If they're all true or all false, we can simplify the
714      // branch.
715      // FIXME: We could handle mixed true/false by duplicating code.
716      LazyValueInfo::Tristate Baseline =
717        LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
718                                CondConst, *PI, BB);
719      if (Baseline != LazyValueInfo::Unknown) {
720        // Check that all remaining incoming values match the first one.
721        while (++PI != PE) {
722          LazyValueInfo::Tristate Ret =
723            LVI->getPredicateOnEdge(CondCmp->getPredicate(),
724                                    CondCmp->getOperand(0), CondConst, *PI, BB);
725          if (Ret != Baseline) break;
726        }
727
728        // If we terminated early, then one of the values didn't match.
729        if (PI == PE) {
730          unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
731          unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
732          CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
733          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
734          CondBr->eraseFromParent();
735          return true;
736        }
737      }
738    }
739  }
740
741  // Check for some cases that are worth simplifying.  Right now we want to look
742  // for loads that are used by a switch or by the condition for the branch.  If
743  // we see one, check to see if it's partially redundant.  If so, insert a PHI
744  // which can then be used to thread the values.
745  //
746  Value *SimplifyValue = CondInst;
747  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
748    if (isa<Constant>(CondCmp->getOperand(1)))
749      SimplifyValue = CondCmp->getOperand(0);
750
751  // TODO: There are other places where load PRE would be profitable, such as
752  // more complex comparisons.
753  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
754    if (SimplifyPartiallyRedundantLoad(LI))
755      return true;
756
757
758  // Handle a variety of cases where we are branching on something derived from
759  // a PHI node in the current block.  If we can prove that any predecessors
760  // compute a predictable value based on a PHI node, thread those predecessors.
761  //
762  if (ProcessThreadableEdges(CondInst, BB, Preference))
763    return true;
764
765  // If this is an otherwise-unfoldable branch on a phi node in the current
766  // block, see if we can simplify.
767  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
768    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
769      return ProcessBranchOnPHI(PN);
770
771
772  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
773  if (CondInst->getOpcode() == Instruction::Xor &&
774      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
775    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
776
777
778  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
779  // "(X == 4)", thread through this block.
780
781  return false;
782}
783
784
785/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
786/// load instruction, eliminate it by replacing it with a PHI node.  This is an
787/// important optimization that encourages jump threading, and needs to be run
788/// interlaced with other jump threading tasks.
789bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
790  // Don't hack volatile loads.
791  if (LI->isVolatile()) return false;
792
793  // If the load is defined in a block with exactly one predecessor, it can't be
794  // partially redundant.
795  BasicBlock *LoadBB = LI->getParent();
796  if (LoadBB->getSinglePredecessor())
797    return false;
798
799  Value *LoadedPtr = LI->getOperand(0);
800
801  // If the loaded operand is defined in the LoadBB, it can't be available.
802  // TODO: Could do simple PHI translation, that would be fun :)
803  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
804    if (PtrOp->getParent() == LoadBB)
805      return false;
806
807  // Scan a few instructions up from the load, to see if it is obviously live at
808  // the entry to its block.
809  BasicBlock::iterator BBIt = LI;
810
811  if (Value *AvailableVal =
812        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
813    // If the value if the load is locally available within the block, just use
814    // it.  This frequently occurs for reg2mem'd allocas.
815    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
816
817    // If the returned value is the load itself, replace with an undef. This can
818    // only happen in dead loops.
819    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
820    LI->replaceAllUsesWith(AvailableVal);
821    LI->eraseFromParent();
822    return true;
823  }
824
825  // Otherwise, if we scanned the whole block and got to the top of the block,
826  // we know the block is locally transparent to the load.  If not, something
827  // might clobber its value.
828  if (BBIt != LoadBB->begin())
829    return false;
830
831
832  SmallPtrSet<BasicBlock*, 8> PredsScanned;
833  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
834  AvailablePredsTy AvailablePreds;
835  BasicBlock *OneUnavailablePred = 0;
836
837  // If we got here, the loaded value is transparent through to the start of the
838  // block.  Check to see if it is available in any of the predecessor blocks.
839  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
840       PI != PE; ++PI) {
841    BasicBlock *PredBB = *PI;
842
843    // If we already scanned this predecessor, skip it.
844    if (!PredsScanned.insert(PredBB))
845      continue;
846
847    // Scan the predecessor to see if the value is available in the pred.
848    BBIt = PredBB->end();
849    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
850    if (!PredAvailable) {
851      OneUnavailablePred = PredBB;
852      continue;
853    }
854
855    // If so, this load is partially redundant.  Remember this info so that we
856    // can create a PHI node.
857    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
858  }
859
860  // If the loaded value isn't available in any predecessor, it isn't partially
861  // redundant.
862  if (AvailablePreds.empty()) return false;
863
864  // Okay, the loaded value is available in at least one (and maybe all!)
865  // predecessors.  If the value is unavailable in more than one unique
866  // predecessor, we want to insert a merge block for those common predecessors.
867  // This ensures that we only have to insert one reload, thus not increasing
868  // code size.
869  BasicBlock *UnavailablePred = 0;
870
871  // If there is exactly one predecessor where the value is unavailable, the
872  // already computed 'OneUnavailablePred' block is it.  If it ends in an
873  // unconditional branch, we know that it isn't a critical edge.
874  if (PredsScanned.size() == AvailablePreds.size()+1 &&
875      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
876    UnavailablePred = OneUnavailablePred;
877  } else if (PredsScanned.size() != AvailablePreds.size()) {
878    // Otherwise, we had multiple unavailable predecessors or we had a critical
879    // edge from the one.
880    SmallVector<BasicBlock*, 8> PredsToSplit;
881    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
882
883    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
884      AvailablePredSet.insert(AvailablePreds[i].first);
885
886    // Add all the unavailable predecessors to the PredsToSplit list.
887    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
888         PI != PE; ++PI) {
889      BasicBlock *P = *PI;
890      // If the predecessor is an indirect goto, we can't split the edge.
891      if (isa<IndirectBrInst>(P->getTerminator()))
892        return false;
893
894      if (!AvailablePredSet.count(P))
895        PredsToSplit.push_back(P);
896    }
897
898    // Split them out to their own block.
899    UnavailablePred =
900      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
901                             "thread-pre-split", this);
902  }
903
904  // If the value isn't available in all predecessors, then there will be
905  // exactly one where it isn't available.  Insert a load on that edge and add
906  // it to the AvailablePreds list.
907  if (UnavailablePred) {
908    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
909           "Can't handle critical edge here!");
910    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
911                                 LI->getAlignment(),
912                                 UnavailablePred->getTerminator());
913    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
914  }
915
916  // Now we know that each predecessor of this block has a value in
917  // AvailablePreds, sort them for efficient access as we're walking the preds.
918  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
919
920  // Create a PHI node at the start of the block for the PRE'd load value.
921  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
922  PN->takeName(LI);
923
924  // Insert new entries into the PHI for each predecessor.  A single block may
925  // have multiple entries here.
926  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
927       ++PI) {
928    BasicBlock *P = *PI;
929    AvailablePredsTy::iterator I =
930      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
931                       std::make_pair(P, (Value*)0));
932
933    assert(I != AvailablePreds.end() && I->first == P &&
934           "Didn't find entry for predecessor!");
935
936    PN->addIncoming(I->second, I->first);
937  }
938
939  //cerr << "PRE: " << *LI << *PN << "\n";
940
941  LI->replaceAllUsesWith(PN);
942  LI->eraseFromParent();
943
944  return true;
945}
946
947/// FindMostPopularDest - The specified list contains multiple possible
948/// threadable destinations.  Pick the one that occurs the most frequently in
949/// the list.
950static BasicBlock *
951FindMostPopularDest(BasicBlock *BB,
952                    const SmallVectorImpl<std::pair<BasicBlock*,
953                                  BasicBlock*> > &PredToDestList) {
954  assert(!PredToDestList.empty());
955
956  // Determine popularity.  If there are multiple possible destinations, we
957  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
958  // blocks with known and real destinations to threading undef.  We'll handle
959  // them later if interesting.
960  DenseMap<BasicBlock*, unsigned> DestPopularity;
961  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
962    if (PredToDestList[i].second)
963      DestPopularity[PredToDestList[i].second]++;
964
965  // Find the most popular dest.
966  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
967  BasicBlock *MostPopularDest = DPI->first;
968  unsigned Popularity = DPI->second;
969  SmallVector<BasicBlock*, 4> SamePopularity;
970
971  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
972    // If the popularity of this entry isn't higher than the popularity we've
973    // seen so far, ignore it.
974    if (DPI->second < Popularity)
975      ; // ignore.
976    else if (DPI->second == Popularity) {
977      // If it is the same as what we've seen so far, keep track of it.
978      SamePopularity.push_back(DPI->first);
979    } else {
980      // If it is more popular, remember it.
981      SamePopularity.clear();
982      MostPopularDest = DPI->first;
983      Popularity = DPI->second;
984    }
985  }
986
987  // Okay, now we know the most popular destination.  If there is more than one
988  // destination, we need to determine one.  This is arbitrary, but we need
989  // to make a deterministic decision.  Pick the first one that appears in the
990  // successor list.
991  if (!SamePopularity.empty()) {
992    SamePopularity.push_back(MostPopularDest);
993    TerminatorInst *TI = BB->getTerminator();
994    for (unsigned i = 0; ; ++i) {
995      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
996
997      if (std::find(SamePopularity.begin(), SamePopularity.end(),
998                    TI->getSuccessor(i)) == SamePopularity.end())
999        continue;
1000
1001      MostPopularDest = TI->getSuccessor(i);
1002      break;
1003    }
1004  }
1005
1006  // Okay, we have finally picked the most popular destination.
1007  return MostPopularDest;
1008}
1009
1010bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1011                                           ConstantPreference Preference) {
1012  // If threading this would thread across a loop header, don't even try to
1013  // thread the edge.
1014  if (LoopHeaders.count(BB))
1015    return false;
1016
1017  PredValueInfoTy PredValues;
1018  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
1019    return false;
1020
1021  assert(!PredValues.empty() &&
1022         "ComputeValueKnownInPredecessors returned true with no values");
1023
1024  DEBUG(dbgs() << "IN BB: " << *BB;
1025        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1026          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1027            << *PredValues[i].first
1028            << " for pred '" << PredValues[i].second->getName() << "'.\n";
1029        });
1030
1031  // Decide what we want to thread through.  Convert our list of known values to
1032  // a list of known destinations for each pred.  This also discards duplicate
1033  // predecessors and keeps track of the undefined inputs (which are represented
1034  // as a null dest in the PredToDestList).
1035  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1036  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1037
1038  BasicBlock *OnlyDest = 0;
1039  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1040
1041  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1042    BasicBlock *Pred = PredValues[i].second;
1043    if (!SeenPreds.insert(Pred))
1044      continue;  // Duplicate predecessor entry.
1045
1046    // If the predecessor ends with an indirect goto, we can't change its
1047    // destination.
1048    if (isa<IndirectBrInst>(Pred->getTerminator()))
1049      continue;
1050
1051    Constant *Val = PredValues[i].first;
1052
1053    BasicBlock *DestBB;
1054    if (isa<UndefValue>(Val))
1055      DestBB = 0;
1056    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1057      DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1058    else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1059      DestBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(Val)));
1060    else {
1061      assert(isa<IndirectBrInst>(BB->getTerminator())
1062              && "Unexpected terminator");
1063      DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1064    }
1065
1066    // If we have exactly one destination, remember it for efficiency below.
1067    if (PredToDestList.empty())
1068      OnlyDest = DestBB;
1069    else if (OnlyDest != DestBB)
1070      OnlyDest = MultipleDestSentinel;
1071
1072    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1073  }
1074
1075  // If all edges were unthreadable, we fail.
1076  if (PredToDestList.empty())
1077    return false;
1078
1079  // Determine which is the most common successor.  If we have many inputs and
1080  // this block is a switch, we want to start by threading the batch that goes
1081  // to the most popular destination first.  If we only know about one
1082  // threadable destination (the common case) we can avoid this.
1083  BasicBlock *MostPopularDest = OnlyDest;
1084
1085  if (MostPopularDest == MultipleDestSentinel)
1086    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1087
1088  // Now that we know what the most popular destination is, factor all
1089  // predecessors that will jump to it into a single predecessor.
1090  SmallVector<BasicBlock*, 16> PredsToFactor;
1091  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1092    if (PredToDestList[i].second == MostPopularDest) {
1093      BasicBlock *Pred = PredToDestList[i].first;
1094
1095      // This predecessor may be a switch or something else that has multiple
1096      // edges to the block.  Factor each of these edges by listing them
1097      // according to # occurrences in PredsToFactor.
1098      TerminatorInst *PredTI = Pred->getTerminator();
1099      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1100        if (PredTI->getSuccessor(i) == BB)
1101          PredsToFactor.push_back(Pred);
1102    }
1103
1104  // If the threadable edges are branching on an undefined value, we get to pick
1105  // the destination that these predecessors should get to.
1106  if (MostPopularDest == 0)
1107    MostPopularDest = BB->getTerminator()->
1108                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1109
1110  // Ok, try to thread it!
1111  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1112}
1113
1114/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1115/// a PHI node in the current block.  See if there are any simplifications we
1116/// can do based on inputs to the phi node.
1117///
1118bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1119  BasicBlock *BB = PN->getParent();
1120
1121  // TODO: We could make use of this to do it once for blocks with common PHI
1122  // values.
1123  SmallVector<BasicBlock*, 1> PredBBs;
1124  PredBBs.resize(1);
1125
1126  // If any of the predecessor blocks end in an unconditional branch, we can
1127  // *duplicate* the conditional branch into that block in order to further
1128  // encourage jump threading and to eliminate cases where we have branch on a
1129  // phi of an icmp (branch on icmp is much better).
1130  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1131    BasicBlock *PredBB = PN->getIncomingBlock(i);
1132    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1133      if (PredBr->isUnconditional()) {
1134        PredBBs[0] = PredBB;
1135        // Try to duplicate BB into PredBB.
1136        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1137          return true;
1138      }
1139  }
1140
1141  return false;
1142}
1143
1144/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1145/// a xor instruction in the current block.  See if there are any
1146/// simplifications we can do based on inputs to the xor.
1147///
1148bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1149  BasicBlock *BB = BO->getParent();
1150
1151  // If either the LHS or RHS of the xor is a constant, don't do this
1152  // optimization.
1153  if (isa<ConstantInt>(BO->getOperand(0)) ||
1154      isa<ConstantInt>(BO->getOperand(1)))
1155    return false;
1156
1157  // If the first instruction in BB isn't a phi, we won't be able to infer
1158  // anything special about any particular predecessor.
1159  if (!isa<PHINode>(BB->front()))
1160    return false;
1161
1162  // If we have a xor as the branch input to this block, and we know that the
1163  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1164  // the condition into the predecessor and fix that value to true, saving some
1165  // logical ops on that path and encouraging other paths to simplify.
1166  //
1167  // This copies something like this:
1168  //
1169  //  BB:
1170  //    %X = phi i1 [1],  [%X']
1171  //    %Y = icmp eq i32 %A, %B
1172  //    %Z = xor i1 %X, %Y
1173  //    br i1 %Z, ...
1174  //
1175  // Into:
1176  //  BB':
1177  //    %Y = icmp ne i32 %A, %B
1178  //    br i1 %Z, ...
1179
1180  PredValueInfoTy XorOpValues;
1181  bool isLHS = true;
1182  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1183                                       WantInteger)) {
1184    assert(XorOpValues.empty());
1185    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1186                                         WantInteger))
1187      return false;
1188    isLHS = false;
1189  }
1190
1191  assert(!XorOpValues.empty() &&
1192         "ComputeValueKnownInPredecessors returned true with no values");
1193
1194  // Scan the information to see which is most popular: true or false.  The
1195  // predecessors can be of the set true, false, or undef.
1196  unsigned NumTrue = 0, NumFalse = 0;
1197  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1198    if (isa<UndefValue>(XorOpValues[i].first))
1199      // Ignore undefs for the count.
1200      continue;
1201    if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
1202      ++NumFalse;
1203    else
1204      ++NumTrue;
1205  }
1206
1207  // Determine which value to split on, true, false, or undef if neither.
1208  ConstantInt *SplitVal = 0;
1209  if (NumTrue > NumFalse)
1210    SplitVal = ConstantInt::getTrue(BB->getContext());
1211  else if (NumTrue != 0 || NumFalse != 0)
1212    SplitVal = ConstantInt::getFalse(BB->getContext());
1213
1214  // Collect all of the blocks that this can be folded into so that we can
1215  // factor this once and clone it once.
1216  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1217  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1218    if (XorOpValues[i].first != SplitVal &&
1219        !isa<UndefValue>(XorOpValues[i].first))
1220      continue;
1221
1222    BlocksToFoldInto.push_back(XorOpValues[i].second);
1223  }
1224
1225  // If we inferred a value for all of the predecessors, then duplication won't
1226  // help us.  However, we can just replace the LHS or RHS with the constant.
1227  if (BlocksToFoldInto.size() ==
1228      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1229    if (SplitVal == 0) {
1230      // If all preds provide undef, just nuke the xor, because it is undef too.
1231      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1232      BO->eraseFromParent();
1233    } else if (SplitVal->isZero()) {
1234      // If all preds provide 0, replace the xor with the other input.
1235      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1236      BO->eraseFromParent();
1237    } else {
1238      // If all preds provide 1, set the computed value to 1.
1239      BO->setOperand(!isLHS, SplitVal);
1240    }
1241
1242    return true;
1243  }
1244
1245  // Try to duplicate BB into PredBB.
1246  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1247}
1248
1249
1250/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1251/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1252/// NewPred using the entries from OldPred (suitably mapped).
1253static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1254                                            BasicBlock *OldPred,
1255                                            BasicBlock *NewPred,
1256                                     DenseMap<Instruction*, Value*> &ValueMap) {
1257  for (BasicBlock::iterator PNI = PHIBB->begin();
1258       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1259    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1260    // DestBlock.
1261    Value *IV = PN->getIncomingValueForBlock(OldPred);
1262
1263    // Remap the value if necessary.
1264    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1265      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1266      if (I != ValueMap.end())
1267        IV = I->second;
1268    }
1269
1270    PN->addIncoming(IV, NewPred);
1271  }
1272}
1273
1274/// ThreadEdge - We have decided that it is safe and profitable to factor the
1275/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1276/// across BB.  Transform the IR to reflect this change.
1277bool JumpThreading::ThreadEdge(BasicBlock *BB,
1278                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1279                               BasicBlock *SuccBB) {
1280  // If threading to the same block as we come from, we would infinite loop.
1281  if (SuccBB == BB) {
1282    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1283          << "' - would thread to self!\n");
1284    return false;
1285  }
1286
1287  // If threading this would thread across a loop header, don't thread the edge.
1288  // See the comments above FindLoopHeaders for justifications and caveats.
1289  if (LoopHeaders.count(BB)) {
1290    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1291          << "' to dest BB '" << SuccBB->getName()
1292          << "' - it might create an irreducible loop!\n");
1293    return false;
1294  }
1295
1296  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1297  if (JumpThreadCost > Threshold) {
1298    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1299          << "' - Cost is too high: " << JumpThreadCost << "\n");
1300    return false;
1301  }
1302
1303  // And finally, do it!  Start by factoring the predecessors is needed.
1304  BasicBlock *PredBB;
1305  if (PredBBs.size() == 1)
1306    PredBB = PredBBs[0];
1307  else {
1308    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1309          << " common predecessors.\n");
1310    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1311                                    ".thr_comm", this);
1312  }
1313
1314  // And finally, do it!
1315  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1316        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1317        << ", across block:\n    "
1318        << *BB << "\n");
1319
1320  LVI->threadEdge(PredBB, BB, SuccBB);
1321
1322  // We are going to have to map operands from the original BB block to the new
1323  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1324  // account for entry from PredBB.
1325  DenseMap<Instruction*, Value*> ValueMapping;
1326
1327  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1328                                         BB->getName()+".thread",
1329                                         BB->getParent(), BB);
1330  NewBB->moveAfter(PredBB);
1331
1332  BasicBlock::iterator BI = BB->begin();
1333  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1334    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1335
1336  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1337  // mapping and using it to remap operands in the cloned instructions.
1338  for (; !isa<TerminatorInst>(BI); ++BI) {
1339    Instruction *New = BI->clone();
1340    New->setName(BI->getName());
1341    NewBB->getInstList().push_back(New);
1342    ValueMapping[BI] = New;
1343
1344    // Remap operands to patch up intra-block references.
1345    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1346      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1347        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1348        if (I != ValueMapping.end())
1349          New->setOperand(i, I->second);
1350      }
1351  }
1352
1353  // We didn't copy the terminator from BB over to NewBB, because there is now
1354  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1355  BranchInst::Create(SuccBB, NewBB);
1356
1357  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1358  // PHI nodes for NewBB now.
1359  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1360
1361  // If there were values defined in BB that are used outside the block, then we
1362  // now have to update all uses of the value to use either the original value,
1363  // the cloned value, or some PHI derived value.  This can require arbitrary
1364  // PHI insertion, of which we are prepared to do, clean these up now.
1365  SSAUpdater SSAUpdate;
1366  SmallVector<Use*, 16> UsesToRename;
1367  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1368    // Scan all uses of this instruction to see if it is used outside of its
1369    // block, and if so, record them in UsesToRename.
1370    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1371         ++UI) {
1372      Instruction *User = cast<Instruction>(*UI);
1373      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1374        if (UserPN->getIncomingBlock(UI) == BB)
1375          continue;
1376      } else if (User->getParent() == BB)
1377        continue;
1378
1379      UsesToRename.push_back(&UI.getUse());
1380    }
1381
1382    // If there are no uses outside the block, we're done with this instruction.
1383    if (UsesToRename.empty())
1384      continue;
1385
1386    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1387
1388    // We found a use of I outside of BB.  Rename all uses of I that are outside
1389    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1390    // with the two values we know.
1391    SSAUpdate.Initialize(I->getType(), I->getName());
1392    SSAUpdate.AddAvailableValue(BB, I);
1393    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1394
1395    while (!UsesToRename.empty())
1396      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1397    DEBUG(dbgs() << "\n");
1398  }
1399
1400
1401  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1402  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1403  // us to simplify any PHI nodes in BB.
1404  TerminatorInst *PredTerm = PredBB->getTerminator();
1405  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1406    if (PredTerm->getSuccessor(i) == BB) {
1407      BB->removePredecessor(PredBB, true);
1408      PredTerm->setSuccessor(i, NewBB);
1409    }
1410
1411  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1412  // over the new instructions and zap any that are constants or dead.  This
1413  // frequently happens because of phi translation.
1414  SimplifyInstructionsInBlock(NewBB, TD);
1415
1416  // Threaded an edge!
1417  ++NumThreads;
1418  return true;
1419}
1420
1421/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1422/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1423/// If we can duplicate the contents of BB up into PredBB do so now, this
1424/// improves the odds that the branch will be on an analyzable instruction like
1425/// a compare.
1426bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1427                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1428  assert(!PredBBs.empty() && "Can't handle an empty set");
1429
1430  // If BB is a loop header, then duplicating this block outside the loop would
1431  // cause us to transform this into an irreducible loop, don't do this.
1432  // See the comments above FindLoopHeaders for justifications and caveats.
1433  if (LoopHeaders.count(BB)) {
1434    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1435          << "' into predecessor block '" << PredBBs[0]->getName()
1436          << "' - it might create an irreducible loop!\n");
1437    return false;
1438  }
1439
1440  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1441  if (DuplicationCost > Threshold) {
1442    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1443          << "' - Cost is too high: " << DuplicationCost << "\n");
1444    return false;
1445  }
1446
1447  // And finally, do it!  Start by factoring the predecessors is needed.
1448  BasicBlock *PredBB;
1449  if (PredBBs.size() == 1)
1450    PredBB = PredBBs[0];
1451  else {
1452    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1453          << " common predecessors.\n");
1454    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1455                                    ".thr_comm", this);
1456  }
1457
1458  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1459  // of PredBB.
1460  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1461        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1462        << DuplicationCost << " block is:" << *BB << "\n");
1463
1464  // Unless PredBB ends with an unconditional branch, split the edge so that we
1465  // can just clone the bits from BB into the end of the new PredBB.
1466  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1467
1468  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1469    PredBB = SplitEdge(PredBB, BB, this);
1470    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1471  }
1472
1473  // We are going to have to map operands from the original BB block into the
1474  // PredBB block.  Evaluate PHI nodes in BB.
1475  DenseMap<Instruction*, Value*> ValueMapping;
1476
1477  BasicBlock::iterator BI = BB->begin();
1478  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1479    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1480
1481  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1482  // mapping and using it to remap operands in the cloned instructions.
1483  for (; BI != BB->end(); ++BI) {
1484    Instruction *New = BI->clone();
1485
1486    // Remap operands to patch up intra-block references.
1487    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1488      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1489        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1490        if (I != ValueMapping.end())
1491          New->setOperand(i, I->second);
1492      }
1493
1494    // If this instruction can be simplified after the operands are updated,
1495    // just use the simplified value instead.  This frequently happens due to
1496    // phi translation.
1497    if (Value *IV = SimplifyInstruction(New, TD)) {
1498      delete New;
1499      ValueMapping[BI] = IV;
1500    } else {
1501      // Otherwise, insert the new instruction into the block.
1502      New->setName(BI->getName());
1503      PredBB->getInstList().insert(OldPredBranch, New);
1504      ValueMapping[BI] = New;
1505    }
1506  }
1507
1508  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1509  // add entries to the PHI nodes for branch from PredBB now.
1510  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1511  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1512                                  ValueMapping);
1513  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1514                                  ValueMapping);
1515
1516  // If there were values defined in BB that are used outside the block, then we
1517  // now have to update all uses of the value to use either the original value,
1518  // the cloned value, or some PHI derived value.  This can require arbitrary
1519  // PHI insertion, of which we are prepared to do, clean these up now.
1520  SSAUpdater SSAUpdate;
1521  SmallVector<Use*, 16> UsesToRename;
1522  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1523    // Scan all uses of this instruction to see if it is used outside of its
1524    // block, and if so, record them in UsesToRename.
1525    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1526         ++UI) {
1527      Instruction *User = cast<Instruction>(*UI);
1528      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1529        if (UserPN->getIncomingBlock(UI) == BB)
1530          continue;
1531      } else if (User->getParent() == BB)
1532        continue;
1533
1534      UsesToRename.push_back(&UI.getUse());
1535    }
1536
1537    // If there are no uses outside the block, we're done with this instruction.
1538    if (UsesToRename.empty())
1539      continue;
1540
1541    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1542
1543    // We found a use of I outside of BB.  Rename all uses of I that are outside
1544    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1545    // with the two values we know.
1546    SSAUpdate.Initialize(I->getType(), I->getName());
1547    SSAUpdate.AddAvailableValue(BB, I);
1548    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1549
1550    while (!UsesToRename.empty())
1551      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1552    DEBUG(dbgs() << "\n");
1553  }
1554
1555  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1556  // that we nuked.
1557  BB->removePredecessor(PredBB, true);
1558
1559  // Remove the unconditional branch at the end of the PredBB block.
1560  OldPredBranch->eraseFromParent();
1561
1562  ++NumDupes;
1563  return true;
1564}
1565
1566
1567