JumpThreading.cpp revision 1e35610f20ba04daf3aa3048219914421b9931af
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Analysis/LazyValueInfo.h"
22#include "llvm/Analysis/Loads.h"
23#include "llvm/Transforms/Utils/BasicBlockUtils.h"
24#include "llvm/Transforms/Utils/Local.h"
25#include "llvm/Transforms/Utils/SSAUpdater.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ValueHandle.h"
35#include "llvm/Support/raw_ostream.h"
36using namespace llvm;
37
38STATISTIC(NumThreads, "Number of jumps threaded");
39STATISTIC(NumFolds,   "Number of terminators folded");
40STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
41
42static cl::opt<unsigned>
43Threshold("jump-threading-threshold",
44          cl::desc("Max block size to duplicate for jump threading"),
45          cl::init(6), cl::Hidden);
46
47// Turn on use of LazyValueInfo.
48static cl::opt<bool>
49EnableLVI("enable-jump-threading-lvi",
50          cl::desc("Use LVI for jump threading"),
51          cl::init(true),
52          cl::ReallyHidden);
53
54
55
56namespace {
57  /// This pass performs 'jump threading', which looks at blocks that have
58  /// multiple predecessors and multiple successors.  If one or more of the
59  /// predecessors of the block can be proven to always jump to one of the
60  /// successors, we forward the edge from the predecessor to the successor by
61  /// duplicating the contents of this block.
62  ///
63  /// An example of when this can occur is code like this:
64  ///
65  ///   if () { ...
66  ///     X = 4;
67  ///   }
68  ///   if (X < 3) {
69  ///
70  /// In this case, the unconditional branch at the end of the first if can be
71  /// revectored to the false side of the second if.
72  ///
73  class JumpThreading : public FunctionPass {
74    TargetData *TD;
75    LazyValueInfo *LVI;
76#ifdef NDEBUG
77    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
78#else
79    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
80#endif
81  public:
82    static char ID; // Pass identification
83    JumpThreading() : FunctionPass(ID) {}
84
85    bool runOnFunction(Function &F);
86
87    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
88      if (EnableLVI)
89        AU.addRequired<LazyValueInfo>();
90      AU.addPreserved<LazyValueInfo>();
91    }
92
93    void FindLoopHeaders(Function &F);
94    bool ProcessBlock(BasicBlock *BB);
95    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
96                    BasicBlock *SuccBB);
97    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
98                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
99
100    typedef SmallVectorImpl<std::pair<ConstantInt*,
101                                      BasicBlock*> > PredValueInfo;
102
103    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
104                                         PredValueInfo &Result);
105    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
106
107
108    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
109    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
110
111    bool ProcessBranchOnPHI(PHINode *PN);
112    bool ProcessBranchOnXOR(BinaryOperator *BO);
113
114    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
115  };
116}
117
118char JumpThreading::ID = 0;
119INITIALIZE_PASS(JumpThreading, "jump-threading",
120                "Jump Threading", false, false);
121
122// Public interface to the Jump Threading pass
123FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
124
125/// runOnFunction - Top level algorithm.
126///
127bool JumpThreading::runOnFunction(Function &F) {
128  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
129  TD = getAnalysisIfAvailable<TargetData>();
130  LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
131
132  FindLoopHeaders(F);
133
134  bool Changed, EverChanged = false;
135  do {
136    Changed = false;
137    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
138      BasicBlock *BB = I;
139      // Thread all of the branches we can over this block.
140      while (ProcessBlock(BB))
141        Changed = true;
142
143      ++I;
144
145      // If the block is trivially dead, zap it.  This eliminates the successor
146      // edges which simplifies the CFG.
147      if (pred_begin(BB) == pred_end(BB) &&
148          BB != &BB->getParent()->getEntryBlock()) {
149        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
150              << "' with terminator: " << *BB->getTerminator() << '\n');
151        LoopHeaders.erase(BB);
152        if (LVI) LVI->eraseBlock(BB);
153        DeleteDeadBlock(BB);
154        Changed = true;
155      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
156        // Can't thread an unconditional jump, but if the block is "almost
157        // empty", we can replace uses of it with uses of the successor and make
158        // this dead.
159        if (BI->isUnconditional() &&
160            BB != &BB->getParent()->getEntryBlock()) {
161          BasicBlock::iterator BBI = BB->getFirstNonPHI();
162          // Ignore dbg intrinsics.
163          while (isa<DbgInfoIntrinsic>(BBI))
164            ++BBI;
165          // If the terminator is the only non-phi instruction, try to nuke it.
166          if (BBI->isTerminator()) {
167            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
168            // block, we have to make sure it isn't in the LoopHeaders set.  We
169            // reinsert afterward if needed.
170            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
171            BasicBlock *Succ = BI->getSuccessor(0);
172
173            // FIXME: It is always conservatively correct to drop the info
174            // for a block even if it doesn't get erased.  This isn't totally
175            // awesome, but it allows us to use AssertingVH to prevent nasty
176            // dangling pointer issues within LazyValueInfo.
177            if (LVI) LVI->eraseBlock(BB);
178            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
179              Changed = true;
180              // If we deleted BB and BB was the header of a loop, then the
181              // successor is now the header of the loop.
182              BB = Succ;
183            }
184
185            if (ErasedFromLoopHeaders)
186              LoopHeaders.insert(BB);
187          }
188        }
189      }
190    }
191    EverChanged |= Changed;
192  } while (Changed);
193
194  LoopHeaders.clear();
195  return EverChanged;
196}
197
198/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
199/// thread across it.
200static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
201  /// Ignore PHI nodes, these will be flattened when duplication happens.
202  BasicBlock::const_iterator I = BB->getFirstNonPHI();
203
204  // FIXME: THREADING will delete values that are just used to compute the
205  // branch, so they shouldn't count against the duplication cost.
206
207
208  // Sum up the cost of each instruction until we get to the terminator.  Don't
209  // include the terminator because the copy won't include it.
210  unsigned Size = 0;
211  for (; !isa<TerminatorInst>(I); ++I) {
212    // Debugger intrinsics don't incur code size.
213    if (isa<DbgInfoIntrinsic>(I)) continue;
214
215    // If this is a pointer->pointer bitcast, it is free.
216    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
217      continue;
218
219    // All other instructions count for at least one unit.
220    ++Size;
221
222    // Calls are more expensive.  If they are non-intrinsic calls, we model them
223    // as having cost of 4.  If they are a non-vector intrinsic, we model them
224    // as having cost of 2 total, and if they are a vector intrinsic, we model
225    // them as having cost 1.
226    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
227      if (!isa<IntrinsicInst>(CI))
228        Size += 3;
229      else if (!CI->getType()->isVectorTy())
230        Size += 1;
231    }
232  }
233
234  // Threading through a switch statement is particularly profitable.  If this
235  // block ends in a switch, decrease its cost to make it more likely to happen.
236  if (isa<SwitchInst>(I))
237    Size = Size > 6 ? Size-6 : 0;
238
239  return Size;
240}
241
242/// FindLoopHeaders - We do not want jump threading to turn proper loop
243/// structures into irreducible loops.  Doing this breaks up the loop nesting
244/// hierarchy and pessimizes later transformations.  To prevent this from
245/// happening, we first have to find the loop headers.  Here we approximate this
246/// by finding targets of backedges in the CFG.
247///
248/// Note that there definitely are cases when we want to allow threading of
249/// edges across a loop header.  For example, threading a jump from outside the
250/// loop (the preheader) to an exit block of the loop is definitely profitable.
251/// It is also almost always profitable to thread backedges from within the loop
252/// to exit blocks, and is often profitable to thread backedges to other blocks
253/// within the loop (forming a nested loop).  This simple analysis is not rich
254/// enough to track all of these properties and keep it up-to-date as the CFG
255/// mutates, so we don't allow any of these transformations.
256///
257void JumpThreading::FindLoopHeaders(Function &F) {
258  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
259  FindFunctionBackedges(F, Edges);
260
261  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
262    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
263}
264
265/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
266/// if we can infer that the value is a known ConstantInt in any of our
267/// predecessors.  If so, return the known list of value and pred BB in the
268/// result vector.  If a value is known to be undef, it is returned as null.
269///
270/// This returns true if there were any known values.
271///
272bool JumpThreading::
273ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
274  // If V is a constantint, then it is known in all predecessors.
275  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
276    ConstantInt *CI = dyn_cast<ConstantInt>(V);
277
278    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
279      Result.push_back(std::make_pair(CI, *PI));
280    return true;
281  }
282
283  // If V is a non-instruction value, or an instruction in a different block,
284  // then it can't be derived from a PHI.
285  Instruction *I = dyn_cast<Instruction>(V);
286  if (I == 0 || I->getParent() != BB) {
287
288    // Okay, if this is a live-in value, see if it has a known value at the end
289    // of any of our predecessors.
290    //
291    // FIXME: This should be an edge property, not a block end property.
292    /// TODO: Per PR2563, we could infer value range information about a
293    /// predecessor based on its terminator.
294    //
295    if (LVI) {
296      // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
297      // "I" is a non-local compare-with-a-constant instruction.  This would be
298      // able to handle value inequalities better, for example if the compare is
299      // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
300      // Perhaps getConstantOnEdge should be smart enough to do this?
301
302      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
303        BasicBlock *P = *PI;
304        // If the value is known by LazyValueInfo to be a constant in a
305        // predecessor, use that information to try to thread this block.
306        Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
307        if (PredCst == 0 ||
308            (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
309          continue;
310
311        Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
312      }
313
314      return !Result.empty();
315    }
316
317    return false;
318  }
319
320  /// If I is a PHI node, then we know the incoming values for any constants.
321  if (PHINode *PN = dyn_cast<PHINode>(I)) {
322    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
323      Value *InVal = PN->getIncomingValue(i);
324      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
325        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
326        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
327      } else if (LVI) {
328        Constant *CI = LVI->getConstantOnEdge(InVal,
329                                              PN->getIncomingBlock(i), BB);
330        // LVI returns null is no value could be determined.
331        if (!CI) continue;
332        ConstantInt *CInt = dyn_cast<ConstantInt>(CI);
333        Result.push_back(std::make_pair(CInt, PN->getIncomingBlock(i)));
334      }
335    }
336    return !Result.empty();
337  }
338
339  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
340
341  // Handle some boolean conditions.
342  if (I->getType()->getPrimitiveSizeInBits() == 1) {
343    // X | true -> true
344    // X & false -> false
345    if (I->getOpcode() == Instruction::Or ||
346        I->getOpcode() == Instruction::And) {
347      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
348      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
349
350      if (LHSVals.empty() && RHSVals.empty())
351        return false;
352
353      ConstantInt *InterestingVal;
354      if (I->getOpcode() == Instruction::Or)
355        InterestingVal = ConstantInt::getTrue(I->getContext());
356      else
357        InterestingVal = ConstantInt::getFalse(I->getContext());
358
359      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
360
361      // Scan for the sentinel.  If we find an undef, force it to the
362      // interesting value: x|undef -> true and x&undef -> false.
363      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
364        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
365          Result.push_back(LHSVals[i]);
366          Result.back().first = InterestingVal;
367          LHSKnownBBs.insert(LHSVals[i].second);
368        }
369      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
370        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
371          // If we already inferred a value for this block on the LHS, don't
372          // re-add it.
373          if (!LHSKnownBBs.count(RHSVals[i].second)) {
374            Result.push_back(RHSVals[i]);
375            Result.back().first = InterestingVal;
376          }
377        }
378      return !Result.empty();
379    }
380
381    // Handle the NOT form of XOR.
382    if (I->getOpcode() == Instruction::Xor &&
383        isa<ConstantInt>(I->getOperand(1)) &&
384        cast<ConstantInt>(I->getOperand(1))->isOne()) {
385      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
386      if (Result.empty())
387        return false;
388
389      // Invert the known values.
390      for (unsigned i = 0, e = Result.size(); i != e; ++i)
391        if (Result[i].first)
392          Result[i].first =
393            cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
394      return true;
395    }
396
397  // Try to simplify some other binary operator values.
398  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
399    // AND or OR of a value with itself is that value.
400    ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1));
401    if (CI && (BO->getOpcode() == Instruction::And ||
402        BO->getOpcode() == Instruction::Or)) {
403      SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
404      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals);
405      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
406        if (LHSVals[i].first == 0)
407          Result.push_back(std::make_pair((ConstantInt*)0, LHSVals[i].second));
408        else if (LHSVals[i].first == CI)
409          Result.push_back(std::make_pair(CI, LHSVals[i].second));
410
411      return !Result.empty();
412    }
413  }
414
415  // Handle compare with phi operand, where the PHI is defined in this block.
416  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
417    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
418    if (PN && PN->getParent() == BB) {
419      // We can do this simplification if any comparisons fold to true or false.
420      // See if any do.
421      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
422        BasicBlock *PredBB = PN->getIncomingBlock(i);
423        Value *LHS = PN->getIncomingValue(i);
424        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
425
426        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
427        if (Res == 0) {
428          if (!LVI || !isa<Constant>(RHS))
429            continue;
430
431          LazyValueInfo::Tristate
432            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
433                                           cast<Constant>(RHS), PredBB, BB);
434          if (ResT == LazyValueInfo::Unknown)
435            continue;
436          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
437        }
438
439        if (isa<UndefValue>(Res))
440          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
441        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
442          Result.push_back(std::make_pair(CI, PredBB));
443      }
444
445      return !Result.empty();
446    }
447
448
449    // If comparing a live-in value against a constant, see if we know the
450    // live-in value on any predecessors.
451    if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
452        Cmp->getType()->isIntegerTy()) {
453      if (!isa<Instruction>(Cmp->getOperand(0)) ||
454          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
455        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
456
457        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
458          BasicBlock *P = *PI;
459          // If the value is known by LazyValueInfo to be a constant in a
460          // predecessor, use that information to try to thread this block.
461          LazyValueInfo::Tristate Res =
462            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
463                                    RHSCst, P, BB);
464          if (Res == LazyValueInfo::Unknown)
465            continue;
466
467          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
468          Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P));
469        }
470
471        return !Result.empty();
472      }
473
474      // Try to find a constant value for the LHS of an equality comparison,
475      // and evaluate it statically if we can.
476      if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
477        SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
478        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
479
480        ConstantInt *True = ConstantInt::getTrue(I->getContext());
481        ConstantInt *False = ConstantInt::getFalse(I->getContext());
482
483        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
484          if (LHSVals[i].first == 0)
485            Result.push_back(std::make_pair((ConstantInt*)0,
486                                            LHSVals[i].second));
487          else if (ConstantFoldCompareInstOperands(Cmp->getPredicate(),
488                                              LHSVals[i].first,
489                                              CmpConst))
490            Result.push_back(std::make_pair(True, LHSVals[i].second));
491          else
492            Result.push_back(std::make_pair(False, LHSVals[i].second));
493        }
494
495        return !Result.empty();
496      }
497    }
498  }
499
500  if (LVI) {
501    // If all else fails, see if LVI can figure out a constant value for us.
502    Constant *CI = LVI->getConstant(V, BB);
503    ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI);
504    if (CInt) {
505      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
506        Result.push_back(std::make_pair(CInt, *PI));
507    }
508
509    return !Result.empty();
510  }
511
512  return false;
513}
514
515
516
517/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
518/// in an undefined jump, decide which block is best to revector to.
519///
520/// Since we can pick an arbitrary destination, we pick the successor with the
521/// fewest predecessors.  This should reduce the in-degree of the others.
522///
523static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
524  TerminatorInst *BBTerm = BB->getTerminator();
525  unsigned MinSucc = 0;
526  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
527  // Compute the successor with the minimum number of predecessors.
528  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
529  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
530    TestBB = BBTerm->getSuccessor(i);
531    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
532    if (NumPreds < MinNumPreds)
533      MinSucc = i;
534  }
535
536  return MinSucc;
537}
538
539/// ProcessBlock - If there are any predecessors whose control can be threaded
540/// through to a successor, transform them now.
541bool JumpThreading::ProcessBlock(BasicBlock *BB) {
542  // If the block is trivially dead, just return and let the caller nuke it.
543  // This simplifies other transformations.
544  if (pred_begin(BB) == pred_end(BB) &&
545      BB != &BB->getParent()->getEntryBlock())
546    return false;
547
548  // If this block has a single predecessor, and if that pred has a single
549  // successor, merge the blocks.  This encourages recursive jump threading
550  // because now the condition in this block can be threaded through
551  // predecessors of our predecessor block.
552  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
553    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
554        SinglePred != BB) {
555      // If SinglePred was a loop header, BB becomes one.
556      if (LoopHeaders.erase(SinglePred))
557        LoopHeaders.insert(BB);
558
559      // Remember if SinglePred was the entry block of the function.  If so, we
560      // will need to move BB back to the entry position.
561      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
562      if (LVI) LVI->eraseBlock(SinglePred);
563      MergeBasicBlockIntoOnlyPred(BB);
564
565      if (isEntry && BB != &BB->getParent()->getEntryBlock())
566        BB->moveBefore(&BB->getParent()->getEntryBlock());
567      return true;
568    }
569  }
570
571  // Look to see if the terminator is a branch of switch, if not we can't thread
572  // it.
573  Value *Condition;
574  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
575    // Can't thread an unconditional jump.
576    if (BI->isUnconditional()) return false;
577    Condition = BI->getCondition();
578  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
579    Condition = SI->getCondition();
580  else
581    return false; // Must be an invoke.
582
583  // If the terminator of this block is branching on a constant, simplify the
584  // terminator to an unconditional branch.  This can occur due to threading in
585  // other blocks.
586  if (isa<ConstantInt>(Condition)) {
587    DEBUG(dbgs() << "  In block '" << BB->getName()
588          << "' folding terminator: " << *BB->getTerminator() << '\n');
589    ++NumFolds;
590    ConstantFoldTerminator(BB);
591    return true;
592  }
593
594  // If the terminator is branching on an undef, we can pick any of the
595  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
596  if (isa<UndefValue>(Condition)) {
597    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
598
599    // Fold the branch/switch.
600    TerminatorInst *BBTerm = BB->getTerminator();
601    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
602      if (i == BestSucc) continue;
603      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
604    }
605
606    DEBUG(dbgs() << "  In block '" << BB->getName()
607          << "' folding undef terminator: " << *BBTerm << '\n');
608    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
609    BBTerm->eraseFromParent();
610    return true;
611  }
612
613  Instruction *CondInst = dyn_cast<Instruction>(Condition);
614
615  // If the condition is an instruction defined in another block, see if a
616  // predecessor has the same condition:
617  //     br COND, BBX, BBY
618  //  BBX:
619  //     br COND, BBZ, BBW
620  if (!LVI &&
621      !Condition->hasOneUse() && // Multiple uses.
622      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
623    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
624    if (isa<BranchInst>(BB->getTerminator())) {
625      for (; PI != E; ++PI) {
626        BasicBlock *P = *PI;
627        if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
628          if (PBI->isConditional() && PBI->getCondition() == Condition &&
629              ProcessBranchOnDuplicateCond(P, BB))
630            return true;
631      }
632    } else {
633      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
634      for (; PI != E; ++PI) {
635        BasicBlock *P = *PI;
636        if (SwitchInst *PSI = dyn_cast<SwitchInst>(P->getTerminator()))
637          if (PSI->getCondition() == Condition &&
638              ProcessSwitchOnDuplicateCond(P, BB))
639            return true;
640      }
641    }
642  }
643
644  // All the rest of our checks depend on the condition being an instruction.
645  if (CondInst == 0) {
646    // FIXME: Unify this with code below.
647    if (LVI && ProcessThreadableEdges(Condition, BB))
648      return true;
649    return false;
650  }
651
652
653  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
654    if (!LVI &&
655        (!isa<PHINode>(CondCmp->getOperand(0)) ||
656         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
657      // If we have a comparison, loop over the predecessors to see if there is
658      // a condition with a lexically identical value.
659      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
660      for (; PI != E; ++PI) {
661        BasicBlock *P = *PI;
662        if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
663          if (PBI->isConditional() && P != BB) {
664            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
665              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
666                  CI->getOperand(1) == CondCmp->getOperand(1) &&
667                  CI->getPredicate() == CondCmp->getPredicate()) {
668                // TODO: Could handle things like (x != 4) --> (x == 17)
669                if (ProcessBranchOnDuplicateCond(P, BB))
670                  return true;
671              }
672            }
673          }
674      }
675    }
676
677    // For a comparison where the LHS is outside this block, it's possible
678    // that we've branched on it before.  Used LVI to see if we can simplify
679    // the branch based on that.
680    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
681    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
682    if (LVI && CondBr && CondConst && CondBr->isConditional() &&
683        (!isa<Instruction>(CondCmp->getOperand(0)) ||
684         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
685      // For predecessor edge, determine if the comparison is true or false
686      // on that edge.  If they're all true or all false, we can simplify the
687      // branch.
688      // FIXME: We could handle mixed true/false by duplicating code.
689      unsigned Trues = 0, Falses = 0, predcount = 0;
690      for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);PI != PE; ++PI){
691        ++predcount;
692        LazyValueInfo::Tristate Ret =
693          LVI->getPredicateOnEdge(CondCmp->getPredicate(),
694                                  CondCmp->getOperand(0), CondConst, *PI, BB);
695        if (Ret == LazyValueInfo::True)
696          ++Trues;
697        else if (Ret == LazyValueInfo::False)
698          ++Falses;
699      }
700
701      // If we can determine the branch direction statically, convert
702      // the conditional branch to an unconditional one.
703      if (Trues && Trues == predcount) {
704        RemovePredecessorAndSimplify(CondBr->getSuccessor(1), BB, TD);
705        BranchInst::Create(CondBr->getSuccessor(0), CondBr);
706        CondBr->eraseFromParent();
707        return true;
708      } else if (Falses && Falses == predcount) {
709        RemovePredecessorAndSimplify(CondBr->getSuccessor(0), BB, TD);
710        BranchInst::Create(CondBr->getSuccessor(1), CondBr);
711        CondBr->eraseFromParent();
712        return true;
713      }
714    }
715  }
716
717  // Check for some cases that are worth simplifying.  Right now we want to look
718  // for loads that are used by a switch or by the condition for the branch.  If
719  // we see one, check to see if it's partially redundant.  If so, insert a PHI
720  // which can then be used to thread the values.
721  //
722  Value *SimplifyValue = CondInst;
723  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
724    if (isa<Constant>(CondCmp->getOperand(1)))
725      SimplifyValue = CondCmp->getOperand(0);
726
727  // TODO: There are other places where load PRE would be profitable, such as
728  // more complex comparisons.
729  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
730    if (SimplifyPartiallyRedundantLoad(LI))
731      return true;
732
733
734  // Handle a variety of cases where we are branching on something derived from
735  // a PHI node in the current block.  If we can prove that any predecessors
736  // compute a predictable value based on a PHI node, thread those predecessors.
737  //
738  if (ProcessThreadableEdges(CondInst, BB))
739    return true;
740
741  // If this is an otherwise-unfoldable branch on a phi node in the current
742  // block, see if we can simplify.
743  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
744    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
745      return ProcessBranchOnPHI(PN);
746
747
748  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
749  if (CondInst->getOpcode() == Instruction::Xor &&
750      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
751    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
752
753
754  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
755  // "(X == 4)", thread through this block.
756
757  return false;
758}
759
760/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
761/// block that jump on exactly the same condition.  This means that we almost
762/// always know the direction of the edge in the DESTBB:
763///  PREDBB:
764///     br COND, DESTBB, BBY
765///  DESTBB:
766///     br COND, BBZ, BBW
767///
768/// If DESTBB has multiple predecessors, we can't just constant fold the branch
769/// in DESTBB, we have to thread over it.
770bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
771                                                 BasicBlock *BB) {
772  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
773
774  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
775  // fold the branch to an unconditional one, which allows other recursive
776  // simplifications.
777  bool BranchDir;
778  if (PredBI->getSuccessor(1) != BB)
779    BranchDir = true;
780  else if (PredBI->getSuccessor(0) != BB)
781    BranchDir = false;
782  else {
783    DEBUG(dbgs() << "  In block '" << PredBB->getName()
784          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
785    ++NumFolds;
786    ConstantFoldTerminator(PredBB);
787    return true;
788  }
789
790  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
791
792  // If the dest block has one predecessor, just fix the branch condition to a
793  // constant and fold it.
794  if (BB->getSinglePredecessor()) {
795    DEBUG(dbgs() << "  In block '" << BB->getName()
796          << "' folding condition to '" << BranchDir << "': "
797          << *BB->getTerminator() << '\n');
798    ++NumFolds;
799    Value *OldCond = DestBI->getCondition();
800    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
801                                          BranchDir));
802    // Delete dead instructions before we fold the branch.  Folding the branch
803    // can eliminate edges from the CFG which can end up deleting OldCond.
804    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
805    ConstantFoldTerminator(BB);
806    return true;
807  }
808
809
810  // Next, figure out which successor we are threading to.
811  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
812
813  SmallVector<BasicBlock*, 2> Preds;
814  Preds.push_back(PredBB);
815
816  // Ok, try to thread it!
817  return ThreadEdge(BB, Preds, SuccBB);
818}
819
820/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
821/// block that switch on exactly the same condition.  This means that we almost
822/// always know the direction of the edge in the DESTBB:
823///  PREDBB:
824///     switch COND [... DESTBB, BBY ... ]
825///  DESTBB:
826///     switch COND [... BBZ, BBW ]
827///
828/// Optimizing switches like this is very important, because simplifycfg builds
829/// switches out of repeated 'if' conditions.
830bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
831                                                 BasicBlock *DestBB) {
832  // Can't thread edge to self.
833  if (PredBB == DestBB)
834    return false;
835
836  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
837  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
838
839  // There are a variety of optimizations that we can potentially do on these
840  // blocks: we order them from most to least preferable.
841
842  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
843  // directly to their destination.  This does not introduce *any* code size
844  // growth.  Skip debug info first.
845  BasicBlock::iterator BBI = DestBB->begin();
846  while (isa<DbgInfoIntrinsic>(BBI))
847    BBI++;
848
849  // FIXME: Thread if it just contains a PHI.
850  if (isa<SwitchInst>(BBI)) {
851    bool MadeChange = false;
852    // Ignore the default edge for now.
853    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
854      ConstantInt *DestVal = DestSI->getCaseValue(i);
855      BasicBlock *DestSucc = DestSI->getSuccessor(i);
856
857      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
858      // PredSI has an explicit case for it.  If so, forward.  If it is covered
859      // by the default case, we can't update PredSI.
860      unsigned PredCase = PredSI->findCaseValue(DestVal);
861      if (PredCase == 0) continue;
862
863      // If PredSI doesn't go to DestBB on this value, then it won't reach the
864      // case on this condition.
865      if (PredSI->getSuccessor(PredCase) != DestBB &&
866          DestSI->getSuccessor(i) != DestBB)
867        continue;
868
869      // Do not forward this if it already goes to this destination, this would
870      // be an infinite loop.
871      if (PredSI->getSuccessor(PredCase) == DestSucc)
872        continue;
873
874      // Otherwise, we're safe to make the change.  Make sure that the edge from
875      // DestSI to DestSucc is not critical and has no PHI nodes.
876      DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
877      DEBUG(dbgs() << "THROUGH: " << *DestSI);
878
879      // If the destination has PHI nodes, just split the edge for updating
880      // simplicity.
881      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
882        SplitCriticalEdge(DestSI, i, this);
883        DestSucc = DestSI->getSuccessor(i);
884      }
885      FoldSingleEntryPHINodes(DestSucc);
886      PredSI->setSuccessor(PredCase, DestSucc);
887      MadeChange = true;
888    }
889
890    if (MadeChange)
891      return true;
892  }
893
894  return false;
895}
896
897
898/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
899/// load instruction, eliminate it by replacing it with a PHI node.  This is an
900/// important optimization that encourages jump threading, and needs to be run
901/// interlaced with other jump threading tasks.
902bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
903  // Don't hack volatile loads.
904  if (LI->isVolatile()) return false;
905
906  // If the load is defined in a block with exactly one predecessor, it can't be
907  // partially redundant.
908  BasicBlock *LoadBB = LI->getParent();
909  if (LoadBB->getSinglePredecessor())
910    return false;
911
912  Value *LoadedPtr = LI->getOperand(0);
913
914  // If the loaded operand is defined in the LoadBB, it can't be available.
915  // TODO: Could do simple PHI translation, that would be fun :)
916  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
917    if (PtrOp->getParent() == LoadBB)
918      return false;
919
920  // Scan a few instructions up from the load, to see if it is obviously live at
921  // the entry to its block.
922  BasicBlock::iterator BBIt = LI;
923
924  if (Value *AvailableVal =
925        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
926    // If the value if the load is locally available within the block, just use
927    // it.  This frequently occurs for reg2mem'd allocas.
928    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
929
930    // If the returned value is the load itself, replace with an undef. This can
931    // only happen in dead loops.
932    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
933    LI->replaceAllUsesWith(AvailableVal);
934    LI->eraseFromParent();
935    return true;
936  }
937
938  // Otherwise, if we scanned the whole block and got to the top of the block,
939  // we know the block is locally transparent to the load.  If not, something
940  // might clobber its value.
941  if (BBIt != LoadBB->begin())
942    return false;
943
944
945  SmallPtrSet<BasicBlock*, 8> PredsScanned;
946  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
947  AvailablePredsTy AvailablePreds;
948  BasicBlock *OneUnavailablePred = 0;
949
950  // If we got here, the loaded value is transparent through to the start of the
951  // block.  Check to see if it is available in any of the predecessor blocks.
952  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
953       PI != PE; ++PI) {
954    BasicBlock *PredBB = *PI;
955
956    // If we already scanned this predecessor, skip it.
957    if (!PredsScanned.insert(PredBB))
958      continue;
959
960    // Scan the predecessor to see if the value is available in the pred.
961    BBIt = PredBB->end();
962    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
963    if (!PredAvailable) {
964      OneUnavailablePred = PredBB;
965      continue;
966    }
967
968    // If so, this load is partially redundant.  Remember this info so that we
969    // can create a PHI node.
970    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
971  }
972
973  // If the loaded value isn't available in any predecessor, it isn't partially
974  // redundant.
975  if (AvailablePreds.empty()) return false;
976
977  // Okay, the loaded value is available in at least one (and maybe all!)
978  // predecessors.  If the value is unavailable in more than one unique
979  // predecessor, we want to insert a merge block for those common predecessors.
980  // This ensures that we only have to insert one reload, thus not increasing
981  // code size.
982  BasicBlock *UnavailablePred = 0;
983
984  // If there is exactly one predecessor where the value is unavailable, the
985  // already computed 'OneUnavailablePred' block is it.  If it ends in an
986  // unconditional branch, we know that it isn't a critical edge.
987  if (PredsScanned.size() == AvailablePreds.size()+1 &&
988      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
989    UnavailablePred = OneUnavailablePred;
990  } else if (PredsScanned.size() != AvailablePreds.size()) {
991    // Otherwise, we had multiple unavailable predecessors or we had a critical
992    // edge from the one.
993    SmallVector<BasicBlock*, 8> PredsToSplit;
994    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
995
996    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
997      AvailablePredSet.insert(AvailablePreds[i].first);
998
999    // Add all the unavailable predecessors to the PredsToSplit list.
1000    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
1001         PI != PE; ++PI) {
1002      BasicBlock *P = *PI;
1003      // If the predecessor is an indirect goto, we can't split the edge.
1004      if (isa<IndirectBrInst>(P->getTerminator()))
1005        return false;
1006
1007      if (!AvailablePredSet.count(P))
1008        PredsToSplit.push_back(P);
1009    }
1010
1011    // Split them out to their own block.
1012    UnavailablePred =
1013      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
1014                             "thread-pre-split", this);
1015  }
1016
1017  // If the value isn't available in all predecessors, then there will be
1018  // exactly one where it isn't available.  Insert a load on that edge and add
1019  // it to the AvailablePreds list.
1020  if (UnavailablePred) {
1021    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1022           "Can't handle critical edge here!");
1023    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
1024                                 LI->getAlignment(),
1025                                 UnavailablePred->getTerminator());
1026    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1027  }
1028
1029  // Now we know that each predecessor of this block has a value in
1030  // AvailablePreds, sort them for efficient access as we're walking the preds.
1031  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1032
1033  // Create a PHI node at the start of the block for the PRE'd load value.
1034  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
1035  PN->takeName(LI);
1036
1037  // Insert new entries into the PHI for each predecessor.  A single block may
1038  // have multiple entries here.
1039  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
1040       ++PI) {
1041    BasicBlock *P = *PI;
1042    AvailablePredsTy::iterator I =
1043      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1044                       std::make_pair(P, (Value*)0));
1045
1046    assert(I != AvailablePreds.end() && I->first == P &&
1047           "Didn't find entry for predecessor!");
1048
1049    PN->addIncoming(I->second, I->first);
1050  }
1051
1052  //cerr << "PRE: " << *LI << *PN << "\n";
1053
1054  LI->replaceAllUsesWith(PN);
1055  LI->eraseFromParent();
1056
1057  return true;
1058}
1059
1060/// FindMostPopularDest - The specified list contains multiple possible
1061/// threadable destinations.  Pick the one that occurs the most frequently in
1062/// the list.
1063static BasicBlock *
1064FindMostPopularDest(BasicBlock *BB,
1065                    const SmallVectorImpl<std::pair<BasicBlock*,
1066                                  BasicBlock*> > &PredToDestList) {
1067  assert(!PredToDestList.empty());
1068
1069  // Determine popularity.  If there are multiple possible destinations, we
1070  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1071  // blocks with known and real destinations to threading undef.  We'll handle
1072  // them later if interesting.
1073  DenseMap<BasicBlock*, unsigned> DestPopularity;
1074  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1075    if (PredToDestList[i].second)
1076      DestPopularity[PredToDestList[i].second]++;
1077
1078  // Find the most popular dest.
1079  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1080  BasicBlock *MostPopularDest = DPI->first;
1081  unsigned Popularity = DPI->second;
1082  SmallVector<BasicBlock*, 4> SamePopularity;
1083
1084  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1085    // If the popularity of this entry isn't higher than the popularity we've
1086    // seen so far, ignore it.
1087    if (DPI->second < Popularity)
1088      ; // ignore.
1089    else if (DPI->second == Popularity) {
1090      // If it is the same as what we've seen so far, keep track of it.
1091      SamePopularity.push_back(DPI->first);
1092    } else {
1093      // If it is more popular, remember it.
1094      SamePopularity.clear();
1095      MostPopularDest = DPI->first;
1096      Popularity = DPI->second;
1097    }
1098  }
1099
1100  // Okay, now we know the most popular destination.  If there is more than
1101  // destination, we need to determine one.  This is arbitrary, but we need
1102  // to make a deterministic decision.  Pick the first one that appears in the
1103  // successor list.
1104  if (!SamePopularity.empty()) {
1105    SamePopularity.push_back(MostPopularDest);
1106    TerminatorInst *TI = BB->getTerminator();
1107    for (unsigned i = 0; ; ++i) {
1108      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1109
1110      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1111                    TI->getSuccessor(i)) == SamePopularity.end())
1112        continue;
1113
1114      MostPopularDest = TI->getSuccessor(i);
1115      break;
1116    }
1117  }
1118
1119  // Okay, we have finally picked the most popular destination.
1120  return MostPopularDest;
1121}
1122
1123bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
1124  // If threading this would thread across a loop header, don't even try to
1125  // thread the edge.
1126  if (LoopHeaders.count(BB))
1127    return false;
1128
1129  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
1130  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
1131    return false;
1132  assert(!PredValues.empty() &&
1133         "ComputeValueKnownInPredecessors returned true with no values");
1134
1135  DEBUG(dbgs() << "IN BB: " << *BB;
1136        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1137          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
1138          if (PredValues[i].first)
1139            dbgs() << *PredValues[i].first;
1140          else
1141            dbgs() << "UNDEF";
1142          dbgs() << " for pred '" << PredValues[i].second->getName()
1143          << "'.\n";
1144        });
1145
1146  // Decide what we want to thread through.  Convert our list of known values to
1147  // a list of known destinations for each pred.  This also discards duplicate
1148  // predecessors and keeps track of the undefined inputs (which are represented
1149  // as a null dest in the PredToDestList).
1150  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1151  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1152
1153  BasicBlock *OnlyDest = 0;
1154  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1155
1156  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1157    BasicBlock *Pred = PredValues[i].second;
1158    if (!SeenPreds.insert(Pred))
1159      continue;  // Duplicate predecessor entry.
1160
1161    // If the predecessor ends with an indirect goto, we can't change its
1162    // destination.
1163    if (isa<IndirectBrInst>(Pred->getTerminator()))
1164      continue;
1165
1166    ConstantInt *Val = PredValues[i].first;
1167
1168    BasicBlock *DestBB;
1169    if (Val == 0)      // Undef.
1170      DestBB = 0;
1171    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1172      DestBB = BI->getSuccessor(Val->isZero());
1173    else {
1174      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1175      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1176    }
1177
1178    // If we have exactly one destination, remember it for efficiency below.
1179    if (i == 0)
1180      OnlyDest = DestBB;
1181    else if (OnlyDest != DestBB)
1182      OnlyDest = MultipleDestSentinel;
1183
1184    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1185  }
1186
1187  // If all edges were unthreadable, we fail.
1188  if (PredToDestList.empty())
1189    return false;
1190
1191  // Determine which is the most common successor.  If we have many inputs and
1192  // this block is a switch, we want to start by threading the batch that goes
1193  // to the most popular destination first.  If we only know about one
1194  // threadable destination (the common case) we can avoid this.
1195  BasicBlock *MostPopularDest = OnlyDest;
1196
1197  if (MostPopularDest == MultipleDestSentinel)
1198    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1199
1200  // Now that we know what the most popular destination is, factor all
1201  // predecessors that will jump to it into a single predecessor.
1202  SmallVector<BasicBlock*, 16> PredsToFactor;
1203  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1204    if (PredToDestList[i].second == MostPopularDest) {
1205      BasicBlock *Pred = PredToDestList[i].first;
1206
1207      // This predecessor may be a switch or something else that has multiple
1208      // edges to the block.  Factor each of these edges by listing them
1209      // according to # occurrences in PredsToFactor.
1210      TerminatorInst *PredTI = Pred->getTerminator();
1211      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1212        if (PredTI->getSuccessor(i) == BB)
1213          PredsToFactor.push_back(Pred);
1214    }
1215
1216  // If the threadable edges are branching on an undefined value, we get to pick
1217  // the destination that these predecessors should get to.
1218  if (MostPopularDest == 0)
1219    MostPopularDest = BB->getTerminator()->
1220                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1221
1222  // Ok, try to thread it!
1223  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1224}
1225
1226/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1227/// a PHI node in the current block.  See if there are any simplifications we
1228/// can do based on inputs to the phi node.
1229///
1230bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1231  BasicBlock *BB = PN->getParent();
1232
1233  // TODO: We could make use of this to do it once for blocks with common PHI
1234  // values.
1235  SmallVector<BasicBlock*, 1> PredBBs;
1236  PredBBs.resize(1);
1237
1238  // If any of the predecessor blocks end in an unconditional branch, we can
1239  // *duplicate* the conditional branch into that block in order to further
1240  // encourage jump threading and to eliminate cases where we have branch on a
1241  // phi of an icmp (branch on icmp is much better).
1242  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1243    BasicBlock *PredBB = PN->getIncomingBlock(i);
1244    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1245      if (PredBr->isUnconditional()) {
1246        PredBBs[0] = PredBB;
1247        // Try to duplicate BB into PredBB.
1248        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1249          return true;
1250      }
1251  }
1252
1253  return false;
1254}
1255
1256/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1257/// a xor instruction in the current block.  See if there are any
1258/// simplifications we can do based on inputs to the xor.
1259///
1260bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1261  BasicBlock *BB = BO->getParent();
1262
1263  // If either the LHS or RHS of the xor is a constant, don't do this
1264  // optimization.
1265  if (isa<ConstantInt>(BO->getOperand(0)) ||
1266      isa<ConstantInt>(BO->getOperand(1)))
1267    return false;
1268
1269  // If the first instruction in BB isn't a phi, we won't be able to infer
1270  // anything special about any particular predecessor.
1271  if (!isa<PHINode>(BB->front()))
1272    return false;
1273
1274  // If we have a xor as the branch input to this block, and we know that the
1275  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1276  // the condition into the predecessor and fix that value to true, saving some
1277  // logical ops on that path and encouraging other paths to simplify.
1278  //
1279  // This copies something like this:
1280  //
1281  //  BB:
1282  //    %X = phi i1 [1],  [%X']
1283  //    %Y = icmp eq i32 %A, %B
1284  //    %Z = xor i1 %X, %Y
1285  //    br i1 %Z, ...
1286  //
1287  // Into:
1288  //  BB':
1289  //    %Y = icmp ne i32 %A, %B
1290  //    br i1 %Z, ...
1291
1292  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1293  bool isLHS = true;
1294  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1295    assert(XorOpValues.empty());
1296    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1297      return false;
1298    isLHS = false;
1299  }
1300
1301  assert(!XorOpValues.empty() &&
1302         "ComputeValueKnownInPredecessors returned true with no values");
1303
1304  // Scan the information to see which is most popular: true or false.  The
1305  // predecessors can be of the set true, false, or undef.
1306  unsigned NumTrue = 0, NumFalse = 0;
1307  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1308    if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
1309    if (XorOpValues[i].first->isZero())
1310      ++NumFalse;
1311    else
1312      ++NumTrue;
1313  }
1314
1315  // Determine which value to split on, true, false, or undef if neither.
1316  ConstantInt *SplitVal = 0;
1317  if (NumTrue > NumFalse)
1318    SplitVal = ConstantInt::getTrue(BB->getContext());
1319  else if (NumTrue != 0 || NumFalse != 0)
1320    SplitVal = ConstantInt::getFalse(BB->getContext());
1321
1322  // Collect all of the blocks that this can be folded into so that we can
1323  // factor this once and clone it once.
1324  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1325  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1326    if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1327
1328    BlocksToFoldInto.push_back(XorOpValues[i].second);
1329  }
1330
1331  // If we inferred a value for all of the predecessors, then duplication won't
1332  // help us.  However, we can just replace the LHS or RHS with the constant.
1333  if (BlocksToFoldInto.size() ==
1334      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1335    if (SplitVal == 0) {
1336      // If all preds provide undef, just nuke the xor, because it is undef too.
1337      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1338      BO->eraseFromParent();
1339    } else if (SplitVal->isZero()) {
1340      // If all preds provide 0, replace the xor with the other input.
1341      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1342      BO->eraseFromParent();
1343    } else {
1344      // If all preds provide 1, set the computed value to 1.
1345      BO->setOperand(!isLHS, SplitVal);
1346    }
1347
1348    return true;
1349  }
1350
1351  // Try to duplicate BB into PredBB.
1352  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1353}
1354
1355
1356/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1357/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1358/// NewPred using the entries from OldPred (suitably mapped).
1359static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1360                                            BasicBlock *OldPred,
1361                                            BasicBlock *NewPred,
1362                                     DenseMap<Instruction*, Value*> &ValueMap) {
1363  for (BasicBlock::iterator PNI = PHIBB->begin();
1364       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1365    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1366    // DestBlock.
1367    Value *IV = PN->getIncomingValueForBlock(OldPred);
1368
1369    // Remap the value if necessary.
1370    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1371      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1372      if (I != ValueMap.end())
1373        IV = I->second;
1374    }
1375
1376    PN->addIncoming(IV, NewPred);
1377  }
1378}
1379
1380/// ThreadEdge - We have decided that it is safe and profitable to factor the
1381/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1382/// across BB.  Transform the IR to reflect this change.
1383bool JumpThreading::ThreadEdge(BasicBlock *BB,
1384                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1385                               BasicBlock *SuccBB) {
1386  // If threading to the same block as we come from, we would infinite loop.
1387  if (SuccBB == BB) {
1388    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1389          << "' - would thread to self!\n");
1390    return false;
1391  }
1392
1393  // If threading this would thread across a loop header, don't thread the edge.
1394  // See the comments above FindLoopHeaders for justifications and caveats.
1395  if (LoopHeaders.count(BB)) {
1396    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1397          << "' to dest BB '" << SuccBB->getName()
1398          << "' - it might create an irreducible loop!\n");
1399    return false;
1400  }
1401
1402  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1403  if (JumpThreadCost > Threshold) {
1404    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1405          << "' - Cost is too high: " << JumpThreadCost << "\n");
1406    return false;
1407  }
1408
1409  // And finally, do it!  Start by factoring the predecessors is needed.
1410  BasicBlock *PredBB;
1411  if (PredBBs.size() == 1)
1412    PredBB = PredBBs[0];
1413  else {
1414    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1415          << " common predecessors.\n");
1416    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1417                                    ".thr_comm", this);
1418  }
1419
1420  // And finally, do it!
1421  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1422        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1423        << ", across block:\n    "
1424        << *BB << "\n");
1425
1426  if (LVI)
1427    LVI->threadEdge(PredBB, BB, SuccBB);
1428
1429  // We are going to have to map operands from the original BB block to the new
1430  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1431  // account for entry from PredBB.
1432  DenseMap<Instruction*, Value*> ValueMapping;
1433
1434  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1435                                         BB->getName()+".thread",
1436                                         BB->getParent(), BB);
1437  NewBB->moveAfter(PredBB);
1438
1439  BasicBlock::iterator BI = BB->begin();
1440  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1441    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1442
1443  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1444  // mapping and using it to remap operands in the cloned instructions.
1445  for (; !isa<TerminatorInst>(BI); ++BI) {
1446    Instruction *New = BI->clone();
1447    New->setName(BI->getName());
1448    NewBB->getInstList().push_back(New);
1449    ValueMapping[BI] = New;
1450
1451    // Remap operands to patch up intra-block references.
1452    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1453      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1454        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1455        if (I != ValueMapping.end())
1456          New->setOperand(i, I->second);
1457      }
1458  }
1459
1460  // We didn't copy the terminator from BB over to NewBB, because there is now
1461  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1462  BranchInst::Create(SuccBB, NewBB);
1463
1464  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1465  // PHI nodes for NewBB now.
1466  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1467
1468  // If there were values defined in BB that are used outside the block, then we
1469  // now have to update all uses of the value to use either the original value,
1470  // the cloned value, or some PHI derived value.  This can require arbitrary
1471  // PHI insertion, of which we are prepared to do, clean these up now.
1472  SSAUpdater SSAUpdate;
1473  SmallVector<Use*, 16> UsesToRename;
1474  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1475    // Scan all uses of this instruction to see if it is used outside of its
1476    // block, and if so, record them in UsesToRename.
1477    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1478         ++UI) {
1479      Instruction *User = cast<Instruction>(*UI);
1480      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1481        if (UserPN->getIncomingBlock(UI) == BB)
1482          continue;
1483      } else if (User->getParent() == BB)
1484        continue;
1485
1486      UsesToRename.push_back(&UI.getUse());
1487    }
1488
1489    // If there are no uses outside the block, we're done with this instruction.
1490    if (UsesToRename.empty())
1491      continue;
1492
1493    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1494
1495    // We found a use of I outside of BB.  Rename all uses of I that are outside
1496    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1497    // with the two values we know.
1498    SSAUpdate.Initialize(I);
1499    SSAUpdate.AddAvailableValue(BB, I);
1500    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1501
1502    while (!UsesToRename.empty())
1503      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1504    DEBUG(dbgs() << "\n");
1505  }
1506
1507
1508  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1509  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1510  // us to simplify any PHI nodes in BB.
1511  TerminatorInst *PredTerm = PredBB->getTerminator();
1512  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1513    if (PredTerm->getSuccessor(i) == BB) {
1514      RemovePredecessorAndSimplify(BB, PredBB, TD);
1515      PredTerm->setSuccessor(i, NewBB);
1516    }
1517
1518  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1519  // over the new instructions and zap any that are constants or dead.  This
1520  // frequently happens because of phi translation.
1521  SimplifyInstructionsInBlock(NewBB, TD);
1522
1523  // Threaded an edge!
1524  ++NumThreads;
1525  return true;
1526}
1527
1528/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1529/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1530/// If we can duplicate the contents of BB up into PredBB do so now, this
1531/// improves the odds that the branch will be on an analyzable instruction like
1532/// a compare.
1533bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1534                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1535  assert(!PredBBs.empty() && "Can't handle an empty set");
1536
1537  // If BB is a loop header, then duplicating this block outside the loop would
1538  // cause us to transform this into an irreducible loop, don't do this.
1539  // See the comments above FindLoopHeaders for justifications and caveats.
1540  if (LoopHeaders.count(BB)) {
1541    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1542          << "' into predecessor block '" << PredBBs[0]->getName()
1543          << "' - it might create an irreducible loop!\n");
1544    return false;
1545  }
1546
1547  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1548  if (DuplicationCost > Threshold) {
1549    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1550          << "' - Cost is too high: " << DuplicationCost << "\n");
1551    return false;
1552  }
1553
1554  // And finally, do it!  Start by factoring the predecessors is needed.
1555  BasicBlock *PredBB;
1556  if (PredBBs.size() == 1)
1557    PredBB = PredBBs[0];
1558  else {
1559    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1560          << " common predecessors.\n");
1561    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1562                                    ".thr_comm", this);
1563  }
1564
1565  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1566  // of PredBB.
1567  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1568        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1569        << DuplicationCost << " block is:" << *BB << "\n");
1570
1571  // Unless PredBB ends with an unconditional branch, split the edge so that we
1572  // can just clone the bits from BB into the end of the new PredBB.
1573  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1574
1575  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1576    PredBB = SplitEdge(PredBB, BB, this);
1577    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1578  }
1579
1580  // We are going to have to map operands from the original BB block into the
1581  // PredBB block.  Evaluate PHI nodes in BB.
1582  DenseMap<Instruction*, Value*> ValueMapping;
1583
1584  BasicBlock::iterator BI = BB->begin();
1585  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1586    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1587
1588  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1589  // mapping and using it to remap operands in the cloned instructions.
1590  for (; BI != BB->end(); ++BI) {
1591    Instruction *New = BI->clone();
1592
1593    // Remap operands to patch up intra-block references.
1594    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1595      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1596        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1597        if (I != ValueMapping.end())
1598          New->setOperand(i, I->second);
1599      }
1600
1601    // If this instruction can be simplified after the operands are updated,
1602    // just use the simplified value instead.  This frequently happens due to
1603    // phi translation.
1604    if (Value *IV = SimplifyInstruction(New, TD)) {
1605      delete New;
1606      ValueMapping[BI] = IV;
1607    } else {
1608      // Otherwise, insert the new instruction into the block.
1609      New->setName(BI->getName());
1610      PredBB->getInstList().insert(OldPredBranch, New);
1611      ValueMapping[BI] = New;
1612    }
1613  }
1614
1615  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1616  // add entries to the PHI nodes for branch from PredBB now.
1617  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1618  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1619                                  ValueMapping);
1620  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1621                                  ValueMapping);
1622
1623  // If there were values defined in BB that are used outside the block, then we
1624  // now have to update all uses of the value to use either the original value,
1625  // the cloned value, or some PHI derived value.  This can require arbitrary
1626  // PHI insertion, of which we are prepared to do, clean these up now.
1627  SSAUpdater SSAUpdate;
1628  SmallVector<Use*, 16> UsesToRename;
1629  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1630    // Scan all uses of this instruction to see if it is used outside of its
1631    // block, and if so, record them in UsesToRename.
1632    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1633         ++UI) {
1634      Instruction *User = cast<Instruction>(*UI);
1635      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1636        if (UserPN->getIncomingBlock(UI) == BB)
1637          continue;
1638      } else if (User->getParent() == BB)
1639        continue;
1640
1641      UsesToRename.push_back(&UI.getUse());
1642    }
1643
1644    // If there are no uses outside the block, we're done with this instruction.
1645    if (UsesToRename.empty())
1646      continue;
1647
1648    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1649
1650    // We found a use of I outside of BB.  Rename all uses of I that are outside
1651    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1652    // with the two values we know.
1653    SSAUpdate.Initialize(I);
1654    SSAUpdate.AddAvailableValue(BB, I);
1655    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1656
1657    while (!UsesToRename.empty())
1658      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1659    DEBUG(dbgs() << "\n");
1660  }
1661
1662  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1663  // that we nuked.
1664  RemovePredecessorAndSimplify(BB, PredBB, TD);
1665
1666  // Remove the unconditional branch at the end of the PredBB block.
1667  OldPredBranch->eraseFromParent();
1668
1669  ++NumDupes;
1670  return true;
1671}
1672
1673
1674