JumpThreading.cpp revision 43e2a035309f4e353a8bd5547d10125414597e74
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/Pass.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Transforms/Utils/Local.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25using namespace llvm;
26
27STATISTIC(NumThreads, "Number of jumps threaded");
28STATISTIC(NumFolds,   "Number of terminators folded");
29
30static cl::opt<unsigned>
31Threshold("jump-threading-threshold",
32          cl::desc("Max block size to duplicate for jump threading"),
33          cl::init(6), cl::Hidden);
34
35namespace {
36  /// This pass performs 'jump threading', which looks at blocks that have
37  /// multiple predecessors and multiple successors.  If one or more of the
38  /// predecessors of the block can be proven to always jump to one of the
39  /// successors, we forward the edge from the predecessor to the successor by
40  /// duplicating the contents of this block.
41  ///
42  /// An example of when this can occur is code like this:
43  ///
44  ///   if () { ...
45  ///     X = 4;
46  ///   }
47  ///   if (X < 3) {
48  ///
49  /// In this case, the unconditional branch at the end of the first if can be
50  /// revectored to the false side of the second if.
51  ///
52  class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
53  public:
54    static char ID; // Pass identification
55    JumpThreading() : FunctionPass((intptr_t)&ID) {}
56
57    bool runOnFunction(Function &F);
58    bool ThreadBlock(BasicBlock *BB);
59    void ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
60    BasicBlock *FactorCommonPHIPreds(PHINode *PN, Constant *CstVal);
61
62    bool ProcessJumpOnPHI(PHINode *PN);
63    bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
64    bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
65  };
66}
67
68char JumpThreading::ID = 0;
69static RegisterPass<JumpThreading>
70X("jump-threading", "Jump Threading");
71
72// Public interface to the Jump Threading pass
73FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
74
75/// runOnFunction - Top level algorithm.
76///
77bool JumpThreading::runOnFunction(Function &F) {
78  DOUT << "Jump threading on function '" << F.getNameStart() << "'\n";
79
80  bool AnotherIteration = true, EverChanged = false;
81  while (AnotherIteration) {
82    AnotherIteration = false;
83    bool Changed = false;
84    for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
85      while (ThreadBlock(I))
86        Changed = true;
87    AnotherIteration = Changed;
88    EverChanged |= Changed;
89  }
90  return EverChanged;
91}
92
93/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
94/// value for the PHI, factor them together so we get one block to thread for
95/// the whole group.
96/// This is important for things like "phi i1 [true, true, false, true, x]"
97/// where we only need to clone the block for the true blocks once.
98///
99BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Constant *CstVal) {
100  SmallVector<BasicBlock*, 16> CommonPreds;
101  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
102    if (PN->getIncomingValue(i) == CstVal)
103      CommonPreds.push_back(PN->getIncomingBlock(i));
104
105  if (CommonPreds.size() == 1)
106    return CommonPreds[0];
107
108  DOUT << "  Factoring out " << CommonPreds.size()
109       << " common predecessors.\n";
110  return SplitBlockPredecessors(PN->getParent(),
111                                &CommonPreds[0], CommonPreds.size(),
112                                ".thr_comm", this);
113}
114
115
116/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
117/// thread across it.
118static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
119  /// Ignore PHI nodes, these will be flattened when duplication happens.
120  BasicBlock::const_iterator I = BB->getFirstNonPHI();
121
122  // Sum up the cost of each instruction until we get to the terminator.  Don't
123  // include the terminator because the copy won't include it.
124  unsigned Size = 0;
125  for (; !isa<TerminatorInst>(I); ++I) {
126    // Debugger intrinsics don't incur code size.
127    if (isa<DbgInfoIntrinsic>(I)) continue;
128
129    // If this is a pointer->pointer bitcast, it is free.
130    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
131      continue;
132
133    // All other instructions count for at least one unit.
134    ++Size;
135
136    // Calls are more expensive.  If they are non-intrinsic calls, we model them
137    // as having cost of 4.  If they are a non-vector intrinsic, we model them
138    // as having cost of 2 total, and if they are a vector intrinsic, we model
139    // them as having cost 1.
140    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
141      if (!isa<IntrinsicInst>(CI))
142        Size += 3;
143      else if (isa<VectorType>(CI->getType()))
144        Size += 1;
145    }
146  }
147
148  // Threading through a switch statement is particularly profitable.  If this
149  // block ends in a switch, decrease its cost to make it more likely to happen.
150  if (isa<SwitchInst>(I))
151    Size = Size > 6 ? Size-6 : 0;
152
153  return Size;
154}
155
156
157/// ThreadBlock - If there are any predecessors whose control can be threaded
158/// through to a successor, transform them now.
159bool JumpThreading::ThreadBlock(BasicBlock *BB) {
160  // See if this block ends with a branch or switch.  If so, see if the
161  // condition is a phi node.  If so, and if an entry of the phi node is a
162  // constant, we can thread the block.
163  Value *Condition;
164  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
165    // Can't thread an unconditional jump.
166    if (BI->isUnconditional()) return false;
167    Condition = BI->getCondition();
168  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
169    Condition = SI->getCondition();
170  else
171    return false; // Must be an invoke.
172
173  // If the terminator of this block is branching on a constant, simplify the
174  // terminator to an unconditional branch.  This can occur due to threading in
175  // other blocks.
176  if (isa<ConstantInt>(Condition)) {
177    DOUT << "  In block '" << BB->getNameStart()
178         << "' folding terminator: " << *BB->getTerminator();
179    ++NumFolds;
180    ConstantFoldTerminator(BB);
181    return true;
182  }
183
184  // If there is only a single predecessor of this block, nothing to fold.
185  if (BB->getSinglePredecessor())
186    return false;
187
188  // See if this is a phi node in the current block.
189  PHINode *PN = dyn_cast<PHINode>(Condition);
190  if (PN && PN->getParent() == BB)
191    return ProcessJumpOnPHI(PN);
192
193  // If this is a conditional branch whose condition is and/or of a phi, try to
194  // simplify it.
195  if (BinaryOperator *CondI = dyn_cast<BinaryOperator>(Condition)) {
196    if ((CondI->getOpcode() == Instruction::And ||
197         CondI->getOpcode() == Instruction::Or) &&
198        isa<BranchInst>(BB->getTerminator()) &&
199        ProcessBranchOnLogical(CondI, BB,
200                               CondI->getOpcode() == Instruction::And))
201      return true;
202  }
203
204  // If we have "br (phi != 42)" and the phi node has any constant values as
205  // operands, we can thread through this block.
206  if (CmpInst *CondCmp = dyn_cast<CmpInst>(Condition))
207    if (isa<PHINode>(CondCmp->getOperand(0)) &&
208        isa<Constant>(CondCmp->getOperand(1)) &&
209        ProcessBranchOnCompare(CondCmp, BB))
210      return true;
211
212  return false;
213}
214
215/// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
216/// the current block.  See if there are any simplifications we can do based on
217/// inputs to the phi node.
218///
219bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
220  // See if the phi node has any constant values.  If so, we can determine where
221  // the corresponding predecessor will branch.
222  ConstantInt *PredCst = 0;
223  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
224    if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
225      break;
226
227  // If no incoming value has a constant, we don't know the destination of any
228  // predecessors.
229  if (PredCst == 0)
230    return false;
231
232  // See if the cost of duplicating this block is low enough.
233  BasicBlock *BB = PN->getParent();
234  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
235  if (JumpThreadCost > Threshold) {
236    DOUT << "  Not threading BB '" << BB->getNameStart()
237         << "' - Cost is too high: " << JumpThreadCost << "\n";
238    return false;
239  }
240
241  // If so, we can actually do this threading.  Merge any common predecessors
242  // that will act the same.
243  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
244
245  // Next, figure out which successor we are threading to.
246  BasicBlock *SuccBB;
247  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
248    SuccBB = BI->getSuccessor(PredCst == ConstantInt::getFalse());
249  else {
250    SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
251    SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
252  }
253
254  // If threading to the same block as we come from, we would infinite loop.
255  if (SuccBB == BB) {
256    DOUT << "  Not threading BB '" << BB->getNameStart()
257         << "' - would thread to self!\n";
258    return false;
259  }
260
261  // And finally, do it!
262  DOUT << "  Threading edge from '" << PredBB->getNameStart() << "' to '"
263       << SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
264       << ", across block:\n    "
265       << *BB << "\n";
266
267  ThreadEdge(BB, PredBB, SuccBB);
268  ++NumThreads;
269  return true;
270}
271
272/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
273/// whose condition is an AND/OR where one side is PN.  If PN has constant
274/// operands that permit us to evaluate the condition for some operand, thread
275/// through the block.  For example with:
276///   br (and X, phi(Y, Z, false))
277/// the predecessor corresponding to the 'false' will always jump to the false
278/// destination of the branch.
279///
280bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
281                                           bool isAnd) {
282  // If this is a binary operator tree of the same AND/OR opcode, check the
283  // LHS/RHS.
284  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
285    if ((isAnd && BO->getOpcode() == Instruction::And) ||
286        (!isAnd && BO->getOpcode() == Instruction::Or)) {
287      if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
288        return true;
289      if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
290        return true;
291    }
292
293  // If this isn't a PHI node, we can't handle it.
294  PHINode *PN = dyn_cast<PHINode>(V);
295  if (!PN || PN->getParent() != BB) return false;
296
297  // We can only do the simplification for phi nodes of 'false' with AND or
298  // 'true' with OR.  See if we have any entries in the phi for this.
299  unsigned PredNo = ~0U;
300  ConstantInt *PredCst = ConstantInt::get(Type::Int1Ty, !isAnd);
301  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
302    if (PN->getIncomingValue(i) == PredCst) {
303      PredNo = i;
304      break;
305    }
306  }
307
308  // If no match, bail out.
309  if (PredNo == ~0U)
310    return false;
311
312  // See if the cost of duplicating this block is low enough.
313  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
314  if (JumpThreadCost > Threshold) {
315    DOUT << "  Not threading BB '" << BB->getNameStart()
316         << "' - Cost is too high: " << JumpThreadCost << "\n";
317    return false;
318  }
319
320  // If so, we can actually do this threading.  Merge any common predecessors
321  // that will act the same.
322  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
323
324  // Next, figure out which successor we are threading to.  If this was an AND,
325  // the constant must be FALSE, and we must be targeting the 'false' block.
326  // If this is an OR, the constant must be TRUE, and we must be targeting the
327  // 'true' block.
328  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
329
330  // If threading to the same block as we come from, we would infinite loop.
331  if (SuccBB == BB) {
332    DOUT << "  Not threading BB '" << BB->getNameStart()
333    << "' - would thread to self!\n";
334    return false;
335  }
336
337  // And finally, do it!
338  DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
339       << "' to '" << SuccBB->getNameStart() << "' with cost: "
340       << JumpThreadCost << ", across block:\n    "
341       << *BB << "\n";
342
343  ThreadEdge(BB, PredBB, SuccBB);
344  ++NumThreads;
345  return true;
346}
347
348/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
349/// node and a constant.  If the PHI node contains any constants as inputs, we
350/// can fold the compare for that edge and thread through it.
351bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
352  PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
353  Constant *RHS = cast<Constant>(Cmp->getOperand(1));
354
355  // If the phi isn't in the current block, an incoming edge to this block
356  // doesn't control the destination.
357  if (PN->getParent() != BB)
358    return false;
359
360  // We can do this simplification if any comparisons fold to true or false.
361  // See if any do.
362  Constant *PredCst = 0;
363  bool TrueDirection = false;
364  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
365    PredCst = dyn_cast<Constant>(PN->getIncomingValue(i));
366    if (PredCst == 0) continue;
367
368    Constant *Res;
369    if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cmp))
370      Res = ConstantExpr::getICmp(ICI->getPredicate(), PredCst, RHS);
371    else
372      Res = ConstantExpr::getFCmp(cast<FCmpInst>(Cmp)->getPredicate(),
373                                  PredCst, RHS);
374    // If this folded to a constant expr, we can't do anything.
375    if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
376      TrueDirection = ResC->getZExtValue();
377      break;
378    }
379    // If this folded to undef, just go the false way.
380    if (isa<UndefValue>(Res)) {
381      TrueDirection = false;
382      break;
383    }
384
385    // Otherwise, we can't fold this input.
386    PredCst = 0;
387  }
388
389  // If no match, bail out.
390  if (PredCst == 0)
391    return false;
392
393  // See if the cost of duplicating this block is low enough.
394  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
395  if (JumpThreadCost > Threshold) {
396    DOUT << "  Not threading BB '" << BB->getNameStart()
397         << "' - Cost is too high: " << JumpThreadCost << "\n";
398    return false;
399  }
400
401  // If so, we can actually do this threading.  Merge any common predecessors
402  // that will act the same.
403  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
404
405  // Next, get our successor.
406  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
407
408  // If threading to the same block as we come from, we would infinite loop.
409  if (SuccBB == BB) {
410    DOUT << "  Not threading BB '" << BB->getNameStart()
411    << "' - would thread to self!\n";
412    return false;
413  }
414
415
416  // And finally, do it!
417  DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
418       << "' to '" << SuccBB->getNameStart() << "' with cost: "
419       << JumpThreadCost << ", across block:\n    "
420       << *BB << "\n";
421
422  ThreadEdge(BB, PredBB, SuccBB);
423  ++NumThreads;
424  return true;
425}
426
427
428/// ThreadEdge - We have decided that it is safe and profitable to thread an
429/// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
430/// change.
431void JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
432                               BasicBlock *SuccBB) {
433
434  // Jump Threading can not update SSA properties correctly if the values
435  // defined in the duplicated block are used outside of the block itself.  For
436  // this reason, we spill all values that are used outside of BB to the stack.
437  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
438    if (!I->isUsedOutsideOfBlock(BB))
439      continue;
440
441    // We found a use of I outside of BB.  Create a new stack slot to
442    // break this inter-block usage pattern.
443    if (!isa<StructType>(I->getType())) {
444      DemoteRegToStack(*I);
445      continue;
446    }
447
448    // Alternatively, I must be a call or invoke that returns multiple retvals.
449    // We can't use 'DemoteRegToStack' because that will create loads and
450    // stores of aggregates which is not valid yet.  If I is a call, we can just
451    // pull all the getresult instructions up to this block.  If I is an invoke,
452    // we are out of luck.
453    BasicBlock::iterator IP = I; ++IP;
454    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
455         UI != E; ++UI)
456      cast<GetResultInst>(UI)->moveBefore(IP);
457  }
458
459  // We are going to have to map operands from the original BB block to the new
460  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
461  // account for entry from PredBB.
462  DenseMap<Instruction*, Value*> ValueMapping;
463
464  BasicBlock *NewBB =
465    BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB);
466  NewBB->moveAfter(PredBB);
467
468  BasicBlock::iterator BI = BB->begin();
469  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
470    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
471
472  // Clone the non-phi instructions of BB into NewBB, keeping track of the
473  // mapping and using it to remap operands in the cloned instructions.
474  for (; !isa<TerminatorInst>(BI); ++BI) {
475    Instruction *New = BI->clone();
476    New->setName(BI->getNameStart());
477    NewBB->getInstList().push_back(New);
478    ValueMapping[BI] = New;
479
480    // Remap operands to patch up intra-block references.
481    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
482      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i)))
483        if (Value *Remapped = ValueMapping[Inst])
484          New->setOperand(i, Remapped);
485  }
486
487  // We didn't copy the terminator from BB over to NewBB, because there is now
488  // an unconditional jump to SuccBB.  Insert the unconditional jump.
489  BranchInst::Create(SuccBB, NewBB);
490
491  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
492  // PHI nodes for NewBB now.
493  for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
494    PHINode *PN = cast<PHINode>(PNI);
495    // Ok, we have a PHI node.  Figure out what the incoming value was for the
496    // DestBlock.
497    Value *IV = PN->getIncomingValueForBlock(BB);
498
499    // Remap the value if necessary.
500    if (Instruction *Inst = dyn_cast<Instruction>(IV))
501      if (Value *MappedIV = ValueMapping[Inst])
502        IV = MappedIV;
503    PN->addIncoming(IV, NewBB);
504  }
505
506  // Finally, NewBB is good to go.  Update the terminator of PredBB to jump to
507  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
508  // us to simplify any PHI nodes in BB.
509  TerminatorInst *PredTerm = PredBB->getTerminator();
510  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
511    if (PredTerm->getSuccessor(i) == BB) {
512      BB->removePredecessor(PredBB);
513      PredTerm->setSuccessor(i, NewBB);
514    }
515}
516