JumpThreading.cpp revision 508955156a25a9abc470a29e1760aa176d341cf9
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Transforms/Utils/Local.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ValueHandle.h"
32using namespace llvm;
33
34STATISTIC(NumThreads, "Number of jumps threaded");
35STATISTIC(NumFolds,   "Number of terminators folded");
36
37static cl::opt<unsigned>
38Threshold("jump-threading-threshold",
39          cl::desc("Max block size to duplicate for jump threading"),
40          cl::init(6), cl::Hidden);
41
42namespace {
43  /// This pass performs 'jump threading', which looks at blocks that have
44  /// multiple predecessors and multiple successors.  If one or more of the
45  /// predecessors of the block can be proven to always jump to one of the
46  /// successors, we forward the edge from the predecessor to the successor by
47  /// duplicating the contents of this block.
48  ///
49  /// An example of when this can occur is code like this:
50  ///
51  ///   if () { ...
52  ///     X = 4;
53  ///   }
54  ///   if (X < 3) {
55  ///
56  /// In this case, the unconditional branch at the end of the first if can be
57  /// revectored to the false side of the second if.
58  ///
59  class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
60    TargetData *TD;
61#ifdef NDEBUG
62    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
63#else
64    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
65#endif
66  public:
67    static char ID; // Pass identification
68    JumpThreading() : FunctionPass(&ID) {}
69
70    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
71      AU.addRequired<TargetData>();
72    }
73
74    bool runOnFunction(Function &F);
75    void FindLoopHeaders(Function &F);
76
77    bool ProcessBlock(BasicBlock *BB);
78    bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB,
79                    unsigned JumpThreadCost);
80    BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
81    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
82    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
83
84    bool ProcessJumpOnPHI(PHINode *PN);
85    bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
86    bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
87
88    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
89  };
90}
91
92char JumpThreading::ID = 0;
93static RegisterPass<JumpThreading>
94X("jump-threading", "Jump Threading");
95
96// Public interface to the Jump Threading pass
97FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
98
99/// runOnFunction - Top level algorithm.
100///
101bool JumpThreading::runOnFunction(Function &F) {
102  DOUT << "Jump threading on function '" << F.getNameStart() << "'\n";
103  TD = &getAnalysis<TargetData>();
104
105  FindLoopHeaders(F);
106
107  bool AnotherIteration = true, EverChanged = false;
108  while (AnotherIteration) {
109    AnotherIteration = false;
110    bool Changed = false;
111    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
112      BasicBlock *BB = I;
113      while (ProcessBlock(BB))
114        Changed = true;
115
116      ++I;
117
118      // If the block is trivially dead, zap it.  This eliminates the successor
119      // edges which simplifies the CFG.
120      if (pred_begin(BB) == pred_end(BB) &&
121          BB != &BB->getParent()->getEntryBlock()) {
122        DOUT << "  JT: Deleting dead block '" << BB->getNameStart()
123             << "' with terminator: " << *BB->getTerminator();
124        LoopHeaders.erase(BB);
125        DeleteDeadBlock(BB);
126        Changed = true;
127      }
128    }
129    AnotherIteration = Changed;
130    EverChanged |= Changed;
131  }
132
133  LoopHeaders.clear();
134  return EverChanged;
135}
136
137/// FindLoopHeaders - We do not want jump threading to turn proper loop
138/// structures into irreducible loops.  Doing this breaks up the loop nesting
139/// hierarchy and pessimizes later transformations.  To prevent this from
140/// happening, we first have to find the loop headers.  Here we approximate this
141/// by finding targets of backedges in the CFG.
142///
143/// Note that there definitely are cases when we want to allow threading of
144/// edges across a loop header.  For example, threading a jump from outside the
145/// loop (the preheader) to an exit block of the loop is definitely profitable.
146/// It is also almost always profitable to thread backedges from within the loop
147/// to exit blocks, and is often profitable to thread backedges to other blocks
148/// within the loop (forming a nested loop).  This simple analysis is not rich
149/// enough to track all of these properties and keep it up-to-date as the CFG
150/// mutates, so we don't allow any of these transformations.
151///
152void JumpThreading::FindLoopHeaders(Function &F) {
153  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
154  FindFunctionBackedges(F, Edges);
155
156  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
157    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
158}
159
160
161/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
162/// value for the PHI, factor them together so we get one block to thread for
163/// the whole group.
164/// This is important for things like "phi i1 [true, true, false, true, x]"
165/// where we only need to clone the block for the true blocks once.
166///
167BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
168  SmallVector<BasicBlock*, 16> CommonPreds;
169  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
170    if (PN->getIncomingValue(i) == Val)
171      CommonPreds.push_back(PN->getIncomingBlock(i));
172
173  if (CommonPreds.size() == 1)
174    return CommonPreds[0];
175
176  DOUT << "  Factoring out " << CommonPreds.size()
177       << " common predecessors.\n";
178  return SplitBlockPredecessors(PN->getParent(),
179                                &CommonPreds[0], CommonPreds.size(),
180                                ".thr_comm", this);
181}
182
183
184/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
185/// thread across it.
186static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
187  /// Ignore PHI nodes, these will be flattened when duplication happens.
188  BasicBlock::const_iterator I = BB->getFirstNonPHI();
189
190  // Sum up the cost of each instruction until we get to the terminator.  Don't
191  // include the terminator because the copy won't include it.
192  unsigned Size = 0;
193  for (; !isa<TerminatorInst>(I); ++I) {
194    // Debugger intrinsics don't incur code size.
195    if (isa<DbgInfoIntrinsic>(I)) continue;
196
197    // If this is a pointer->pointer bitcast, it is free.
198    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
199      continue;
200
201    // All other instructions count for at least one unit.
202    ++Size;
203
204    // Calls are more expensive.  If they are non-intrinsic calls, we model them
205    // as having cost of 4.  If they are a non-vector intrinsic, we model them
206    // as having cost of 2 total, and if they are a vector intrinsic, we model
207    // them as having cost 1.
208    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
209      if (!isa<IntrinsicInst>(CI))
210        Size += 3;
211      else if (!isa<VectorType>(CI->getType()))
212        Size += 1;
213    }
214  }
215
216  // Threading through a switch statement is particularly profitable.  If this
217  // block ends in a switch, decrease its cost to make it more likely to happen.
218  if (isa<SwitchInst>(I))
219    Size = Size > 6 ? Size-6 : 0;
220
221  return Size;
222}
223
224/// ProcessBlock - If there are any predecessors whose control can be threaded
225/// through to a successor, transform them now.
226bool JumpThreading::ProcessBlock(BasicBlock *BB) {
227  // If this block has a single predecessor, and if that pred has a single
228  // successor, merge the blocks.  This encourages recursive jump threading
229  // because now the condition in this block can be threaded through
230  // predecessors of our predecessor block.
231  if (BasicBlock *SinglePred = BB->getSinglePredecessor())
232    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
233        SinglePred != BB) {
234      // If SinglePred was a loop header, BB becomes one.
235      if (LoopHeaders.erase(SinglePred))
236        LoopHeaders.insert(BB);
237
238      // Remember if SinglePred was the entry block of the function.  If so, we
239      // will need to move BB back to the entry position.
240      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
241      MergeBasicBlockIntoOnlyPred(BB);
242
243      if (isEntry && BB != &BB->getParent()->getEntryBlock())
244        BB->moveBefore(&BB->getParent()->getEntryBlock());
245      return true;
246    }
247
248  // See if this block ends with a branch or switch.  If so, see if the
249  // condition is a phi node.  If so, and if an entry of the phi node is a
250  // constant, we can thread the block.
251  Value *Condition;
252  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
253    // Can't thread an unconditional jump.
254    if (BI->isUnconditional()) return false;
255    Condition = BI->getCondition();
256  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
257    Condition = SI->getCondition();
258  else
259    return false; // Must be an invoke.
260
261  // If the terminator of this block is branching on a constant, simplify the
262  // terminator to an unconditional branch.  This can occur due to threading in
263  // other blocks.
264  if (isa<ConstantInt>(Condition)) {
265    DOUT << "  In block '" << BB->getNameStart()
266         << "' folding terminator: " << *BB->getTerminator();
267    ++NumFolds;
268    ConstantFoldTerminator(BB);
269    return true;
270  }
271
272  // If the terminator is branching on an undef, we can pick any of the
273  // successors to branch to.  Since this is arbitrary, we pick the successor
274  // with the fewest predecessors.  This should reduce the in-degree of the
275  // others.
276  if (isa<UndefValue>(Condition)) {
277    TerminatorInst *BBTerm = BB->getTerminator();
278    unsigned MinSucc = 0;
279    BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
280    // Compute the successor with the minimum number of predecessors.
281    unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
282    for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
283      TestBB = BBTerm->getSuccessor(i);
284      unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
285      if (NumPreds < MinNumPreds)
286        MinSucc = i;
287    }
288
289    // Fold the branch/switch.
290    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
291      if (i == MinSucc) continue;
292      BBTerm->getSuccessor(i)->removePredecessor(BB);
293    }
294
295    DOUT << "  In block '" << BB->getNameStart()
296         << "' folding undef terminator: " << *BBTerm;
297    BranchInst::Create(BBTerm->getSuccessor(MinSucc), BBTerm);
298    BBTerm->eraseFromParent();
299    return true;
300  }
301
302  Instruction *CondInst = dyn_cast<Instruction>(Condition);
303
304  // If the condition is an instruction defined in another block, see if a
305  // predecessor has the same condition:
306  //     br COND, BBX, BBY
307  //  BBX:
308  //     br COND, BBZ, BBW
309  if (!Condition->hasOneUse() && // Multiple uses.
310      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
311    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
312    if (isa<BranchInst>(BB->getTerminator())) {
313      for (; PI != E; ++PI)
314        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
315          if (PBI->isConditional() && PBI->getCondition() == Condition &&
316              ProcessBranchOnDuplicateCond(*PI, BB))
317            return true;
318    } else {
319      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
320      for (; PI != E; ++PI)
321        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
322          if (PSI->getCondition() == Condition &&
323              ProcessSwitchOnDuplicateCond(*PI, BB))
324            return true;
325    }
326  }
327
328  // All the rest of our checks depend on the condition being an instruction.
329  if (CondInst == 0)
330    return false;
331
332  // See if this is a phi node in the current block.
333  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
334    if (PN->getParent() == BB)
335      return ProcessJumpOnPHI(PN);
336
337  // If this is a conditional branch whose condition is and/or of a phi, try to
338  // simplify it.
339  if ((CondInst->getOpcode() == Instruction::And ||
340       CondInst->getOpcode() == Instruction::Or) &&
341      isa<BranchInst>(BB->getTerminator()) &&
342      ProcessBranchOnLogical(CondInst, BB,
343                             CondInst->getOpcode() == Instruction::And))
344    return true;
345
346  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
347    if (isa<PHINode>(CondCmp->getOperand(0))) {
348      // If we have "br (phi != 42)" and the phi node has any constant values
349      // as operands, we can thread through this block.
350      //
351      // If we have "br (cmp phi, x)" and the phi node contains x such that the
352      // comparison uniquely identifies the branch target, we can thread
353      // through this block.
354
355      if (ProcessBranchOnCompare(CondCmp, BB))
356        return true;
357    }
358
359    // If we have a comparison, loop over the predecessors to see if there is
360    // a condition with the same value.
361    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
362    for (; PI != E; ++PI)
363      if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
364        if (PBI->isConditional() && *PI != BB) {
365          if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
366            if (CI->getOperand(0) == CondCmp->getOperand(0) &&
367                CI->getOperand(1) == CondCmp->getOperand(1) &&
368                CI->getPredicate() == CondCmp->getPredicate()) {
369              // TODO: Could handle things like (x != 4) --> (x == 17)
370              if (ProcessBranchOnDuplicateCond(*PI, BB))
371                return true;
372            }
373          }
374        }
375  }
376
377  // Check for some cases that are worth simplifying.  Right now we want to look
378  // for loads that are used by a switch or by the condition for the branch.  If
379  // we see one, check to see if it's partially redundant.  If so, insert a PHI
380  // which can then be used to thread the values.
381  //
382  // This is particularly important because reg2mem inserts loads and stores all
383  // over the place, and this blocks jump threading if we don't zap them.
384  Value *SimplifyValue = CondInst;
385  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
386    if (isa<Constant>(CondCmp->getOperand(1)))
387      SimplifyValue = CondCmp->getOperand(0);
388
389  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
390    if (SimplifyPartiallyRedundantLoad(LI))
391      return true;
392
393  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
394  // "(X == 4)" thread through this block.
395
396  return false;
397}
398
399/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
400/// block that jump on exactly the same condition.  This means that we almost
401/// always know the direction of the edge in the DESTBB:
402///  PREDBB:
403///     br COND, DESTBB, BBY
404///  DESTBB:
405///     br COND, BBZ, BBW
406///
407/// If DESTBB has multiple predecessors, we can't just constant fold the branch
408/// in DESTBB, we have to thread over it.
409bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
410                                                 BasicBlock *BB) {
411  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
412
413  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
414  // fold the branch to an unconditional one, which allows other recursive
415  // simplifications.
416  bool BranchDir;
417  if (PredBI->getSuccessor(1) != BB)
418    BranchDir = true;
419  else if (PredBI->getSuccessor(0) != BB)
420    BranchDir = false;
421  else {
422    DOUT << "  In block '" << PredBB->getNameStart()
423         << "' folding terminator: " << *PredBB->getTerminator();
424    ++NumFolds;
425    ConstantFoldTerminator(PredBB);
426    return true;
427  }
428
429  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
430
431  // If the dest block has one predecessor, just fix the branch condition to a
432  // constant and fold it.
433  if (BB->getSinglePredecessor()) {
434    DOUT << "  In block '" << BB->getNameStart()
435         << "' folding condition to '" << BranchDir << "': "
436         << *BB->getTerminator();
437    ++NumFolds;
438    DestBI->setCondition(Context->getConstantInt(Type::Int1Ty, BranchDir));
439    ConstantFoldTerminator(BB);
440    return true;
441  }
442
443  // Otherwise we need to thread from PredBB to DestBB's successor which
444  // involves code duplication.  Check to see if it is worth it.
445  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
446  if (JumpThreadCost > Threshold) {
447    DOUT << "  Not threading BB '" << BB->getNameStart()
448         << "' - Cost is too high: " << JumpThreadCost << "\n";
449    return false;
450  }
451
452  // Next, figure out which successor we are threading to.
453  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
454
455  // Ok, try to thread it!
456  return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
457}
458
459/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
460/// block that switch on exactly the same condition.  This means that we almost
461/// always know the direction of the edge in the DESTBB:
462///  PREDBB:
463///     switch COND [... DESTBB, BBY ... ]
464///  DESTBB:
465///     switch COND [... BBZ, BBW ]
466///
467/// Optimizing switches like this is very important, because simplifycfg builds
468/// switches out of repeated 'if' conditions.
469bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
470                                                 BasicBlock *DestBB) {
471  // Can't thread edge to self.
472  if (PredBB == DestBB)
473    return false;
474
475
476  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
477  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
478
479  // There are a variety of optimizations that we can potentially do on these
480  // blocks: we order them from most to least preferable.
481
482  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
483  // directly to their destination.  This does not introduce *any* code size
484  // growth.  Skip debug info first.
485  BasicBlock::iterator BBI = DestBB->begin();
486  while (isa<DbgInfoIntrinsic>(BBI))
487    BBI++;
488
489  // FIXME: Thread if it just contains a PHI.
490  if (isa<SwitchInst>(BBI)) {
491    bool MadeChange = false;
492    // Ignore the default edge for now.
493    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
494      ConstantInt *DestVal = DestSI->getCaseValue(i);
495      BasicBlock *DestSucc = DestSI->getSuccessor(i);
496
497      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
498      // PredSI has an explicit case for it.  If so, forward.  If it is covered
499      // by the default case, we can't update PredSI.
500      unsigned PredCase = PredSI->findCaseValue(DestVal);
501      if (PredCase == 0) continue;
502
503      // If PredSI doesn't go to DestBB on this value, then it won't reach the
504      // case on this condition.
505      if (PredSI->getSuccessor(PredCase) != DestBB &&
506          DestSI->getSuccessor(i) != DestBB)
507        continue;
508
509      // Otherwise, we're safe to make the change.  Make sure that the edge from
510      // DestSI to DestSucc is not critical and has no PHI nodes.
511      DOUT << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI;
512      DOUT << "THROUGH: " << *DestSI;
513
514      // If the destination has PHI nodes, just split the edge for updating
515      // simplicity.
516      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
517        SplitCriticalEdge(DestSI, i, this);
518        DestSucc = DestSI->getSuccessor(i);
519      }
520      FoldSingleEntryPHINodes(DestSucc);
521      PredSI->setSuccessor(PredCase, DestSucc);
522      MadeChange = true;
523    }
524
525    if (MadeChange)
526      return true;
527  }
528
529  return false;
530}
531
532
533/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
534/// load instruction, eliminate it by replacing it with a PHI node.  This is an
535/// important optimization that encourages jump threading, and needs to be run
536/// interlaced with other jump threading tasks.
537bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
538  // Don't hack volatile loads.
539  if (LI->isVolatile()) return false;
540
541  // If the load is defined in a block with exactly one predecessor, it can't be
542  // partially redundant.
543  BasicBlock *LoadBB = LI->getParent();
544  if (LoadBB->getSinglePredecessor())
545    return false;
546
547  Value *LoadedPtr = LI->getOperand(0);
548
549  // If the loaded operand is defined in the LoadBB, it can't be available.
550  // FIXME: Could do PHI translation, that would be fun :)
551  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
552    if (PtrOp->getParent() == LoadBB)
553      return false;
554
555  // Scan a few instructions up from the load, to see if it is obviously live at
556  // the entry to its block.
557  BasicBlock::iterator BBIt = LI;
558
559  if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
560                                                     BBIt, 6)) {
561    // If the value if the load is locally available within the block, just use
562    // it.  This frequently occurs for reg2mem'd allocas.
563    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
564
565    // If the returned value is the load itself, replace with an undef. This can
566    // only happen in dead loops.
567    if (AvailableVal == LI) AvailableVal = Context->getUndef(LI->getType());
568    LI->replaceAllUsesWith(AvailableVal);
569    LI->eraseFromParent();
570    return true;
571  }
572
573  // Otherwise, if we scanned the whole block and got to the top of the block,
574  // we know the block is locally transparent to the load.  If not, something
575  // might clobber its value.
576  if (BBIt != LoadBB->begin())
577    return false;
578
579
580  SmallPtrSet<BasicBlock*, 8> PredsScanned;
581  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
582  AvailablePredsTy AvailablePreds;
583  BasicBlock *OneUnavailablePred = 0;
584
585  // If we got here, the loaded value is transparent through to the start of the
586  // block.  Check to see if it is available in any of the predecessor blocks.
587  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
588       PI != PE; ++PI) {
589    BasicBlock *PredBB = *PI;
590
591    // If we already scanned this predecessor, skip it.
592    if (!PredsScanned.insert(PredBB))
593      continue;
594
595    // Scan the predecessor to see if the value is available in the pred.
596    BBIt = PredBB->end();
597    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
598    if (!PredAvailable) {
599      OneUnavailablePred = PredBB;
600      continue;
601    }
602
603    // If so, this load is partially redundant.  Remember this info so that we
604    // can create a PHI node.
605    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
606  }
607
608  // If the loaded value isn't available in any predecessor, it isn't partially
609  // redundant.
610  if (AvailablePreds.empty()) return false;
611
612  // Okay, the loaded value is available in at least one (and maybe all!)
613  // predecessors.  If the value is unavailable in more than one unique
614  // predecessor, we want to insert a merge block for those common predecessors.
615  // This ensures that we only have to insert one reload, thus not increasing
616  // code size.
617  BasicBlock *UnavailablePred = 0;
618
619  // If there is exactly one predecessor where the value is unavailable, the
620  // already computed 'OneUnavailablePred' block is it.  If it ends in an
621  // unconditional branch, we know that it isn't a critical edge.
622  if (PredsScanned.size() == AvailablePreds.size()+1 &&
623      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
624    UnavailablePred = OneUnavailablePred;
625  } else if (PredsScanned.size() != AvailablePreds.size()) {
626    // Otherwise, we had multiple unavailable predecessors or we had a critical
627    // edge from the one.
628    SmallVector<BasicBlock*, 8> PredsToSplit;
629    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
630
631    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
632      AvailablePredSet.insert(AvailablePreds[i].first);
633
634    // Add all the unavailable predecessors to the PredsToSplit list.
635    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
636         PI != PE; ++PI)
637      if (!AvailablePredSet.count(*PI))
638        PredsToSplit.push_back(*PI);
639
640    // Split them out to their own block.
641    UnavailablePred =
642      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
643                             "thread-split", this);
644  }
645
646  // If the value isn't available in all predecessors, then there will be
647  // exactly one where it isn't available.  Insert a load on that edge and add
648  // it to the AvailablePreds list.
649  if (UnavailablePred) {
650    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
651           "Can't handle critical edge here!");
652    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
653                                 UnavailablePred->getTerminator());
654    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
655  }
656
657  // Now we know that each predecessor of this block has a value in
658  // AvailablePreds, sort them for efficient access as we're walking the preds.
659  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
660
661  // Create a PHI node at the start of the block for the PRE'd load value.
662  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
663  PN->takeName(LI);
664
665  // Insert new entries into the PHI for each predecessor.  A single block may
666  // have multiple entries here.
667  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
668       ++PI) {
669    AvailablePredsTy::iterator I =
670      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
671                       std::make_pair(*PI, (Value*)0));
672
673    assert(I != AvailablePreds.end() && I->first == *PI &&
674           "Didn't find entry for predecessor!");
675
676    PN->addIncoming(I->second, I->first);
677  }
678
679  //cerr << "PRE: " << *LI << *PN << "\n";
680
681  LI->replaceAllUsesWith(PN);
682  LI->eraseFromParent();
683
684  return true;
685}
686
687
688/// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
689/// the current block.  See if there are any simplifications we can do based on
690/// inputs to the phi node.
691///
692bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
693  // See if the phi node has any constant values.  If so, we can determine where
694  // the corresponding predecessor will branch.
695  ConstantInt *PredCst = 0;
696  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
697    if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
698      break;
699
700  // If no incoming value has a constant, we don't know the destination of any
701  // predecessors.
702  if (PredCst == 0)
703    return false;
704
705  // See if the cost of duplicating this block is low enough.
706  BasicBlock *BB = PN->getParent();
707  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
708  if (JumpThreadCost > Threshold) {
709    DOUT << "  Not threading BB '" << BB->getNameStart()
710         << "' - Cost is too high: " << JumpThreadCost << "\n";
711    return false;
712  }
713
714  // If so, we can actually do this threading.  Merge any common predecessors
715  // that will act the same.
716  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
717
718  // Next, figure out which successor we are threading to.
719  BasicBlock *SuccBB;
720  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
721    SuccBB = BI->getSuccessor(PredCst == Context->getConstantIntFalse());
722  else {
723    SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
724    SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
725  }
726
727  // Ok, try to thread it!
728  return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
729}
730
731/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
732/// whose condition is an AND/OR where one side is PN.  If PN has constant
733/// operands that permit us to evaluate the condition for some operand, thread
734/// through the block.  For example with:
735///   br (and X, phi(Y, Z, false))
736/// the predecessor corresponding to the 'false' will always jump to the false
737/// destination of the branch.
738///
739bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
740                                           bool isAnd) {
741  // If this is a binary operator tree of the same AND/OR opcode, check the
742  // LHS/RHS.
743  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
744    if ((isAnd && BO->getOpcode() == Instruction::And) ||
745        (!isAnd && BO->getOpcode() == Instruction::Or)) {
746      if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
747        return true;
748      if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
749        return true;
750    }
751
752  // If this isn't a PHI node, we can't handle it.
753  PHINode *PN = dyn_cast<PHINode>(V);
754  if (!PN || PN->getParent() != BB) return false;
755
756  // We can only do the simplification for phi nodes of 'false' with AND or
757  // 'true' with OR.  See if we have any entries in the phi for this.
758  unsigned PredNo = ~0U;
759  ConstantInt *PredCst = Context->getConstantInt(Type::Int1Ty, !isAnd);
760  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
761    if (PN->getIncomingValue(i) == PredCst) {
762      PredNo = i;
763      break;
764    }
765  }
766
767  // If no match, bail out.
768  if (PredNo == ~0U)
769    return false;
770
771  // See if the cost of duplicating this block is low enough.
772  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
773  if (JumpThreadCost > Threshold) {
774    DOUT << "  Not threading BB '" << BB->getNameStart()
775         << "' - Cost is too high: " << JumpThreadCost << "\n";
776    return false;
777  }
778
779  // If so, we can actually do this threading.  Merge any common predecessors
780  // that will act the same.
781  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
782
783  // Next, figure out which successor we are threading to.  If this was an AND,
784  // the constant must be FALSE, and we must be targeting the 'false' block.
785  // If this is an OR, the constant must be TRUE, and we must be targeting the
786  // 'true' block.
787  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
788
789  // Ok, try to thread it!
790  return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
791}
792
793/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
794/// hand sides of the compare instruction, try to determine the result. If the
795/// result can not be determined, a null pointer is returned.
796static Constant *GetResultOfComparison(CmpInst::Predicate pred,
797                                       Value *LHS, Value *RHS,
798                                       LLVMContext* Context) {
799  if (Constant *CLHS = dyn_cast<Constant>(LHS))
800    if (Constant *CRHS = dyn_cast<Constant>(RHS))
801      return Context->getConstantExprCompare(pred, CLHS, CRHS);
802
803  if (LHS == RHS)
804    if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
805      return ICmpInst::isTrueWhenEqual(pred) ?
806                 Context->getConstantIntTrue() : Context->getConstantIntFalse();
807
808  return 0;
809}
810
811/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
812/// node and a value.  If we can identify when the comparison is true between
813/// the phi inputs and the value, we can fold the compare for that edge and
814/// thread through it.
815bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
816  PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
817  Value *RHS = Cmp->getOperand(1);
818
819  // If the phi isn't in the current block, an incoming edge to this block
820  // doesn't control the destination.
821  if (PN->getParent() != BB)
822    return false;
823
824  // We can do this simplification if any comparisons fold to true or false.
825  // See if any do.
826  Value *PredVal = 0;
827  bool TrueDirection = false;
828  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
829    PredVal = PN->getIncomingValue(i);
830
831    Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
832                                          RHS, Context);
833    if (!Res) {
834      PredVal = 0;
835      continue;
836    }
837
838    // If this folded to a constant expr, we can't do anything.
839    if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
840      TrueDirection = ResC->getZExtValue();
841      break;
842    }
843    // If this folded to undef, just go the false way.
844    if (isa<UndefValue>(Res)) {
845      TrueDirection = false;
846      break;
847    }
848
849    // Otherwise, we can't fold this input.
850    PredVal = 0;
851  }
852
853  // If no match, bail out.
854  if (PredVal == 0)
855    return false;
856
857  // See if the cost of duplicating this block is low enough.
858  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
859  if (JumpThreadCost > Threshold) {
860    DOUT << "  Not threading BB '" << BB->getNameStart()
861         << "' - Cost is too high: " << JumpThreadCost << "\n";
862    return false;
863  }
864
865  // If so, we can actually do this threading.  Merge any common predecessors
866  // that will act the same.
867  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
868
869  // Next, get our successor.
870  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
871
872  // Ok, try to thread it!
873  return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
874}
875
876
877/// ThreadEdge - We have decided that it is safe and profitable to thread an
878/// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
879/// change.
880bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
881                               BasicBlock *SuccBB, unsigned JumpThreadCost) {
882
883  // If threading to the same block as we come from, we would infinite loop.
884  if (SuccBB == BB) {
885    DOUT << "  Not threading across BB '" << BB->getNameStart()
886         << "' - would thread to self!\n";
887    return false;
888  }
889
890  // If threading this would thread across a loop header, don't thread the edge.
891  // See the comments above FindLoopHeaders for justifications and caveats.
892  if (LoopHeaders.count(BB)) {
893    DOUT << "  Not threading from '" << PredBB->getNameStart()
894         << "' across loop header BB '" << BB->getNameStart()
895         << "' to dest BB '" << SuccBB->getNameStart()
896         << "' - it might create an irreducible loop!\n";
897    return false;
898  }
899
900  // And finally, do it!
901  DOUT << "  Threading edge from '" << PredBB->getNameStart() << "' to '"
902       << SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
903       << ", across block:\n    "
904       << *BB << "\n";
905
906  // Jump Threading can not update SSA properties correctly if the values
907  // defined in the duplicated block are used outside of the block itself.  For
908  // this reason, we spill all values that are used outside of BB to the stack.
909  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
910    if (!I->isUsedOutsideOfBlock(BB))
911      continue;
912
913    // We found a use of I outside of BB.  Create a new stack slot to
914    // break this inter-block usage pattern.
915    DemoteRegToStack(*I);
916  }
917
918  // We are going to have to map operands from the original BB block to the new
919  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
920  // account for entry from PredBB.
921  DenseMap<Instruction*, Value*> ValueMapping;
922
923  BasicBlock *NewBB =
924    BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB);
925  NewBB->moveAfter(PredBB);
926
927  BasicBlock::iterator BI = BB->begin();
928  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
929    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
930
931  // Clone the non-phi instructions of BB into NewBB, keeping track of the
932  // mapping and using it to remap operands in the cloned instructions.
933  for (; !isa<TerminatorInst>(BI); ++BI) {
934    Instruction *New = BI->clone();
935    New->setName(BI->getNameStart());
936    NewBB->getInstList().push_back(New);
937    ValueMapping[BI] = New;
938
939    // Remap operands to patch up intra-block references.
940    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
941      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
942        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
943        if (I != ValueMapping.end())
944          New->setOperand(i, I->second);
945      }
946  }
947
948  // We didn't copy the terminator from BB over to NewBB, because there is now
949  // an unconditional jump to SuccBB.  Insert the unconditional jump.
950  BranchInst::Create(SuccBB, NewBB);
951
952  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
953  // PHI nodes for NewBB now.
954  for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
955    PHINode *PN = cast<PHINode>(PNI);
956    // Ok, we have a PHI node.  Figure out what the incoming value was for the
957    // DestBlock.
958    Value *IV = PN->getIncomingValueForBlock(BB);
959
960    // Remap the value if necessary.
961    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
962      DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
963      if (I != ValueMapping.end())
964        IV = I->second;
965    }
966    PN->addIncoming(IV, NewBB);
967  }
968
969  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
970  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
971  // us to simplify any PHI nodes in BB.
972  TerminatorInst *PredTerm = PredBB->getTerminator();
973  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
974    if (PredTerm->getSuccessor(i) == BB) {
975      BB->removePredecessor(PredBB);
976      PredTerm->setSuccessor(i, NewBB);
977    }
978
979  // At this point, the IR is fully up to date and consistent.  Do a quick scan
980  // over the new instructions and zap any that are constants or dead.  This
981  // frequently happens because of phi translation.
982  BI = NewBB->begin();
983  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
984    Instruction *Inst = BI++;
985    if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
986      Inst->replaceAllUsesWith(C);
987      Inst->eraseFromParent();
988      continue;
989    }
990
991    RecursivelyDeleteTriviallyDeadInstructions(Inst);
992  }
993
994  // Threaded an edge!
995  ++NumThreads;
996  return true;
997}
998