JumpThreading.cpp revision 67ae13575900e8efd056672987249fd0adbf5e73
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/LazyValueInfo.h"
25#include "llvm/Analysis/Loads.h"
26#include "llvm/DataLayout.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ValueHandle.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetLibraryInfo.h"
35#include "llvm/Transforms/Utils/BasicBlockUtils.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/SSAUpdater.h"
38using namespace llvm;
39
40STATISTIC(NumThreads, "Number of jumps threaded");
41STATISTIC(NumFolds,   "Number of terminators folded");
42STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
43
44static cl::opt<unsigned>
45Threshold("jump-threading-threshold",
46          cl::desc("Max block size to duplicate for jump threading"),
47          cl::init(6), cl::Hidden);
48
49namespace {
50  // These are at global scope so static functions can use them too.
51  typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
52  typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
53
54  // This is used to keep track of what kind of constant we're currently hoping
55  // to find.
56  enum ConstantPreference {
57    WantInteger,
58    WantBlockAddress
59  };
60
61  /// This pass performs 'jump threading', which looks at blocks that have
62  /// multiple predecessors and multiple successors.  If one or more of the
63  /// predecessors of the block can be proven to always jump to one of the
64  /// successors, we forward the edge from the predecessor to the successor by
65  /// duplicating the contents of this block.
66  ///
67  /// An example of when this can occur is code like this:
68  ///
69  ///   if () { ...
70  ///     X = 4;
71  ///   }
72  ///   if (X < 3) {
73  ///
74  /// In this case, the unconditional branch at the end of the first if can be
75  /// revectored to the false side of the second if.
76  ///
77  class JumpThreading : public FunctionPass {
78    DataLayout *TD;
79    TargetLibraryInfo *TLI;
80    LazyValueInfo *LVI;
81#ifdef NDEBUG
82    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
83#else
84    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
85#endif
86    DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
87
88    // RAII helper for updating the recursion stack.
89    struct RecursionSetRemover {
90      DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
91      std::pair<Value*, BasicBlock*> ThePair;
92
93      RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
94                          std::pair<Value*, BasicBlock*> P)
95        : TheSet(S), ThePair(P) { }
96
97      ~RecursionSetRemover() {
98        TheSet.erase(ThePair);
99      }
100    };
101  public:
102    static char ID; // Pass identification
103    JumpThreading() : FunctionPass(ID) {
104      initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
105    }
106
107    bool runOnFunction(Function &F);
108
109    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
110      AU.addRequired<LazyValueInfo>();
111      AU.addPreserved<LazyValueInfo>();
112      AU.addRequired<TargetLibraryInfo>();
113    }
114
115    void FindLoopHeaders(Function &F);
116    bool ProcessBlock(BasicBlock *BB);
117    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
118                    BasicBlock *SuccBB);
119    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
120                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
121
122    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
123                                         PredValueInfo &Result,
124                                         ConstantPreference Preference);
125    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
126                                ConstantPreference Preference);
127
128    bool ProcessBranchOnPHI(PHINode *PN);
129    bool ProcessBranchOnXOR(BinaryOperator *BO);
130
131    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
132  };
133}
134
135char JumpThreading::ID = 0;
136INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
137                "Jump Threading", false, false)
138INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
139INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
140INITIALIZE_PASS_END(JumpThreading, "jump-threading",
141                "Jump Threading", false, false)
142
143// Public interface to the Jump Threading pass
144FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
145
146/// runOnFunction - Top level algorithm.
147///
148bool JumpThreading::runOnFunction(Function &F) {
149  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
150  TD = getAnalysisIfAvailable<DataLayout>();
151  TLI = &getAnalysis<TargetLibraryInfo>();
152  LVI = &getAnalysis<LazyValueInfo>();
153
154  FindLoopHeaders(F);
155
156  bool Changed, EverChanged = false;
157  do {
158    Changed = false;
159    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
160      BasicBlock *BB = I;
161      // Thread all of the branches we can over this block.
162      while (ProcessBlock(BB))
163        Changed = true;
164
165      ++I;
166
167      // If the block is trivially dead, zap it.  This eliminates the successor
168      // edges which simplifies the CFG.
169      if (pred_begin(BB) == pred_end(BB) &&
170          BB != &BB->getParent()->getEntryBlock()) {
171        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
172              << "' with terminator: " << *BB->getTerminator() << '\n');
173        LoopHeaders.erase(BB);
174        LVI->eraseBlock(BB);
175        DeleteDeadBlock(BB);
176        Changed = true;
177        continue;
178      }
179
180      BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
181
182      // Can't thread an unconditional jump, but if the block is "almost
183      // empty", we can replace uses of it with uses of the successor and make
184      // this dead.
185      if (BI && BI->isUnconditional() &&
186          BB != &BB->getParent()->getEntryBlock() &&
187          // If the terminator is the only non-phi instruction, try to nuke it.
188          BB->getFirstNonPHIOrDbg()->isTerminator()) {
189        // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
190        // block, we have to make sure it isn't in the LoopHeaders set.  We
191        // reinsert afterward if needed.
192        bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
193        BasicBlock *Succ = BI->getSuccessor(0);
194
195        // FIXME: It is always conservatively correct to drop the info
196        // for a block even if it doesn't get erased.  This isn't totally
197        // awesome, but it allows us to use AssertingVH to prevent nasty
198        // dangling pointer issues within LazyValueInfo.
199        LVI->eraseBlock(BB);
200        if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
201          Changed = true;
202          // If we deleted BB and BB was the header of a loop, then the
203          // successor is now the header of the loop.
204          BB = Succ;
205        }
206
207        if (ErasedFromLoopHeaders)
208          LoopHeaders.insert(BB);
209      }
210    }
211    EverChanged |= Changed;
212  } while (Changed);
213
214  LoopHeaders.clear();
215  return EverChanged;
216}
217
218/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
219/// thread across it. Stop scanning the block when passing the threshold.
220static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
221                                             unsigned Threshold) {
222  /// Ignore PHI nodes, these will be flattened when duplication happens.
223  BasicBlock::const_iterator I = BB->getFirstNonPHI();
224
225  // FIXME: THREADING will delete values that are just used to compute the
226  // branch, so they shouldn't count against the duplication cost.
227
228  // Sum up the cost of each instruction until we get to the terminator.  Don't
229  // include the terminator because the copy won't include it.
230  unsigned Size = 0;
231  for (; !isa<TerminatorInst>(I); ++I) {
232
233    // Stop scanning the block if we've reached the threshold.
234    if (Size > Threshold)
235      return Size;
236
237    // Debugger intrinsics don't incur code size.
238    if (isa<DbgInfoIntrinsic>(I)) continue;
239
240    // If this is a pointer->pointer bitcast, it is free.
241    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
242      continue;
243
244    // All other instructions count for at least one unit.
245    ++Size;
246
247    // Calls are more expensive.  If they are non-intrinsic calls, we model them
248    // as having cost of 4.  If they are a non-vector intrinsic, we model them
249    // as having cost of 2 total, and if they are a vector intrinsic, we model
250    // them as having cost 1.
251    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
252      if (CI->hasFnAttr(Attribute::NoDuplicate))
253        // Blocks with NoDuplicate are modelled as having infinite cost, so they
254        // are never duplicated.
255        return ~0U;
256      else if (!isa<IntrinsicInst>(CI))
257        Size += 3;
258      else if (!CI->getType()->isVectorTy())
259        Size += 1;
260    }
261  }
262
263  // Threading through a switch statement is particularly profitable.  If this
264  // block ends in a switch, decrease its cost to make it more likely to happen.
265  if (isa<SwitchInst>(I))
266    Size = Size > 6 ? Size-6 : 0;
267
268  // The same holds for indirect branches, but slightly more so.
269  if (isa<IndirectBrInst>(I))
270    Size = Size > 8 ? Size-8 : 0;
271
272  return Size;
273}
274
275/// FindLoopHeaders - We do not want jump threading to turn proper loop
276/// structures into irreducible loops.  Doing this breaks up the loop nesting
277/// hierarchy and pessimizes later transformations.  To prevent this from
278/// happening, we first have to find the loop headers.  Here we approximate this
279/// by finding targets of backedges in the CFG.
280///
281/// Note that there definitely are cases when we want to allow threading of
282/// edges across a loop header.  For example, threading a jump from outside the
283/// loop (the preheader) to an exit block of the loop is definitely profitable.
284/// It is also almost always profitable to thread backedges from within the loop
285/// to exit blocks, and is often profitable to thread backedges to other blocks
286/// within the loop (forming a nested loop).  This simple analysis is not rich
287/// enough to track all of these properties and keep it up-to-date as the CFG
288/// mutates, so we don't allow any of these transformations.
289///
290void JumpThreading::FindLoopHeaders(Function &F) {
291  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
292  FindFunctionBackedges(F, Edges);
293
294  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
295    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
296}
297
298/// getKnownConstant - Helper method to determine if we can thread over a
299/// terminator with the given value as its condition, and if so what value to
300/// use for that. What kind of value this is depends on whether we want an
301/// integer or a block address, but an undef is always accepted.
302/// Returns null if Val is null or not an appropriate constant.
303static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
304  if (!Val)
305    return 0;
306
307  // Undef is "known" enough.
308  if (UndefValue *U = dyn_cast<UndefValue>(Val))
309    return U;
310
311  if (Preference == WantBlockAddress)
312    return dyn_cast<BlockAddress>(Val->stripPointerCasts());
313
314  return dyn_cast<ConstantInt>(Val);
315}
316
317/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
318/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
319/// in any of our predecessors.  If so, return the known list of value and pred
320/// BB in the result vector.
321///
322/// This returns true if there were any known values.
323///
324bool JumpThreading::
325ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
326                                ConstantPreference Preference) {
327  // This method walks up use-def chains recursively.  Because of this, we could
328  // get into an infinite loop going around loops in the use-def chain.  To
329  // prevent this, keep track of what (value, block) pairs we've already visited
330  // and terminate the search if we loop back to them
331  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
332    return false;
333
334  // An RAII help to remove this pair from the recursion set once the recursion
335  // stack pops back out again.
336  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
337
338  // If V is a constant, then it is known in all predecessors.
339  if (Constant *KC = getKnownConstant(V, Preference)) {
340    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
341      Result.push_back(std::make_pair(KC, *PI));
342
343    return true;
344  }
345
346  // If V is a non-instruction value, or an instruction in a different block,
347  // then it can't be derived from a PHI.
348  Instruction *I = dyn_cast<Instruction>(V);
349  if (I == 0 || I->getParent() != BB) {
350
351    // Okay, if this is a live-in value, see if it has a known value at the end
352    // of any of our predecessors.
353    //
354    // FIXME: This should be an edge property, not a block end property.
355    /// TODO: Per PR2563, we could infer value range information about a
356    /// predecessor based on its terminator.
357    //
358    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
359    // "I" is a non-local compare-with-a-constant instruction.  This would be
360    // able to handle value inequalities better, for example if the compare is
361    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
362    // Perhaps getConstantOnEdge should be smart enough to do this?
363
364    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
365      BasicBlock *P = *PI;
366      // If the value is known by LazyValueInfo to be a constant in a
367      // predecessor, use that information to try to thread this block.
368      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
369      if (Constant *KC = getKnownConstant(PredCst, Preference))
370        Result.push_back(std::make_pair(KC, P));
371    }
372
373    return !Result.empty();
374  }
375
376  /// If I is a PHI node, then we know the incoming values for any constants.
377  if (PHINode *PN = dyn_cast<PHINode>(I)) {
378    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
379      Value *InVal = PN->getIncomingValue(i);
380      if (Constant *KC = getKnownConstant(InVal, Preference)) {
381        Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
382      } else {
383        Constant *CI = LVI->getConstantOnEdge(InVal,
384                                              PN->getIncomingBlock(i), BB);
385        if (Constant *KC = getKnownConstant(CI, Preference))
386          Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
387      }
388    }
389
390    return !Result.empty();
391  }
392
393  PredValueInfoTy LHSVals, RHSVals;
394
395  // Handle some boolean conditions.
396  if (I->getType()->getPrimitiveSizeInBits() == 1) {
397    assert(Preference == WantInteger && "One-bit non-integer type?");
398    // X | true -> true
399    // X & false -> false
400    if (I->getOpcode() == Instruction::Or ||
401        I->getOpcode() == Instruction::And) {
402      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
403                                      WantInteger);
404      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
405                                      WantInteger);
406
407      if (LHSVals.empty() && RHSVals.empty())
408        return false;
409
410      ConstantInt *InterestingVal;
411      if (I->getOpcode() == Instruction::Or)
412        InterestingVal = ConstantInt::getTrue(I->getContext());
413      else
414        InterestingVal = ConstantInt::getFalse(I->getContext());
415
416      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
417
418      // Scan for the sentinel.  If we find an undef, force it to the
419      // interesting value: x|undef -> true and x&undef -> false.
420      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
421        if (LHSVals[i].first == InterestingVal ||
422            isa<UndefValue>(LHSVals[i].first)) {
423          Result.push_back(LHSVals[i]);
424          Result.back().first = InterestingVal;
425          LHSKnownBBs.insert(LHSVals[i].second);
426        }
427      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
428        if (RHSVals[i].first == InterestingVal ||
429            isa<UndefValue>(RHSVals[i].first)) {
430          // If we already inferred a value for this block on the LHS, don't
431          // re-add it.
432          if (!LHSKnownBBs.count(RHSVals[i].second)) {
433            Result.push_back(RHSVals[i]);
434            Result.back().first = InterestingVal;
435          }
436        }
437
438      return !Result.empty();
439    }
440
441    // Handle the NOT form of XOR.
442    if (I->getOpcode() == Instruction::Xor &&
443        isa<ConstantInt>(I->getOperand(1)) &&
444        cast<ConstantInt>(I->getOperand(1))->isOne()) {
445      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
446                                      WantInteger);
447      if (Result.empty())
448        return false;
449
450      // Invert the known values.
451      for (unsigned i = 0, e = Result.size(); i != e; ++i)
452        Result[i].first = ConstantExpr::getNot(Result[i].first);
453
454      return true;
455    }
456
457  // Try to simplify some other binary operator values.
458  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
459    assert(Preference != WantBlockAddress
460            && "A binary operator creating a block address?");
461    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
462      PredValueInfoTy LHSVals;
463      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
464                                      WantInteger);
465
466      // Try to use constant folding to simplify the binary operator.
467      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
468        Constant *V = LHSVals[i].first;
469        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
470
471        if (Constant *KC = getKnownConstant(Folded, WantInteger))
472          Result.push_back(std::make_pair(KC, LHSVals[i].second));
473      }
474    }
475
476    return !Result.empty();
477  }
478
479  // Handle compare with phi operand, where the PHI is defined in this block.
480  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
481    assert(Preference == WantInteger && "Compares only produce integers");
482    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
483    if (PN && PN->getParent() == BB) {
484      // We can do this simplification if any comparisons fold to true or false.
485      // See if any do.
486      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
487        BasicBlock *PredBB = PN->getIncomingBlock(i);
488        Value *LHS = PN->getIncomingValue(i);
489        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
490
491        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
492        if (Res == 0) {
493          if (!isa<Constant>(RHS))
494            continue;
495
496          LazyValueInfo::Tristate
497            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
498                                           cast<Constant>(RHS), PredBB, BB);
499          if (ResT == LazyValueInfo::Unknown)
500            continue;
501          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
502        }
503
504        if (Constant *KC = getKnownConstant(Res, WantInteger))
505          Result.push_back(std::make_pair(KC, PredBB));
506      }
507
508      return !Result.empty();
509    }
510
511
512    // If comparing a live-in value against a constant, see if we know the
513    // live-in value on any predecessors.
514    if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
515      if (!isa<Instruction>(Cmp->getOperand(0)) ||
516          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
517        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
518
519        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
520          BasicBlock *P = *PI;
521          // If the value is known by LazyValueInfo to be a constant in a
522          // predecessor, use that information to try to thread this block.
523          LazyValueInfo::Tristate Res =
524            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
525                                    RHSCst, P, BB);
526          if (Res == LazyValueInfo::Unknown)
527            continue;
528
529          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
530          Result.push_back(std::make_pair(ResC, P));
531        }
532
533        return !Result.empty();
534      }
535
536      // Try to find a constant value for the LHS of a comparison,
537      // and evaluate it statically if we can.
538      if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
539        PredValueInfoTy LHSVals;
540        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
541                                        WantInteger);
542
543        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
544          Constant *V = LHSVals[i].first;
545          Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
546                                                      V, CmpConst);
547          if (Constant *KC = getKnownConstant(Folded, WantInteger))
548            Result.push_back(std::make_pair(KC, LHSVals[i].second));
549        }
550
551        return !Result.empty();
552      }
553    }
554  }
555
556  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
557    // Handle select instructions where at least one operand is a known constant
558    // and we can figure out the condition value for any predecessor block.
559    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
560    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
561    PredValueInfoTy Conds;
562    if ((TrueVal || FalseVal) &&
563        ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
564                                        WantInteger)) {
565      for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
566        Constant *Cond = Conds[i].first;
567
568        // Figure out what value to use for the condition.
569        bool KnownCond;
570        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
571          // A known boolean.
572          KnownCond = CI->isOne();
573        } else {
574          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
575          // Either operand will do, so be sure to pick the one that's a known
576          // constant.
577          // FIXME: Do this more cleverly if both values are known constants?
578          KnownCond = (TrueVal != 0);
579        }
580
581        // See if the select has a known constant value for this predecessor.
582        if (Constant *Val = KnownCond ? TrueVal : FalseVal)
583          Result.push_back(std::make_pair(Val, Conds[i].second));
584      }
585
586      return !Result.empty();
587    }
588  }
589
590  // If all else fails, see if LVI can figure out a constant value for us.
591  Constant *CI = LVI->getConstant(V, BB);
592  if (Constant *KC = getKnownConstant(CI, Preference)) {
593    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
594      Result.push_back(std::make_pair(KC, *PI));
595  }
596
597  return !Result.empty();
598}
599
600
601
602/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
603/// in an undefined jump, decide which block is best to revector to.
604///
605/// Since we can pick an arbitrary destination, we pick the successor with the
606/// fewest predecessors.  This should reduce the in-degree of the others.
607///
608static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
609  TerminatorInst *BBTerm = BB->getTerminator();
610  unsigned MinSucc = 0;
611  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
612  // Compute the successor with the minimum number of predecessors.
613  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
614  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
615    TestBB = BBTerm->getSuccessor(i);
616    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
617    if (NumPreds < MinNumPreds) {
618      MinSucc = i;
619      MinNumPreds = NumPreds;
620    }
621  }
622
623  return MinSucc;
624}
625
626static bool hasAddressTakenAndUsed(BasicBlock *BB) {
627  if (!BB->hasAddressTaken()) return false;
628
629  // If the block has its address taken, it may be a tree of dead constants
630  // hanging off of it.  These shouldn't keep the block alive.
631  BlockAddress *BA = BlockAddress::get(BB);
632  BA->removeDeadConstantUsers();
633  return !BA->use_empty();
634}
635
636/// ProcessBlock - If there are any predecessors whose control can be threaded
637/// through to a successor, transform them now.
638bool JumpThreading::ProcessBlock(BasicBlock *BB) {
639  // If the block is trivially dead, just return and let the caller nuke it.
640  // This simplifies other transformations.
641  if (pred_begin(BB) == pred_end(BB) &&
642      BB != &BB->getParent()->getEntryBlock())
643    return false;
644
645  // If this block has a single predecessor, and if that pred has a single
646  // successor, merge the blocks.  This encourages recursive jump threading
647  // because now the condition in this block can be threaded through
648  // predecessors of our predecessor block.
649  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
650    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
651        SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
652      // If SinglePred was a loop header, BB becomes one.
653      if (LoopHeaders.erase(SinglePred))
654        LoopHeaders.insert(BB);
655
656      // Remember if SinglePred was the entry block of the function.  If so, we
657      // will need to move BB back to the entry position.
658      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
659      LVI->eraseBlock(SinglePred);
660      MergeBasicBlockIntoOnlyPred(BB);
661
662      if (isEntry && BB != &BB->getParent()->getEntryBlock())
663        BB->moveBefore(&BB->getParent()->getEntryBlock());
664      return true;
665    }
666  }
667
668  // What kind of constant we're looking for.
669  ConstantPreference Preference = WantInteger;
670
671  // Look to see if the terminator is a conditional branch, switch or indirect
672  // branch, if not we can't thread it.
673  Value *Condition;
674  Instruction *Terminator = BB->getTerminator();
675  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
676    // Can't thread an unconditional jump.
677    if (BI->isUnconditional()) return false;
678    Condition = BI->getCondition();
679  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
680    Condition = SI->getCondition();
681  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
682    // Can't thread indirect branch with no successors.
683    if (IB->getNumSuccessors() == 0) return false;
684    Condition = IB->getAddress()->stripPointerCasts();
685    Preference = WantBlockAddress;
686  } else {
687    return false; // Must be an invoke.
688  }
689
690  // Run constant folding to see if we can reduce the condition to a simple
691  // constant.
692  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
693    Value *SimpleVal = ConstantFoldInstruction(I, TD, TLI);
694    if (SimpleVal) {
695      I->replaceAllUsesWith(SimpleVal);
696      I->eraseFromParent();
697      Condition = SimpleVal;
698    }
699  }
700
701  // If the terminator is branching on an undef, we can pick any of the
702  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
703  if (isa<UndefValue>(Condition)) {
704    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
705
706    // Fold the branch/switch.
707    TerminatorInst *BBTerm = BB->getTerminator();
708    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
709      if (i == BestSucc) continue;
710      BBTerm->getSuccessor(i)->removePredecessor(BB, true);
711    }
712
713    DEBUG(dbgs() << "  In block '" << BB->getName()
714          << "' folding undef terminator: " << *BBTerm << '\n');
715    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
716    BBTerm->eraseFromParent();
717    return true;
718  }
719
720  // If the terminator of this block is branching on a constant, simplify the
721  // terminator to an unconditional branch.  This can occur due to threading in
722  // other blocks.
723  if (getKnownConstant(Condition, Preference)) {
724    DEBUG(dbgs() << "  In block '" << BB->getName()
725          << "' folding terminator: " << *BB->getTerminator() << '\n');
726    ++NumFolds;
727    ConstantFoldTerminator(BB, true);
728    return true;
729  }
730
731  Instruction *CondInst = dyn_cast<Instruction>(Condition);
732
733  // All the rest of our checks depend on the condition being an instruction.
734  if (CondInst == 0) {
735    // FIXME: Unify this with code below.
736    if (ProcessThreadableEdges(Condition, BB, Preference))
737      return true;
738    return false;
739  }
740
741
742  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
743    // For a comparison where the LHS is outside this block, it's possible
744    // that we've branched on it before.  Used LVI to see if we can simplify
745    // the branch based on that.
746    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
747    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
748    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
749    if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
750        (!isa<Instruction>(CondCmp->getOperand(0)) ||
751         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
752      // For predecessor edge, determine if the comparison is true or false
753      // on that edge.  If they're all true or all false, we can simplify the
754      // branch.
755      // FIXME: We could handle mixed true/false by duplicating code.
756      LazyValueInfo::Tristate Baseline =
757        LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
758                                CondConst, *PI, BB);
759      if (Baseline != LazyValueInfo::Unknown) {
760        // Check that all remaining incoming values match the first one.
761        while (++PI != PE) {
762          LazyValueInfo::Tristate Ret =
763            LVI->getPredicateOnEdge(CondCmp->getPredicate(),
764                                    CondCmp->getOperand(0), CondConst, *PI, BB);
765          if (Ret != Baseline) break;
766        }
767
768        // If we terminated early, then one of the values didn't match.
769        if (PI == PE) {
770          unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
771          unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
772          CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
773          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
774          CondBr->eraseFromParent();
775          return true;
776        }
777      }
778    }
779  }
780
781  // Check for some cases that are worth simplifying.  Right now we want to look
782  // for loads that are used by a switch or by the condition for the branch.  If
783  // we see one, check to see if it's partially redundant.  If so, insert a PHI
784  // which can then be used to thread the values.
785  //
786  Value *SimplifyValue = CondInst;
787  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
788    if (isa<Constant>(CondCmp->getOperand(1)))
789      SimplifyValue = CondCmp->getOperand(0);
790
791  // TODO: There are other places where load PRE would be profitable, such as
792  // more complex comparisons.
793  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
794    if (SimplifyPartiallyRedundantLoad(LI))
795      return true;
796
797
798  // Handle a variety of cases where we are branching on something derived from
799  // a PHI node in the current block.  If we can prove that any predecessors
800  // compute a predictable value based on a PHI node, thread those predecessors.
801  //
802  if (ProcessThreadableEdges(CondInst, BB, Preference))
803    return true;
804
805  // If this is an otherwise-unfoldable branch on a phi node in the current
806  // block, see if we can simplify.
807  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
808    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
809      return ProcessBranchOnPHI(PN);
810
811
812  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
813  if (CondInst->getOpcode() == Instruction::Xor &&
814      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
815    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
816
817
818  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
819  // "(X == 4)", thread through this block.
820
821  return false;
822}
823
824
825/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
826/// load instruction, eliminate it by replacing it with a PHI node.  This is an
827/// important optimization that encourages jump threading, and needs to be run
828/// interlaced with other jump threading tasks.
829bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
830  // Don't hack volatile/atomic loads.
831  if (!LI->isSimple()) return false;
832
833  // If the load is defined in a block with exactly one predecessor, it can't be
834  // partially redundant.
835  BasicBlock *LoadBB = LI->getParent();
836  if (LoadBB->getSinglePredecessor())
837    return false;
838
839  Value *LoadedPtr = LI->getOperand(0);
840
841  // If the loaded operand is defined in the LoadBB, it can't be available.
842  // TODO: Could do simple PHI translation, that would be fun :)
843  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
844    if (PtrOp->getParent() == LoadBB)
845      return false;
846
847  // Scan a few instructions up from the load, to see if it is obviously live at
848  // the entry to its block.
849  BasicBlock::iterator BBIt = LI;
850
851  if (Value *AvailableVal =
852        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
853    // If the value if the load is locally available within the block, just use
854    // it.  This frequently occurs for reg2mem'd allocas.
855    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
856
857    // If the returned value is the load itself, replace with an undef. This can
858    // only happen in dead loops.
859    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
860    LI->replaceAllUsesWith(AvailableVal);
861    LI->eraseFromParent();
862    return true;
863  }
864
865  // Otherwise, if we scanned the whole block and got to the top of the block,
866  // we know the block is locally transparent to the load.  If not, something
867  // might clobber its value.
868  if (BBIt != LoadBB->begin())
869    return false;
870
871  // If all of the loads and stores that feed the value have the same TBAA tag,
872  // then we can propagate it onto any newly inserted loads.
873  MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
874
875  SmallPtrSet<BasicBlock*, 8> PredsScanned;
876  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
877  AvailablePredsTy AvailablePreds;
878  BasicBlock *OneUnavailablePred = 0;
879
880  // If we got here, the loaded value is transparent through to the start of the
881  // block.  Check to see if it is available in any of the predecessor blocks.
882  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
883       PI != PE; ++PI) {
884    BasicBlock *PredBB = *PI;
885
886    // If we already scanned this predecessor, skip it.
887    if (!PredsScanned.insert(PredBB))
888      continue;
889
890    // Scan the predecessor to see if the value is available in the pred.
891    BBIt = PredBB->end();
892    MDNode *ThisTBAATag = 0;
893    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6,
894                                                    0, &ThisTBAATag);
895    if (!PredAvailable) {
896      OneUnavailablePred = PredBB;
897      continue;
898    }
899
900    // If tbaa tags disagree or are not present, forget about them.
901    if (TBAATag != ThisTBAATag) TBAATag = 0;
902
903    // If so, this load is partially redundant.  Remember this info so that we
904    // can create a PHI node.
905    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
906  }
907
908  // If the loaded value isn't available in any predecessor, it isn't partially
909  // redundant.
910  if (AvailablePreds.empty()) return false;
911
912  // Okay, the loaded value is available in at least one (and maybe all!)
913  // predecessors.  If the value is unavailable in more than one unique
914  // predecessor, we want to insert a merge block for those common predecessors.
915  // This ensures that we only have to insert one reload, thus not increasing
916  // code size.
917  BasicBlock *UnavailablePred = 0;
918
919  // If there is exactly one predecessor where the value is unavailable, the
920  // already computed 'OneUnavailablePred' block is it.  If it ends in an
921  // unconditional branch, we know that it isn't a critical edge.
922  if (PredsScanned.size() == AvailablePreds.size()+1 &&
923      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
924    UnavailablePred = OneUnavailablePred;
925  } else if (PredsScanned.size() != AvailablePreds.size()) {
926    // Otherwise, we had multiple unavailable predecessors or we had a critical
927    // edge from the one.
928    SmallVector<BasicBlock*, 8> PredsToSplit;
929    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
930
931    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
932      AvailablePredSet.insert(AvailablePreds[i].first);
933
934    // Add all the unavailable predecessors to the PredsToSplit list.
935    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
936         PI != PE; ++PI) {
937      BasicBlock *P = *PI;
938      // If the predecessor is an indirect goto, we can't split the edge.
939      if (isa<IndirectBrInst>(P->getTerminator()))
940        return false;
941
942      if (!AvailablePredSet.count(P))
943        PredsToSplit.push_back(P);
944    }
945
946    // Split them out to their own block.
947    UnavailablePred =
948      SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this);
949  }
950
951  // If the value isn't available in all predecessors, then there will be
952  // exactly one where it isn't available.  Insert a load on that edge and add
953  // it to the AvailablePreds list.
954  if (UnavailablePred) {
955    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
956           "Can't handle critical edge here!");
957    LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
958                                 LI->getAlignment(),
959                                 UnavailablePred->getTerminator());
960    NewVal->setDebugLoc(LI->getDebugLoc());
961    if (TBAATag)
962      NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag);
963
964    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
965  }
966
967  // Now we know that each predecessor of this block has a value in
968  // AvailablePreds, sort them for efficient access as we're walking the preds.
969  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
970
971  // Create a PHI node at the start of the block for the PRE'd load value.
972  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
973  PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
974                                LoadBB->begin());
975  PN->takeName(LI);
976  PN->setDebugLoc(LI->getDebugLoc());
977
978  // Insert new entries into the PHI for each predecessor.  A single block may
979  // have multiple entries here.
980  for (pred_iterator PI = PB; PI != PE; ++PI) {
981    BasicBlock *P = *PI;
982    AvailablePredsTy::iterator I =
983      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
984                       std::make_pair(P, (Value*)0));
985
986    assert(I != AvailablePreds.end() && I->first == P &&
987           "Didn't find entry for predecessor!");
988
989    PN->addIncoming(I->second, I->first);
990  }
991
992  //cerr << "PRE: " << *LI << *PN << "\n";
993
994  LI->replaceAllUsesWith(PN);
995  LI->eraseFromParent();
996
997  return true;
998}
999
1000/// FindMostPopularDest - The specified list contains multiple possible
1001/// threadable destinations.  Pick the one that occurs the most frequently in
1002/// the list.
1003static BasicBlock *
1004FindMostPopularDest(BasicBlock *BB,
1005                    const SmallVectorImpl<std::pair<BasicBlock*,
1006                                  BasicBlock*> > &PredToDestList) {
1007  assert(!PredToDestList.empty());
1008
1009  // Determine popularity.  If there are multiple possible destinations, we
1010  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1011  // blocks with known and real destinations to threading undef.  We'll handle
1012  // them later if interesting.
1013  DenseMap<BasicBlock*, unsigned> DestPopularity;
1014  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1015    if (PredToDestList[i].second)
1016      DestPopularity[PredToDestList[i].second]++;
1017
1018  // Find the most popular dest.
1019  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1020  BasicBlock *MostPopularDest = DPI->first;
1021  unsigned Popularity = DPI->second;
1022  SmallVector<BasicBlock*, 4> SamePopularity;
1023
1024  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1025    // If the popularity of this entry isn't higher than the popularity we've
1026    // seen so far, ignore it.
1027    if (DPI->second < Popularity)
1028      ; // ignore.
1029    else if (DPI->second == Popularity) {
1030      // If it is the same as what we've seen so far, keep track of it.
1031      SamePopularity.push_back(DPI->first);
1032    } else {
1033      // If it is more popular, remember it.
1034      SamePopularity.clear();
1035      MostPopularDest = DPI->first;
1036      Popularity = DPI->second;
1037    }
1038  }
1039
1040  // Okay, now we know the most popular destination.  If there is more than one
1041  // destination, we need to determine one.  This is arbitrary, but we need
1042  // to make a deterministic decision.  Pick the first one that appears in the
1043  // successor list.
1044  if (!SamePopularity.empty()) {
1045    SamePopularity.push_back(MostPopularDest);
1046    TerminatorInst *TI = BB->getTerminator();
1047    for (unsigned i = 0; ; ++i) {
1048      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1049
1050      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1051                    TI->getSuccessor(i)) == SamePopularity.end())
1052        continue;
1053
1054      MostPopularDest = TI->getSuccessor(i);
1055      break;
1056    }
1057  }
1058
1059  // Okay, we have finally picked the most popular destination.
1060  return MostPopularDest;
1061}
1062
1063bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1064                                           ConstantPreference Preference) {
1065  // If threading this would thread across a loop header, don't even try to
1066  // thread the edge.
1067  if (LoopHeaders.count(BB))
1068    return false;
1069
1070  PredValueInfoTy PredValues;
1071  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
1072    return false;
1073
1074  assert(!PredValues.empty() &&
1075         "ComputeValueKnownInPredecessors returned true with no values");
1076
1077  DEBUG(dbgs() << "IN BB: " << *BB;
1078        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1079          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1080            << *PredValues[i].first
1081            << " for pred '" << PredValues[i].second->getName() << "'.\n";
1082        });
1083
1084  // Decide what we want to thread through.  Convert our list of known values to
1085  // a list of known destinations for each pred.  This also discards duplicate
1086  // predecessors and keeps track of the undefined inputs (which are represented
1087  // as a null dest in the PredToDestList).
1088  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1089  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1090
1091  BasicBlock *OnlyDest = 0;
1092  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1093
1094  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1095    BasicBlock *Pred = PredValues[i].second;
1096    if (!SeenPreds.insert(Pred))
1097      continue;  // Duplicate predecessor entry.
1098
1099    // If the predecessor ends with an indirect goto, we can't change its
1100    // destination.
1101    if (isa<IndirectBrInst>(Pred->getTerminator()))
1102      continue;
1103
1104    Constant *Val = PredValues[i].first;
1105
1106    BasicBlock *DestBB;
1107    if (isa<UndefValue>(Val))
1108      DestBB = 0;
1109    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1110      DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1111    else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1112      DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1113    } else {
1114      assert(isa<IndirectBrInst>(BB->getTerminator())
1115              && "Unexpected terminator");
1116      DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1117    }
1118
1119    // If we have exactly one destination, remember it for efficiency below.
1120    if (PredToDestList.empty())
1121      OnlyDest = DestBB;
1122    else if (OnlyDest != DestBB)
1123      OnlyDest = MultipleDestSentinel;
1124
1125    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1126  }
1127
1128  // If all edges were unthreadable, we fail.
1129  if (PredToDestList.empty())
1130    return false;
1131
1132  // Determine which is the most common successor.  If we have many inputs and
1133  // this block is a switch, we want to start by threading the batch that goes
1134  // to the most popular destination first.  If we only know about one
1135  // threadable destination (the common case) we can avoid this.
1136  BasicBlock *MostPopularDest = OnlyDest;
1137
1138  if (MostPopularDest == MultipleDestSentinel)
1139    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1140
1141  // Now that we know what the most popular destination is, factor all
1142  // predecessors that will jump to it into a single predecessor.
1143  SmallVector<BasicBlock*, 16> PredsToFactor;
1144  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1145    if (PredToDestList[i].second == MostPopularDest) {
1146      BasicBlock *Pred = PredToDestList[i].first;
1147
1148      // This predecessor may be a switch or something else that has multiple
1149      // edges to the block.  Factor each of these edges by listing them
1150      // according to # occurrences in PredsToFactor.
1151      TerminatorInst *PredTI = Pred->getTerminator();
1152      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1153        if (PredTI->getSuccessor(i) == BB)
1154          PredsToFactor.push_back(Pred);
1155    }
1156
1157  // If the threadable edges are branching on an undefined value, we get to pick
1158  // the destination that these predecessors should get to.
1159  if (MostPopularDest == 0)
1160    MostPopularDest = BB->getTerminator()->
1161                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1162
1163  // Ok, try to thread it!
1164  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1165}
1166
1167/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1168/// a PHI node in the current block.  See if there are any simplifications we
1169/// can do based on inputs to the phi node.
1170///
1171bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1172  BasicBlock *BB = PN->getParent();
1173
1174  // TODO: We could make use of this to do it once for blocks with common PHI
1175  // values.
1176  SmallVector<BasicBlock*, 1> PredBBs;
1177  PredBBs.resize(1);
1178
1179  // If any of the predecessor blocks end in an unconditional branch, we can
1180  // *duplicate* the conditional branch into that block in order to further
1181  // encourage jump threading and to eliminate cases where we have branch on a
1182  // phi of an icmp (branch on icmp is much better).
1183  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1184    BasicBlock *PredBB = PN->getIncomingBlock(i);
1185    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1186      if (PredBr->isUnconditional()) {
1187        PredBBs[0] = PredBB;
1188        // Try to duplicate BB into PredBB.
1189        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1190          return true;
1191      }
1192  }
1193
1194  return false;
1195}
1196
1197/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1198/// a xor instruction in the current block.  See if there are any
1199/// simplifications we can do based on inputs to the xor.
1200///
1201bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1202  BasicBlock *BB = BO->getParent();
1203
1204  // If either the LHS or RHS of the xor is a constant, don't do this
1205  // optimization.
1206  if (isa<ConstantInt>(BO->getOperand(0)) ||
1207      isa<ConstantInt>(BO->getOperand(1)))
1208    return false;
1209
1210  // If the first instruction in BB isn't a phi, we won't be able to infer
1211  // anything special about any particular predecessor.
1212  if (!isa<PHINode>(BB->front()))
1213    return false;
1214
1215  // If we have a xor as the branch input to this block, and we know that the
1216  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1217  // the condition into the predecessor and fix that value to true, saving some
1218  // logical ops on that path and encouraging other paths to simplify.
1219  //
1220  // This copies something like this:
1221  //
1222  //  BB:
1223  //    %X = phi i1 [1],  [%X']
1224  //    %Y = icmp eq i32 %A, %B
1225  //    %Z = xor i1 %X, %Y
1226  //    br i1 %Z, ...
1227  //
1228  // Into:
1229  //  BB':
1230  //    %Y = icmp ne i32 %A, %B
1231  //    br i1 %Z, ...
1232
1233  PredValueInfoTy XorOpValues;
1234  bool isLHS = true;
1235  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1236                                       WantInteger)) {
1237    assert(XorOpValues.empty());
1238    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1239                                         WantInteger))
1240      return false;
1241    isLHS = false;
1242  }
1243
1244  assert(!XorOpValues.empty() &&
1245         "ComputeValueKnownInPredecessors returned true with no values");
1246
1247  // Scan the information to see which is most popular: true or false.  The
1248  // predecessors can be of the set true, false, or undef.
1249  unsigned NumTrue = 0, NumFalse = 0;
1250  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1251    if (isa<UndefValue>(XorOpValues[i].first))
1252      // Ignore undefs for the count.
1253      continue;
1254    if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
1255      ++NumFalse;
1256    else
1257      ++NumTrue;
1258  }
1259
1260  // Determine which value to split on, true, false, or undef if neither.
1261  ConstantInt *SplitVal = 0;
1262  if (NumTrue > NumFalse)
1263    SplitVal = ConstantInt::getTrue(BB->getContext());
1264  else if (NumTrue != 0 || NumFalse != 0)
1265    SplitVal = ConstantInt::getFalse(BB->getContext());
1266
1267  // Collect all of the blocks that this can be folded into so that we can
1268  // factor this once and clone it once.
1269  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1270  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1271    if (XorOpValues[i].first != SplitVal &&
1272        !isa<UndefValue>(XorOpValues[i].first))
1273      continue;
1274
1275    BlocksToFoldInto.push_back(XorOpValues[i].second);
1276  }
1277
1278  // If we inferred a value for all of the predecessors, then duplication won't
1279  // help us.  However, we can just replace the LHS or RHS with the constant.
1280  if (BlocksToFoldInto.size() ==
1281      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1282    if (SplitVal == 0) {
1283      // If all preds provide undef, just nuke the xor, because it is undef too.
1284      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1285      BO->eraseFromParent();
1286    } else if (SplitVal->isZero()) {
1287      // If all preds provide 0, replace the xor with the other input.
1288      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1289      BO->eraseFromParent();
1290    } else {
1291      // If all preds provide 1, set the computed value to 1.
1292      BO->setOperand(!isLHS, SplitVal);
1293    }
1294
1295    return true;
1296  }
1297
1298  // Try to duplicate BB into PredBB.
1299  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1300}
1301
1302
1303/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1304/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1305/// NewPred using the entries from OldPred (suitably mapped).
1306static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1307                                            BasicBlock *OldPred,
1308                                            BasicBlock *NewPred,
1309                                     DenseMap<Instruction*, Value*> &ValueMap) {
1310  for (BasicBlock::iterator PNI = PHIBB->begin();
1311       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1312    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1313    // DestBlock.
1314    Value *IV = PN->getIncomingValueForBlock(OldPred);
1315
1316    // Remap the value if necessary.
1317    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1318      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1319      if (I != ValueMap.end())
1320        IV = I->second;
1321    }
1322
1323    PN->addIncoming(IV, NewPred);
1324  }
1325}
1326
1327/// ThreadEdge - We have decided that it is safe and profitable to factor the
1328/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1329/// across BB.  Transform the IR to reflect this change.
1330bool JumpThreading::ThreadEdge(BasicBlock *BB,
1331                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1332                               BasicBlock *SuccBB) {
1333  // If threading to the same block as we come from, we would infinite loop.
1334  if (SuccBB == BB) {
1335    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1336          << "' - would thread to self!\n");
1337    return false;
1338  }
1339
1340  // If threading this would thread across a loop header, don't thread the edge.
1341  // See the comments above FindLoopHeaders for justifications and caveats.
1342  if (LoopHeaders.count(BB)) {
1343    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1344          << "' to dest BB '" << SuccBB->getName()
1345          << "' - it might create an irreducible loop!\n");
1346    return false;
1347  }
1348
1349  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold);
1350  if (JumpThreadCost > Threshold) {
1351    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1352          << "' - Cost is too high: " << JumpThreadCost << "\n");
1353    return false;
1354  }
1355
1356  // And finally, do it!  Start by factoring the predecessors is needed.
1357  BasicBlock *PredBB;
1358  if (PredBBs.size() == 1)
1359    PredBB = PredBBs[0];
1360  else {
1361    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1362          << " common predecessors.\n");
1363    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
1364  }
1365
1366  // And finally, do it!
1367  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1368        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1369        << ", across block:\n    "
1370        << *BB << "\n");
1371
1372  LVI->threadEdge(PredBB, BB, SuccBB);
1373
1374  // We are going to have to map operands from the original BB block to the new
1375  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1376  // account for entry from PredBB.
1377  DenseMap<Instruction*, Value*> ValueMapping;
1378
1379  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1380                                         BB->getName()+".thread",
1381                                         BB->getParent(), BB);
1382  NewBB->moveAfter(PredBB);
1383
1384  BasicBlock::iterator BI = BB->begin();
1385  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1386    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1387
1388  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1389  // mapping and using it to remap operands in the cloned instructions.
1390  for (; !isa<TerminatorInst>(BI); ++BI) {
1391    Instruction *New = BI->clone();
1392    New->setName(BI->getName());
1393    NewBB->getInstList().push_back(New);
1394    ValueMapping[BI] = New;
1395
1396    // Remap operands to patch up intra-block references.
1397    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1398      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1399        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1400        if (I != ValueMapping.end())
1401          New->setOperand(i, I->second);
1402      }
1403  }
1404
1405  // We didn't copy the terminator from BB over to NewBB, because there is now
1406  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1407  BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
1408  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1409
1410  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1411  // PHI nodes for NewBB now.
1412  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1413
1414  // If there were values defined in BB that are used outside the block, then we
1415  // now have to update all uses of the value to use either the original value,
1416  // the cloned value, or some PHI derived value.  This can require arbitrary
1417  // PHI insertion, of which we are prepared to do, clean these up now.
1418  SSAUpdater SSAUpdate;
1419  SmallVector<Use*, 16> UsesToRename;
1420  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1421    // Scan all uses of this instruction to see if it is used outside of its
1422    // block, and if so, record them in UsesToRename.
1423    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1424         ++UI) {
1425      Instruction *User = cast<Instruction>(*UI);
1426      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1427        if (UserPN->getIncomingBlock(UI) == BB)
1428          continue;
1429      } else if (User->getParent() == BB)
1430        continue;
1431
1432      UsesToRename.push_back(&UI.getUse());
1433    }
1434
1435    // If there are no uses outside the block, we're done with this instruction.
1436    if (UsesToRename.empty())
1437      continue;
1438
1439    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1440
1441    // We found a use of I outside of BB.  Rename all uses of I that are outside
1442    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1443    // with the two values we know.
1444    SSAUpdate.Initialize(I->getType(), I->getName());
1445    SSAUpdate.AddAvailableValue(BB, I);
1446    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1447
1448    while (!UsesToRename.empty())
1449      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1450    DEBUG(dbgs() << "\n");
1451  }
1452
1453
1454  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1455  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1456  // us to simplify any PHI nodes in BB.
1457  TerminatorInst *PredTerm = PredBB->getTerminator();
1458  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1459    if (PredTerm->getSuccessor(i) == BB) {
1460      BB->removePredecessor(PredBB, true);
1461      PredTerm->setSuccessor(i, NewBB);
1462    }
1463
1464  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1465  // over the new instructions and zap any that are constants or dead.  This
1466  // frequently happens because of phi translation.
1467  SimplifyInstructionsInBlock(NewBB, TD, TLI);
1468
1469  // Threaded an edge!
1470  ++NumThreads;
1471  return true;
1472}
1473
1474/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1475/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1476/// If we can duplicate the contents of BB up into PredBB do so now, this
1477/// improves the odds that the branch will be on an analyzable instruction like
1478/// a compare.
1479bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1480                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1481  assert(!PredBBs.empty() && "Can't handle an empty set");
1482
1483  // If BB is a loop header, then duplicating this block outside the loop would
1484  // cause us to transform this into an irreducible loop, don't do this.
1485  // See the comments above FindLoopHeaders for justifications and caveats.
1486  if (LoopHeaders.count(BB)) {
1487    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1488          << "' into predecessor block '" << PredBBs[0]->getName()
1489          << "' - it might create an irreducible loop!\n");
1490    return false;
1491  }
1492
1493  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold);
1494  if (DuplicationCost > Threshold) {
1495    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1496          << "' - Cost is too high: " << DuplicationCost << "\n");
1497    return false;
1498  }
1499
1500  // And finally, do it!  Start by factoring the predecessors is needed.
1501  BasicBlock *PredBB;
1502  if (PredBBs.size() == 1)
1503    PredBB = PredBBs[0];
1504  else {
1505    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1506          << " common predecessors.\n");
1507    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
1508  }
1509
1510  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1511  // of PredBB.
1512  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1513        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1514        << DuplicationCost << " block is:" << *BB << "\n");
1515
1516  // Unless PredBB ends with an unconditional branch, split the edge so that we
1517  // can just clone the bits from BB into the end of the new PredBB.
1518  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1519
1520  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1521    PredBB = SplitEdge(PredBB, BB, this);
1522    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1523  }
1524
1525  // We are going to have to map operands from the original BB block into the
1526  // PredBB block.  Evaluate PHI nodes in BB.
1527  DenseMap<Instruction*, Value*> ValueMapping;
1528
1529  BasicBlock::iterator BI = BB->begin();
1530  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1531    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1532
1533  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1534  // mapping and using it to remap operands in the cloned instructions.
1535  for (; BI != BB->end(); ++BI) {
1536    Instruction *New = BI->clone();
1537
1538    // Remap operands to patch up intra-block references.
1539    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1540      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1541        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1542        if (I != ValueMapping.end())
1543          New->setOperand(i, I->second);
1544      }
1545
1546    // If this instruction can be simplified after the operands are updated,
1547    // just use the simplified value instead.  This frequently happens due to
1548    // phi translation.
1549    if (Value *IV = SimplifyInstruction(New, TD)) {
1550      delete New;
1551      ValueMapping[BI] = IV;
1552    } else {
1553      // Otherwise, insert the new instruction into the block.
1554      New->setName(BI->getName());
1555      PredBB->getInstList().insert(OldPredBranch, New);
1556      ValueMapping[BI] = New;
1557    }
1558  }
1559
1560  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1561  // add entries to the PHI nodes for branch from PredBB now.
1562  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1563  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1564                                  ValueMapping);
1565  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1566                                  ValueMapping);
1567
1568  // If there were values defined in BB that are used outside the block, then we
1569  // now have to update all uses of the value to use either the original value,
1570  // the cloned value, or some PHI derived value.  This can require arbitrary
1571  // PHI insertion, of which we are prepared to do, clean these up now.
1572  SSAUpdater SSAUpdate;
1573  SmallVector<Use*, 16> UsesToRename;
1574  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1575    // Scan all uses of this instruction to see if it is used outside of its
1576    // block, and if so, record them in UsesToRename.
1577    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1578         ++UI) {
1579      Instruction *User = cast<Instruction>(*UI);
1580      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1581        if (UserPN->getIncomingBlock(UI) == BB)
1582          continue;
1583      } else if (User->getParent() == BB)
1584        continue;
1585
1586      UsesToRename.push_back(&UI.getUse());
1587    }
1588
1589    // If there are no uses outside the block, we're done with this instruction.
1590    if (UsesToRename.empty())
1591      continue;
1592
1593    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1594
1595    // We found a use of I outside of BB.  Rename all uses of I that are outside
1596    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1597    // with the two values we know.
1598    SSAUpdate.Initialize(I->getType(), I->getName());
1599    SSAUpdate.AddAvailableValue(BB, I);
1600    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1601
1602    while (!UsesToRename.empty())
1603      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1604    DEBUG(dbgs() << "\n");
1605  }
1606
1607  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1608  // that we nuked.
1609  BB->removePredecessor(PredBB, true);
1610
1611  // Remove the unconditional branch at the end of the PredBB block.
1612  OldPredBranch->eraseFromParent();
1613
1614  ++NumDupes;
1615  return true;
1616}
1617
1618
1619