JumpThreading.cpp revision 844731a7f1909f55935e3514c9e713a62d67662e
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/Pass.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Transforms/Utils/Local.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25using namespace llvm;
26
27STATISTIC(NumThreads, "Number of jumps threaded");
28STATISTIC(NumFolds,   "Number of terminators folded");
29
30static cl::opt<unsigned>
31Threshold("jump-threading-threshold",
32          cl::desc("Max block size to duplicate for jump threading"),
33          cl::init(6), cl::Hidden);
34
35namespace {
36  /// This pass performs 'jump threading', which looks at blocks that have
37  /// multiple predecessors and multiple successors.  If one or more of the
38  /// predecessors of the block can be proven to always jump to one of the
39  /// successors, we forward the edge from the predecessor to the successor by
40  /// duplicating the contents of this block.
41  ///
42  /// An example of when this can occur is code like this:
43  ///
44  ///   if () { ...
45  ///     X = 4;
46  ///   }
47  ///   if (X < 3) {
48  ///
49  /// In this case, the unconditional branch at the end of the first if can be
50  /// revectored to the false side of the second if.
51  ///
52  class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
53  public:
54    static char ID; // Pass identification
55    JumpThreading() : FunctionPass((intptr_t)&ID) {}
56
57    bool runOnFunction(Function &F);
58    bool ThreadBlock(BasicBlock *BB);
59    void ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
60    BasicBlock *FactorCommonPHIPreds(PHINode *PN, Constant *CstVal);
61
62    bool ProcessJumpOnPHI(PHINode *PN);
63    bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
64    bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
65  };
66}
67
68char JumpThreading::ID = 0;
69static RegisterPass<JumpThreading>
70X("jump-threading", "Jump Threading");
71
72// Public interface to the Jump Threading pass
73FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
74
75/// runOnFunction - Top level algorithm.
76///
77bool JumpThreading::runOnFunction(Function &F) {
78  DOUT << "Jump threading on function '" << F.getNameStart() << "'\n";
79
80  bool AnotherIteration = true, EverChanged = false;
81  while (AnotherIteration) {
82    AnotherIteration = false;
83    bool Changed = false;
84    for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
85      while (ThreadBlock(I))
86        Changed = true;
87    AnotherIteration = Changed;
88    EverChanged |= Changed;
89  }
90  return EverChanged;
91}
92
93/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
94/// value for the PHI, factor them together so we get one block to thread for
95/// the whole group.
96/// This is important for things like "phi i1 [true, true, false, true, x]"
97/// where we only need to clone the block for the true blocks once.
98///
99BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Constant *CstVal) {
100  SmallVector<BasicBlock*, 16> CommonPreds;
101  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
102    if (PN->getIncomingValue(i) == CstVal)
103      CommonPreds.push_back(PN->getIncomingBlock(i));
104
105  if (CommonPreds.size() == 1)
106    return CommonPreds[0];
107
108  DOUT << "  Factoring out " << CommonPreds.size()
109       << " common predecessors.\n";
110  return SplitBlockPredecessors(PN->getParent(),
111                                &CommonPreds[0], CommonPreds.size(),
112                                ".thr_comm", this);
113}
114
115
116/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
117/// thread across it.
118static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
119  BasicBlock::const_iterator I = BB->begin();
120  /// Ignore PHI nodes, these will be flattened when duplication happens.
121  while (isa<PHINode>(*I)) ++I;
122
123  // Sum up the cost of each instruction until we get to the terminator.  Don't
124  // include the terminator because the copy won't include it.
125  unsigned Size = 0;
126  for (; !isa<TerminatorInst>(I); ++I) {
127    // Debugger intrinsics don't incur code size.
128    if (isa<DbgInfoIntrinsic>(I)) continue;
129
130    // If this is a pointer->pointer bitcast, it is free.
131    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
132      continue;
133
134    // All other instructions count for at least one unit.
135    ++Size;
136
137    // Calls are more expensive.  If they are non-intrinsic calls, we model them
138    // as having cost of 4.  If they are a non-vector intrinsic, we model them
139    // as having cost of 2 total, and if they are a vector intrinsic, we model
140    // them as having cost 1.
141    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
142      if (!isa<IntrinsicInst>(CI))
143        Size += 3;
144      else if (isa<VectorType>(CI->getType()))
145        Size += 1;
146    }
147  }
148
149  // Threading through a switch statement is particularly profitable.  If this
150  // block ends in a switch, decrease its cost to make it more likely to happen.
151  if (isa<SwitchInst>(I))
152    Size = Size > 6 ? Size-6 : 0;
153
154  return Size;
155}
156
157
158/// ThreadBlock - If there are any predecessors whose control can be threaded
159/// through to a successor, transform them now.
160bool JumpThreading::ThreadBlock(BasicBlock *BB) {
161  // See if this block ends with a branch of switch.  If so, see if the
162  // condition is a phi node.  If so, and if an entry of the phi node is a
163  // constant, we can thread the block.
164  Value *Condition;
165  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
166    // Can't thread an unconditional jump.
167    if (BI->isUnconditional()) return false;
168    Condition = BI->getCondition();
169  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
170    Condition = SI->getCondition();
171  else
172    return false; // Must be an invoke.
173
174  // If the terminator of this block is branching on a constant, simplify the
175  // terminator to an unconditional branch.  This can occur due to threading in
176  // other blocks.
177  if (isa<ConstantInt>(Condition)) {
178    DOUT << "  In block '" << BB->getNameStart()
179         << "' folding terminator: " << *BB->getTerminator();
180    ++NumFolds;
181    ConstantFoldTerminator(BB);
182    return true;
183  }
184
185  // If there is only a single predecessor of this block, nothing to fold.
186  if (BB->getSinglePredecessor())
187    return false;
188
189  // See if this is a phi node in the current block.
190  PHINode *PN = dyn_cast<PHINode>(Condition);
191  if (PN && PN->getParent() == BB)
192    return ProcessJumpOnPHI(PN);
193
194  // If this is a conditional branch whose condition is and/or of a phi, try to
195  // simplify it.
196  if (BinaryOperator *CondI = dyn_cast<BinaryOperator>(Condition)) {
197    if ((CondI->getOpcode() == Instruction::And ||
198         CondI->getOpcode() == Instruction::Or) &&
199        isa<BranchInst>(BB->getTerminator()) &&
200        ProcessBranchOnLogical(CondI, BB,
201                               CondI->getOpcode() == Instruction::And))
202      return true;
203  }
204
205  // If we have "br (phi != 42)" and the phi node has any constant values as
206  // operands, we can thread through this block.
207  if (CmpInst *CondCmp = dyn_cast<CmpInst>(Condition))
208    if (isa<PHINode>(CondCmp->getOperand(0)) &&
209        isa<Constant>(CondCmp->getOperand(1)) &&
210        ProcessBranchOnCompare(CondCmp, BB))
211      return true;
212
213  return false;
214}
215
216/// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
217/// the current block.  See if there are any simplifications we can do based on
218/// inputs to the phi node.
219///
220bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
221  // See if the phi node has any constant values.  If so, we can determine where
222  // the corresponding predecessor will branch.
223  ConstantInt *PredCst = 0;
224  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
225    if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
226      break;
227
228  // If no incoming value has a constant, we don't know the destination of any
229  // predecessors.
230  if (PredCst == 0)
231    return false;
232
233  // See if the cost of duplicating this block is low enough.
234  BasicBlock *BB = PN->getParent();
235  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
236  if (JumpThreadCost > Threshold) {
237    DOUT << "  Not threading BB '" << BB->getNameStart()
238         << "' - Cost is too high: " << JumpThreadCost << "\n";
239    return false;
240  }
241
242  // If so, we can actually do this threading.  Merge any common predecessors
243  // that will act the same.
244  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
245
246  // Next, figure out which successor we are threading to.
247  BasicBlock *SuccBB;
248  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
249    SuccBB = BI->getSuccessor(PredCst == ConstantInt::getFalse());
250  else {
251    SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
252    SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
253  }
254
255  // If threading to the same block as we come from, we would infinite loop.
256  if (SuccBB == BB) {
257    DOUT << "  Not threading BB '" << BB->getNameStart()
258         << "' - would thread to self!\n";
259    return false;
260  }
261
262  // And finally, do it!
263  DOUT << "  Threading edge from '" << PredBB->getNameStart() << "' to '"
264       << SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
265       << ", across block:\n    "
266       << *BB << "\n";
267
268  ThreadEdge(BB, PredBB, SuccBB);
269  ++NumThreads;
270  return true;
271}
272
273/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
274/// whose condition is an AND/OR where one side is PN.  If PN has constant
275/// operands that permit us to evaluate the condition for some operand, thread
276/// through the block.  For example with:
277///   br (and X, phi(Y, Z, false))
278/// the predecessor corresponding to the 'false' will always jump to the false
279/// destination of the branch.
280///
281bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
282                                           bool isAnd) {
283  // If this is a binary operator tree of the same AND/OR opcode, check the
284  // LHS/RHS.
285  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
286    if (isAnd && BO->getOpcode() == Instruction::And ||
287        !isAnd && BO->getOpcode() == Instruction::Or) {
288      if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
289        return true;
290      if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
291        return true;
292    }
293
294  // If this isn't a PHI node, we can't handle it.
295  PHINode *PN = dyn_cast<PHINode>(V);
296  if (!PN || PN->getParent() != BB) return false;
297
298  // We can only do the simplification for phi nodes of 'false' with AND or
299  // 'true' with OR.  See if we have any entries in the phi for this.
300  unsigned PredNo = ~0U;
301  ConstantInt *PredCst = ConstantInt::get(Type::Int1Ty, !isAnd);
302  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
303    if (PN->getIncomingValue(i) == PredCst) {
304      PredNo = i;
305      break;
306    }
307  }
308
309  // If no match, bail out.
310  if (PredNo == ~0U)
311    return false;
312
313  // See if the cost of duplicating this block is low enough.
314  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
315  if (JumpThreadCost > Threshold) {
316    DOUT << "  Not threading BB '" << BB->getNameStart()
317         << "' - Cost is too high: " << JumpThreadCost << "\n";
318    return false;
319  }
320
321  // If so, we can actually do this threading.  Merge any common predecessors
322  // that will act the same.
323  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
324
325  // Next, figure out which successor we are threading to.  If this was an AND,
326  // the constant must be FALSE, and we must be targeting the 'false' block.
327  // If this is an OR, the constant must be TRUE, and we must be targeting the
328  // 'true' block.
329  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
330
331  // If threading to the same block as we come from, we would infinite loop.
332  if (SuccBB == BB) {
333    DOUT << "  Not threading BB '" << BB->getNameStart()
334    << "' - would thread to self!\n";
335    return false;
336  }
337
338  // And finally, do it!
339  DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
340       << "' to '" << SuccBB->getNameStart() << "' with cost: "
341       << JumpThreadCost << ", across block:\n    "
342       << *BB << "\n";
343
344  ThreadEdge(BB, PredBB, SuccBB);
345  ++NumThreads;
346  return true;
347}
348
349/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
350/// node and a constant.  If the PHI node contains any constants as inputs, we
351/// can fold the compare for that edge and thread through it.
352bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
353  PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
354  Constant *RHS = cast<Constant>(Cmp->getOperand(1));
355
356  // If the phi isn't in the current block, an incoming edge to this block
357  // doesn't control the destination.
358  if (PN->getParent() != BB)
359    return false;
360
361  // We can do this simplification if any comparisons fold to true or false.
362  // See if any do.
363  Constant *PredCst = 0;
364  bool TrueDirection = false;
365  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
366    PredCst = dyn_cast<Constant>(PN->getIncomingValue(i));
367    if (PredCst == 0) continue;
368
369    Constant *Res;
370    if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cmp))
371      Res = ConstantExpr::getICmp(ICI->getPredicate(), PredCst, RHS);
372    else
373      Res = ConstantExpr::getFCmp(cast<FCmpInst>(Cmp)->getPredicate(),
374                                  PredCst, RHS);
375    // If this folded to a constant expr, we can't do anything.
376    if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
377      TrueDirection = ResC->getZExtValue();
378      break;
379    }
380    // If this folded to undef, just go the false way.
381    if (isa<UndefValue>(Res)) {
382      TrueDirection = false;
383      break;
384    }
385
386    // Otherwise, we can't fold this input.
387    PredCst = 0;
388  }
389
390  // If no match, bail out.
391  if (PredCst == 0)
392    return false;
393
394  // See if the cost of duplicating this block is low enough.
395  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
396  if (JumpThreadCost > Threshold) {
397    DOUT << "  Not threading BB '" << BB->getNameStart()
398         << "' - Cost is too high: " << JumpThreadCost << "\n";
399    return false;
400  }
401
402  // If so, we can actually do this threading.  Merge any common predecessors
403  // that will act the same.
404  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
405
406  // Next, get our successor.
407  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
408
409  // If threading to the same block as we come from, we would infinite loop.
410  if (SuccBB == BB) {
411    DOUT << "  Not threading BB '" << BB->getNameStart()
412    << "' - would thread to self!\n";
413    return false;
414  }
415
416
417  // And finally, do it!
418  DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
419       << "' to '" << SuccBB->getNameStart() << "' with cost: "
420       << JumpThreadCost << ", across block:\n    "
421       << *BB << "\n";
422
423  ThreadEdge(BB, PredBB, SuccBB);
424  ++NumThreads;
425  return true;
426}
427
428
429/// ThreadEdge - We have decided that it is safe and profitable to thread an
430/// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
431/// change.
432void JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
433                               BasicBlock *SuccBB) {
434
435  // Jump Threading can not update SSA properties correctly if the values
436  // defined in the duplicated block are used outside of the block itself.  For
437  // this reason, we spill all values that are used outside of BB to the stack.
438  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
439    if (!I->isUsedOutsideOfBlock(BB))
440      continue;
441
442    // We found a use of I outside of BB.  Create a new stack slot to
443    // break this inter-block usage pattern.
444    if (!isa<StructType>(I->getType())) {
445      DemoteRegToStack(*I);
446      continue;
447    }
448
449    // Alternatively, I must be a call or invoke that returns multiple retvals.
450    // We can't use 'DemoteRegToStack' because that will create loads and
451    // stores of aggregates which is not valid yet.  If I is a call, we can just
452    // pull all the getresult instructions up to this block.  If I is an invoke,
453    // we are out of luck.
454    BasicBlock::iterator IP = I; ++IP;
455    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
456         UI != E; ++UI)
457      cast<GetResultInst>(UI)->moveBefore(IP);
458  }
459
460  // We are going to have to map operands from the original BB block to the new
461  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
462  // account for entry from PredBB.
463  DenseMap<Instruction*, Value*> ValueMapping;
464
465  BasicBlock *NewBB =
466    BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB);
467  NewBB->moveAfter(PredBB);
468
469  BasicBlock::iterator BI = BB->begin();
470  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
471    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
472
473  // Clone the non-phi instructions of BB into NewBB, keeping track of the
474  // mapping and using it to remap operands in the cloned instructions.
475  for (; !isa<TerminatorInst>(BI); ++BI) {
476    Instruction *New = BI->clone();
477    New->setName(BI->getNameStart());
478    NewBB->getInstList().push_back(New);
479    ValueMapping[BI] = New;
480
481    // Remap operands to patch up intra-block references.
482    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
483      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i)))
484        if (Value *Remapped = ValueMapping[Inst])
485          New->setOperand(i, Remapped);
486  }
487
488  // We didn't copy the terminator from BB over to NewBB, because there is now
489  // an unconditional jump to SuccBB.  Insert the unconditional jump.
490  BranchInst::Create(SuccBB, NewBB);
491
492  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
493  // PHI nodes for NewBB now.
494  for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
495    PHINode *PN = cast<PHINode>(PNI);
496    // Ok, we have a PHI node.  Figure out what the incoming value was for the
497    // DestBlock.
498    Value *IV = PN->getIncomingValueForBlock(BB);
499
500    // Remap the value if necessary.
501    if (Instruction *Inst = dyn_cast<Instruction>(IV))
502      if (Value *MappedIV = ValueMapping[Inst])
503        IV = MappedIV;
504    PN->addIncoming(IV, NewBB);
505  }
506
507  // Finally, NewBB is good to go.  Update the terminator of PredBB to jump to
508  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
509  // us to simplify any PHI nodes in BB.
510  TerminatorInst *PredTerm = PredBB->getTerminator();
511  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
512    if (PredTerm->getSuccessor(i) == BB) {
513      BB->removePredecessor(PredBB);
514      PredTerm->setSuccessor(i, NewBB);
515    }
516}
517