JumpThreading.cpp revision 9ccaf53ada99c63737547c0235baeb8454b04e80
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LazyValueInfo.h"
21#include "llvm/Analysis/Loads.h"
22#include "llvm/Transforms/Utils/BasicBlockUtils.h"
23#include "llvm/Transforms/Utils/Local.h"
24#include "llvm/Transforms/Utils/SSAUpdater.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ValueHandle.h"
34#include "llvm/Support/raw_ostream.h"
35using namespace llvm;
36
37STATISTIC(NumThreads, "Number of jumps threaded");
38STATISTIC(NumFolds,   "Number of terminators folded");
39STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
40
41static cl::opt<unsigned>
42Threshold("jump-threading-threshold",
43          cl::desc("Max block size to duplicate for jump threading"),
44          cl::init(6), cl::Hidden);
45
46// Turn on use of LazyValueInfo.
47static cl::opt<bool>
48EnableLVI("enable-jump-threading-lvi",
49          cl::desc("Use LVI for jump threading"),
50          cl::init(false),
51          cl::ReallyHidden);
52
53
54
55namespace {
56  /// This pass performs 'jump threading', which looks at blocks that have
57  /// multiple predecessors and multiple successors.  If one or more of the
58  /// predecessors of the block can be proven to always jump to one of the
59  /// successors, we forward the edge from the predecessor to the successor by
60  /// duplicating the contents of this block.
61  ///
62  /// An example of when this can occur is code like this:
63  ///
64  ///   if () { ...
65  ///     X = 4;
66  ///   }
67  ///   if (X < 3) {
68  ///
69  /// In this case, the unconditional branch at the end of the first if can be
70  /// revectored to the false side of the second if.
71  ///
72  class JumpThreading : public FunctionPass {
73    TargetData *TD;
74    LazyValueInfo *LVI;
75#ifdef NDEBUG
76    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
77#else
78    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
79#endif
80  public:
81    static char ID; // Pass identification
82    JumpThreading() : FunctionPass(ID) {}
83
84    bool runOnFunction(Function &F);
85
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      if (EnableLVI)
88        AU.addRequired<LazyValueInfo>();
89    }
90
91    void FindLoopHeaders(Function &F);
92    bool ProcessBlock(BasicBlock *BB);
93    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
94                    BasicBlock *SuccBB);
95    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
96                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
97
98    typedef SmallVectorImpl<std::pair<ConstantInt*,
99                                      BasicBlock*> > PredValueInfo;
100
101    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
102                                         PredValueInfo &Result);
103    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
104
105
106    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
107    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
108
109    bool ProcessBranchOnPHI(PHINode *PN);
110    bool ProcessBranchOnXOR(BinaryOperator *BO);
111
112    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
113  };
114}
115
116char JumpThreading::ID = 0;
117INITIALIZE_PASS(JumpThreading, "jump-threading",
118                "Jump Threading", false, false);
119
120// Public interface to the Jump Threading pass
121FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
122
123/// runOnFunction - Top level algorithm.
124///
125bool JumpThreading::runOnFunction(Function &F) {
126  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
127  TD = getAnalysisIfAvailable<TargetData>();
128  LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
129
130  FindLoopHeaders(F);
131
132  bool Changed, EverChanged = false;
133  do {
134    Changed = false;
135    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
136      BasicBlock *BB = I;
137      // Thread all of the branches we can over this block.
138      while (ProcessBlock(BB))
139        Changed = true;
140
141      ++I;
142
143      // If the block is trivially dead, zap it.  This eliminates the successor
144      // edges which simplifies the CFG.
145      if (pred_begin(BB) == pred_end(BB) &&
146          BB != &BB->getParent()->getEntryBlock()) {
147        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
148              << "' with terminator: " << *BB->getTerminator() << '\n');
149        LoopHeaders.erase(BB);
150        DeleteDeadBlock(BB);
151        Changed = true;
152      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
153        // Can't thread an unconditional jump, but if the block is "almost
154        // empty", we can replace uses of it with uses of the successor and make
155        // this dead.
156        if (BI->isUnconditional() &&
157            BB != &BB->getParent()->getEntryBlock()) {
158          BasicBlock::iterator BBI = BB->getFirstNonPHI();
159          // Ignore dbg intrinsics.
160          while (isa<DbgInfoIntrinsic>(BBI))
161            ++BBI;
162          // If the terminator is the only non-phi instruction, try to nuke it.
163          if (BBI->isTerminator()) {
164            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
165            // block, we have to make sure it isn't in the LoopHeaders set.  We
166            // reinsert afterward if needed.
167            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
168            BasicBlock *Succ = BI->getSuccessor(0);
169
170            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
171              Changed = true;
172              // If we deleted BB and BB was the header of a loop, then the
173              // successor is now the header of the loop.
174              BB = Succ;
175            }
176
177            if (ErasedFromLoopHeaders)
178              LoopHeaders.insert(BB);
179          }
180        }
181      }
182    }
183    EverChanged |= Changed;
184  } while (Changed);
185
186  LoopHeaders.clear();
187  return EverChanged;
188}
189
190/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
191/// thread across it.
192static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
193  /// Ignore PHI nodes, these will be flattened when duplication happens.
194  BasicBlock::const_iterator I = BB->getFirstNonPHI();
195
196  // FIXME: THREADING will delete values that are just used to compute the
197  // branch, so they shouldn't count against the duplication cost.
198
199
200  // Sum up the cost of each instruction until we get to the terminator.  Don't
201  // include the terminator because the copy won't include it.
202  unsigned Size = 0;
203  for (; !isa<TerminatorInst>(I); ++I) {
204    // Debugger intrinsics don't incur code size.
205    if (isa<DbgInfoIntrinsic>(I)) continue;
206
207    // If this is a pointer->pointer bitcast, it is free.
208    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
209      continue;
210
211    // All other instructions count for at least one unit.
212    ++Size;
213
214    // Calls are more expensive.  If they are non-intrinsic calls, we model them
215    // as having cost of 4.  If they are a non-vector intrinsic, we model them
216    // as having cost of 2 total, and if they are a vector intrinsic, we model
217    // them as having cost 1.
218    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
219      if (!isa<IntrinsicInst>(CI))
220        Size += 3;
221      else if (!CI->getType()->isVectorTy())
222        Size += 1;
223    }
224  }
225
226  // Threading through a switch statement is particularly profitable.  If this
227  // block ends in a switch, decrease its cost to make it more likely to happen.
228  if (isa<SwitchInst>(I))
229    Size = Size > 6 ? Size-6 : 0;
230
231  return Size;
232}
233
234/// FindLoopHeaders - We do not want jump threading to turn proper loop
235/// structures into irreducible loops.  Doing this breaks up the loop nesting
236/// hierarchy and pessimizes later transformations.  To prevent this from
237/// happening, we first have to find the loop headers.  Here we approximate this
238/// by finding targets of backedges in the CFG.
239///
240/// Note that there definitely are cases when we want to allow threading of
241/// edges across a loop header.  For example, threading a jump from outside the
242/// loop (the preheader) to an exit block of the loop is definitely profitable.
243/// It is also almost always profitable to thread backedges from within the loop
244/// to exit blocks, and is often profitable to thread backedges to other blocks
245/// within the loop (forming a nested loop).  This simple analysis is not rich
246/// enough to track all of these properties and keep it up-to-date as the CFG
247/// mutates, so we don't allow any of these transformations.
248///
249void JumpThreading::FindLoopHeaders(Function &F) {
250  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
251  FindFunctionBackedges(F, Edges);
252
253  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
254    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
255}
256
257/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
258/// if we can infer that the value is a known ConstantInt in any of our
259/// predecessors.  If so, return the known list of value and pred BB in the
260/// result vector.  If a value is known to be undef, it is returned as null.
261///
262/// This returns true if there were any known values.
263///
264bool JumpThreading::
265ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
266  // If V is a constantint, then it is known in all predecessors.
267  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
268    ConstantInt *CI = dyn_cast<ConstantInt>(V);
269
270    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
271      Result.push_back(std::make_pair(CI, *PI));
272    return true;
273  }
274
275  // If V is a non-instruction value, or an instruction in a different block,
276  // then it can't be derived from a PHI.
277  Instruction *I = dyn_cast<Instruction>(V);
278  if (I == 0 || I->getParent() != BB) {
279
280    // Okay, if this is a live-in value, see if it has a known value at the end
281    // of any of our predecessors.
282    //
283    // FIXME: This should be an edge property, not a block end property.
284    /// TODO: Per PR2563, we could infer value range information about a
285    /// predecessor based on its terminator.
286    //
287    if (LVI) {
288      // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
289      // "I" is a non-local compare-with-a-constant instruction.  This would be
290      // able to handle value inequalities better, for example if the compare is
291      // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
292      // Perhaps getConstantOnEdge should be smart enough to do this?
293
294      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
295        BasicBlock *P = *PI;
296        // If the value is known by LazyValueInfo to be a constant in a
297        // predecessor, use that information to try to thread this block.
298        Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
299        if (PredCst == 0 ||
300            (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
301          continue;
302
303        Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
304      }
305
306      return !Result.empty();
307    }
308
309    return false;
310  }
311
312  /// If I is a PHI node, then we know the incoming values for any constants.
313  if (PHINode *PN = dyn_cast<PHINode>(I)) {
314    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
315      Value *InVal = PN->getIncomingValue(i);
316      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
317        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
318        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
319      }
320    }
321    return !Result.empty();
322  }
323
324  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
325
326  // Handle some boolean conditions.
327  if (I->getType()->getPrimitiveSizeInBits() == 1) {
328    // X | true -> true
329    // X & false -> false
330    if (I->getOpcode() == Instruction::Or ||
331        I->getOpcode() == Instruction::And) {
332      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
333      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
334
335      if (LHSVals.empty() && RHSVals.empty())
336        return false;
337
338      ConstantInt *InterestingVal;
339      if (I->getOpcode() == Instruction::Or)
340        InterestingVal = ConstantInt::getTrue(I->getContext());
341      else
342        InterestingVal = ConstantInt::getFalse(I->getContext());
343
344      // Scan for the sentinel.  If we find an undef, force it to the
345      // interesting value: x|undef -> true and x&undef -> false.
346      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
347        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
348          Result.push_back(LHSVals[i]);
349          Result.back().first = InterestingVal;
350        }
351      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
352        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
353          // If we already inferred a value for this block on the LHS, don't
354          // re-add it.
355          bool HasValue = false;
356          for (unsigned r = 0, e = Result.size(); r != e; ++r)
357            if (Result[r].second == RHSVals[i].second) {
358              HasValue = true;
359              break;
360            }
361
362          if (!HasValue) {
363            Result.push_back(RHSVals[i]);
364            Result.back().first = InterestingVal;
365          }
366        }
367      return !Result.empty();
368    }
369
370    // Handle the NOT form of XOR.
371    if (I->getOpcode() == Instruction::Xor &&
372        isa<ConstantInt>(I->getOperand(1)) &&
373        cast<ConstantInt>(I->getOperand(1))->isOne()) {
374      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
375      if (Result.empty())
376        return false;
377
378      // Invert the known values.
379      for (unsigned i = 0, e = Result.size(); i != e; ++i)
380        if (Result[i].first)
381          Result[i].first =
382            cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
383      return true;
384    }
385  }
386
387  // Handle compare with phi operand, where the PHI is defined in this block.
388  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
389    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
390    if (PN && PN->getParent() == BB) {
391      // We can do this simplification if any comparisons fold to true or false.
392      // See if any do.
393      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
394        BasicBlock *PredBB = PN->getIncomingBlock(i);
395        Value *LHS = PN->getIncomingValue(i);
396        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
397
398        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
399        if (Res == 0) {
400          if (!LVI || !isa<Constant>(RHS))
401            continue;
402
403          LazyValueInfo::Tristate
404            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
405                                           cast<Constant>(RHS), PredBB, BB);
406          if (ResT == LazyValueInfo::Unknown)
407            continue;
408          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
409        }
410
411        if (isa<UndefValue>(Res))
412          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
413        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
414          Result.push_back(std::make_pair(CI, PredBB));
415      }
416
417      return !Result.empty();
418    }
419
420
421    // If comparing a live-in value against a constant, see if we know the
422    // live-in value on any predecessors.
423    if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
424        Cmp->getType()->isIntegerTy() && // Not vector compare.
425        (!isa<Instruction>(Cmp->getOperand(0)) ||
426         cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
427      Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
428
429      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
430        BasicBlock *P = *PI;
431        // If the value is known by LazyValueInfo to be a constant in a
432        // predecessor, use that information to try to thread this block.
433        LazyValueInfo::Tristate
434          Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
435                                        RHSCst, P, BB);
436        if (Res == LazyValueInfo::Unknown)
437          continue;
438
439        Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
440        Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P));
441      }
442
443      return !Result.empty();
444    }
445  }
446  return false;
447}
448
449
450
451/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
452/// in an undefined jump, decide which block is best to revector to.
453///
454/// Since we can pick an arbitrary destination, we pick the successor with the
455/// fewest predecessors.  This should reduce the in-degree of the others.
456///
457static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
458  TerminatorInst *BBTerm = BB->getTerminator();
459  unsigned MinSucc = 0;
460  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
461  // Compute the successor with the minimum number of predecessors.
462  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
463  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
464    TestBB = BBTerm->getSuccessor(i);
465    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
466    if (NumPreds < MinNumPreds)
467      MinSucc = i;
468  }
469
470  return MinSucc;
471}
472
473/// ProcessBlock - If there are any predecessors whose control can be threaded
474/// through to a successor, transform them now.
475bool JumpThreading::ProcessBlock(BasicBlock *BB) {
476  // If the block is trivially dead, just return and let the caller nuke it.
477  // This simplifies other transformations.
478  if (pred_begin(BB) == pred_end(BB) &&
479      BB != &BB->getParent()->getEntryBlock())
480    return false;
481
482  // If this block has a single predecessor, and if that pred has a single
483  // successor, merge the blocks.  This encourages recursive jump threading
484  // because now the condition in this block can be threaded through
485  // predecessors of our predecessor block.
486  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
487    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
488        SinglePred != BB) {
489      // If SinglePred was a loop header, BB becomes one.
490      if (LoopHeaders.erase(SinglePred))
491        LoopHeaders.insert(BB);
492
493      // Remember if SinglePred was the entry block of the function.  If so, we
494      // will need to move BB back to the entry position.
495      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
496      MergeBasicBlockIntoOnlyPred(BB);
497
498      if (isEntry && BB != &BB->getParent()->getEntryBlock())
499        BB->moveBefore(&BB->getParent()->getEntryBlock());
500      return true;
501    }
502  }
503
504  // Look to see if the terminator is a branch of switch, if not we can't thread
505  // it.
506  Value *Condition;
507  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
508    // Can't thread an unconditional jump.
509    if (BI->isUnconditional()) return false;
510    Condition = BI->getCondition();
511  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
512    Condition = SI->getCondition();
513  else
514    return false; // Must be an invoke.
515
516  // If the terminator of this block is branching on a constant, simplify the
517  // terminator to an unconditional branch.  This can occur due to threading in
518  // other blocks.
519  if (isa<ConstantInt>(Condition)) {
520    DEBUG(dbgs() << "  In block '" << BB->getName()
521          << "' folding terminator: " << *BB->getTerminator() << '\n');
522    ++NumFolds;
523    ConstantFoldTerminator(BB);
524    return true;
525  }
526
527  // If the terminator is branching on an undef, we can pick any of the
528  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
529  if (isa<UndefValue>(Condition)) {
530    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
531
532    // Fold the branch/switch.
533    TerminatorInst *BBTerm = BB->getTerminator();
534    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
535      if (i == BestSucc) continue;
536      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
537    }
538
539    DEBUG(dbgs() << "  In block '" << BB->getName()
540          << "' folding undef terminator: " << *BBTerm << '\n');
541    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
542    BBTerm->eraseFromParent();
543    return true;
544  }
545
546  Instruction *CondInst = dyn_cast<Instruction>(Condition);
547
548  // If the condition is an instruction defined in another block, see if a
549  // predecessor has the same condition:
550  //     br COND, BBX, BBY
551  //  BBX:
552  //     br COND, BBZ, BBW
553  if (!LVI &&
554      !Condition->hasOneUse() && // Multiple uses.
555      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
556    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
557    if (isa<BranchInst>(BB->getTerminator())) {
558      for (; PI != E; ++PI) {
559        BasicBlock *P = *PI;
560        if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
561          if (PBI->isConditional() && PBI->getCondition() == Condition &&
562              ProcessBranchOnDuplicateCond(P, BB))
563            return true;
564      }
565    } else {
566      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
567      for (; PI != E; ++PI) {
568        BasicBlock *P = *PI;
569        if (SwitchInst *PSI = dyn_cast<SwitchInst>(P->getTerminator()))
570          if (PSI->getCondition() == Condition &&
571              ProcessSwitchOnDuplicateCond(P, BB))
572            return true;
573      }
574    }
575  }
576
577  // All the rest of our checks depend on the condition being an instruction.
578  if (CondInst == 0) {
579    // FIXME: Unify this with code below.
580    if (LVI && ProcessThreadableEdges(Condition, BB))
581      return true;
582    return false;
583  }
584
585
586  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
587    if (!LVI &&
588        (!isa<PHINode>(CondCmp->getOperand(0)) ||
589         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
590      // If we have a comparison, loop over the predecessors to see if there is
591      // a condition with a lexically identical value.
592      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
593      for (; PI != E; ++PI) {
594        BasicBlock *P = *PI;
595        if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
596          if (PBI->isConditional() && P != BB) {
597            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
598              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
599                  CI->getOperand(1) == CondCmp->getOperand(1) &&
600                  CI->getPredicate() == CondCmp->getPredicate()) {
601                // TODO: Could handle things like (x != 4) --> (x == 17)
602                if (ProcessBranchOnDuplicateCond(P, BB))
603                  return true;
604              }
605            }
606          }
607      }
608    }
609  }
610
611  // Check for some cases that are worth simplifying.  Right now we want to look
612  // for loads that are used by a switch or by the condition for the branch.  If
613  // we see one, check to see if it's partially redundant.  If so, insert a PHI
614  // which can then be used to thread the values.
615  //
616  Value *SimplifyValue = CondInst;
617  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
618    if (isa<Constant>(CondCmp->getOperand(1)))
619      SimplifyValue = CondCmp->getOperand(0);
620
621  // TODO: There are other places where load PRE would be profitable, such as
622  // more complex comparisons.
623  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
624    if (SimplifyPartiallyRedundantLoad(LI))
625      return true;
626
627
628  // Handle a variety of cases where we are branching on something derived from
629  // a PHI node in the current block.  If we can prove that any predecessors
630  // compute a predictable value based on a PHI node, thread those predecessors.
631  //
632  if (ProcessThreadableEdges(CondInst, BB))
633    return true;
634
635  // If this is an otherwise-unfoldable branch on a phi node in the current
636  // block, see if we can simplify.
637  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
638    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
639      return ProcessBranchOnPHI(PN);
640
641
642  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
643  if (CondInst->getOpcode() == Instruction::Xor &&
644      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
645    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
646
647
648  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
649  // "(X == 4)", thread through this block.
650
651  return false;
652}
653
654/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
655/// block that jump on exactly the same condition.  This means that we almost
656/// always know the direction of the edge in the DESTBB:
657///  PREDBB:
658///     br COND, DESTBB, BBY
659///  DESTBB:
660///     br COND, BBZ, BBW
661///
662/// If DESTBB has multiple predecessors, we can't just constant fold the branch
663/// in DESTBB, we have to thread over it.
664bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
665                                                 BasicBlock *BB) {
666  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
667
668  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
669  // fold the branch to an unconditional one, which allows other recursive
670  // simplifications.
671  bool BranchDir;
672  if (PredBI->getSuccessor(1) != BB)
673    BranchDir = true;
674  else if (PredBI->getSuccessor(0) != BB)
675    BranchDir = false;
676  else {
677    DEBUG(dbgs() << "  In block '" << PredBB->getName()
678          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
679    ++NumFolds;
680    ConstantFoldTerminator(PredBB);
681    return true;
682  }
683
684  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
685
686  // If the dest block has one predecessor, just fix the branch condition to a
687  // constant and fold it.
688  if (BB->getSinglePredecessor()) {
689    DEBUG(dbgs() << "  In block '" << BB->getName()
690          << "' folding condition to '" << BranchDir << "': "
691          << *BB->getTerminator() << '\n');
692    ++NumFolds;
693    Value *OldCond = DestBI->getCondition();
694    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
695                                          BranchDir));
696    // Delete dead instructions before we fold the branch.  Folding the branch
697    // can eliminate edges from the CFG which can end up deleting OldCond.
698    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
699    ConstantFoldTerminator(BB);
700    return true;
701  }
702
703
704  // Next, figure out which successor we are threading to.
705  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
706
707  SmallVector<BasicBlock*, 2> Preds;
708  Preds.push_back(PredBB);
709
710  // Ok, try to thread it!
711  return ThreadEdge(BB, Preds, SuccBB);
712}
713
714/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
715/// block that switch on exactly the same condition.  This means that we almost
716/// always know the direction of the edge in the DESTBB:
717///  PREDBB:
718///     switch COND [... DESTBB, BBY ... ]
719///  DESTBB:
720///     switch COND [... BBZ, BBW ]
721///
722/// Optimizing switches like this is very important, because simplifycfg builds
723/// switches out of repeated 'if' conditions.
724bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
725                                                 BasicBlock *DestBB) {
726  // Can't thread edge to self.
727  if (PredBB == DestBB)
728    return false;
729
730  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
731  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
732
733  // There are a variety of optimizations that we can potentially do on these
734  // blocks: we order them from most to least preferable.
735
736  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
737  // directly to their destination.  This does not introduce *any* code size
738  // growth.  Skip debug info first.
739  BasicBlock::iterator BBI = DestBB->begin();
740  while (isa<DbgInfoIntrinsic>(BBI))
741    BBI++;
742
743  // FIXME: Thread if it just contains a PHI.
744  if (isa<SwitchInst>(BBI)) {
745    bool MadeChange = false;
746    // Ignore the default edge for now.
747    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
748      ConstantInt *DestVal = DestSI->getCaseValue(i);
749      BasicBlock *DestSucc = DestSI->getSuccessor(i);
750
751      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
752      // PredSI has an explicit case for it.  If so, forward.  If it is covered
753      // by the default case, we can't update PredSI.
754      unsigned PredCase = PredSI->findCaseValue(DestVal);
755      if (PredCase == 0) continue;
756
757      // If PredSI doesn't go to DestBB on this value, then it won't reach the
758      // case on this condition.
759      if (PredSI->getSuccessor(PredCase) != DestBB &&
760          DestSI->getSuccessor(i) != DestBB)
761        continue;
762
763      // Do not forward this if it already goes to this destination, this would
764      // be an infinite loop.
765      if (PredSI->getSuccessor(PredCase) == DestSucc)
766        continue;
767
768      // Otherwise, we're safe to make the change.  Make sure that the edge from
769      // DestSI to DestSucc is not critical and has no PHI nodes.
770      DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
771      DEBUG(dbgs() << "THROUGH: " << *DestSI);
772
773      // If the destination has PHI nodes, just split the edge for updating
774      // simplicity.
775      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
776        SplitCriticalEdge(DestSI, i, this);
777        DestSucc = DestSI->getSuccessor(i);
778      }
779      FoldSingleEntryPHINodes(DestSucc);
780      PredSI->setSuccessor(PredCase, DestSucc);
781      MadeChange = true;
782    }
783
784    if (MadeChange)
785      return true;
786  }
787
788  return false;
789}
790
791
792/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
793/// load instruction, eliminate it by replacing it with a PHI node.  This is an
794/// important optimization that encourages jump threading, and needs to be run
795/// interlaced with other jump threading tasks.
796bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
797  // Don't hack volatile loads.
798  if (LI->isVolatile()) return false;
799
800  // If the load is defined in a block with exactly one predecessor, it can't be
801  // partially redundant.
802  BasicBlock *LoadBB = LI->getParent();
803  if (LoadBB->getSinglePredecessor())
804    return false;
805
806  Value *LoadedPtr = LI->getOperand(0);
807
808  // If the loaded operand is defined in the LoadBB, it can't be available.
809  // TODO: Could do simple PHI translation, that would be fun :)
810  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
811    if (PtrOp->getParent() == LoadBB)
812      return false;
813
814  // Scan a few instructions up from the load, to see if it is obviously live at
815  // the entry to its block.
816  BasicBlock::iterator BBIt = LI;
817
818  if (Value *AvailableVal =
819        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
820    // If the value if the load is locally available within the block, just use
821    // it.  This frequently occurs for reg2mem'd allocas.
822    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
823
824    // If the returned value is the load itself, replace with an undef. This can
825    // only happen in dead loops.
826    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
827    LI->replaceAllUsesWith(AvailableVal);
828    LI->eraseFromParent();
829    return true;
830  }
831
832  // Otherwise, if we scanned the whole block and got to the top of the block,
833  // we know the block is locally transparent to the load.  If not, something
834  // might clobber its value.
835  if (BBIt != LoadBB->begin())
836    return false;
837
838
839  SmallPtrSet<BasicBlock*, 8> PredsScanned;
840  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
841  AvailablePredsTy AvailablePreds;
842  BasicBlock *OneUnavailablePred = 0;
843
844  // If we got here, the loaded value is transparent through to the start of the
845  // block.  Check to see if it is available in any of the predecessor blocks.
846  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
847       PI != PE; ++PI) {
848    BasicBlock *PredBB = *PI;
849
850    // If we already scanned this predecessor, skip it.
851    if (!PredsScanned.insert(PredBB))
852      continue;
853
854    // Scan the predecessor to see if the value is available in the pred.
855    BBIt = PredBB->end();
856    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
857    if (!PredAvailable) {
858      OneUnavailablePred = PredBB;
859      continue;
860    }
861
862    // If so, this load is partially redundant.  Remember this info so that we
863    // can create a PHI node.
864    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
865  }
866
867  // If the loaded value isn't available in any predecessor, it isn't partially
868  // redundant.
869  if (AvailablePreds.empty()) return false;
870
871  // Okay, the loaded value is available in at least one (and maybe all!)
872  // predecessors.  If the value is unavailable in more than one unique
873  // predecessor, we want to insert a merge block for those common predecessors.
874  // This ensures that we only have to insert one reload, thus not increasing
875  // code size.
876  BasicBlock *UnavailablePred = 0;
877
878  // If there is exactly one predecessor where the value is unavailable, the
879  // already computed 'OneUnavailablePred' block is it.  If it ends in an
880  // unconditional branch, we know that it isn't a critical edge.
881  if (PredsScanned.size() == AvailablePreds.size()+1 &&
882      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
883    UnavailablePred = OneUnavailablePred;
884  } else if (PredsScanned.size() != AvailablePreds.size()) {
885    // Otherwise, we had multiple unavailable predecessors or we had a critical
886    // edge from the one.
887    SmallVector<BasicBlock*, 8> PredsToSplit;
888    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
889
890    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
891      AvailablePredSet.insert(AvailablePreds[i].first);
892
893    // Add all the unavailable predecessors to the PredsToSplit list.
894    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
895         PI != PE; ++PI) {
896      BasicBlock *P = *PI;
897      // If the predecessor is an indirect goto, we can't split the edge.
898      if (isa<IndirectBrInst>(P->getTerminator()))
899        return false;
900
901      if (!AvailablePredSet.count(P))
902        PredsToSplit.push_back(P);
903    }
904
905    // Split them out to their own block.
906    UnavailablePred =
907      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
908                             "thread-pre-split", this);
909  }
910
911  // If the value isn't available in all predecessors, then there will be
912  // exactly one where it isn't available.  Insert a load on that edge and add
913  // it to the AvailablePreds list.
914  if (UnavailablePred) {
915    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
916           "Can't handle critical edge here!");
917    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
918                                 LI->getAlignment(),
919                                 UnavailablePred->getTerminator());
920    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
921  }
922
923  // Now we know that each predecessor of this block has a value in
924  // AvailablePreds, sort them for efficient access as we're walking the preds.
925  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
926
927  // Create a PHI node at the start of the block for the PRE'd load value.
928  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
929  PN->takeName(LI);
930
931  // Insert new entries into the PHI for each predecessor.  A single block may
932  // have multiple entries here.
933  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
934       ++PI) {
935    BasicBlock *P = *PI;
936    AvailablePredsTy::iterator I =
937      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
938                       std::make_pair(P, (Value*)0));
939
940    assert(I != AvailablePreds.end() && I->first == P &&
941           "Didn't find entry for predecessor!");
942
943    PN->addIncoming(I->second, I->first);
944  }
945
946  //cerr << "PRE: " << *LI << *PN << "\n";
947
948  LI->replaceAllUsesWith(PN);
949  LI->eraseFromParent();
950
951  return true;
952}
953
954/// FindMostPopularDest - The specified list contains multiple possible
955/// threadable destinations.  Pick the one that occurs the most frequently in
956/// the list.
957static BasicBlock *
958FindMostPopularDest(BasicBlock *BB,
959                    const SmallVectorImpl<std::pair<BasicBlock*,
960                                  BasicBlock*> > &PredToDestList) {
961  assert(!PredToDestList.empty());
962
963  // Determine popularity.  If there are multiple possible destinations, we
964  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
965  // blocks with known and real destinations to threading undef.  We'll handle
966  // them later if interesting.
967  DenseMap<BasicBlock*, unsigned> DestPopularity;
968  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
969    if (PredToDestList[i].second)
970      DestPopularity[PredToDestList[i].second]++;
971
972  // Find the most popular dest.
973  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
974  BasicBlock *MostPopularDest = DPI->first;
975  unsigned Popularity = DPI->second;
976  SmallVector<BasicBlock*, 4> SamePopularity;
977
978  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
979    // If the popularity of this entry isn't higher than the popularity we've
980    // seen so far, ignore it.
981    if (DPI->second < Popularity)
982      ; // ignore.
983    else if (DPI->second == Popularity) {
984      // If it is the same as what we've seen so far, keep track of it.
985      SamePopularity.push_back(DPI->first);
986    } else {
987      // If it is more popular, remember it.
988      SamePopularity.clear();
989      MostPopularDest = DPI->first;
990      Popularity = DPI->second;
991    }
992  }
993
994  // Okay, now we know the most popular destination.  If there is more than
995  // destination, we need to determine one.  This is arbitrary, but we need
996  // to make a deterministic decision.  Pick the first one that appears in the
997  // successor list.
998  if (!SamePopularity.empty()) {
999    SamePopularity.push_back(MostPopularDest);
1000    TerminatorInst *TI = BB->getTerminator();
1001    for (unsigned i = 0; ; ++i) {
1002      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1003
1004      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1005                    TI->getSuccessor(i)) == SamePopularity.end())
1006        continue;
1007
1008      MostPopularDest = TI->getSuccessor(i);
1009      break;
1010    }
1011  }
1012
1013  // Okay, we have finally picked the most popular destination.
1014  return MostPopularDest;
1015}
1016
1017bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
1018  // If threading this would thread across a loop header, don't even try to
1019  // thread the edge.
1020  if (LoopHeaders.count(BB))
1021    return false;
1022
1023  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
1024  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
1025    return false;
1026  assert(!PredValues.empty() &&
1027         "ComputeValueKnownInPredecessors returned true with no values");
1028
1029  DEBUG(dbgs() << "IN BB: " << *BB;
1030        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1031          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
1032          if (PredValues[i].first)
1033            dbgs() << *PredValues[i].first;
1034          else
1035            dbgs() << "UNDEF";
1036          dbgs() << " for pred '" << PredValues[i].second->getName()
1037          << "'.\n";
1038        });
1039
1040  // Decide what we want to thread through.  Convert our list of known values to
1041  // a list of known destinations for each pred.  This also discards duplicate
1042  // predecessors and keeps track of the undefined inputs (which are represented
1043  // as a null dest in the PredToDestList).
1044  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1045  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1046
1047  BasicBlock *OnlyDest = 0;
1048  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1049
1050  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1051    BasicBlock *Pred = PredValues[i].second;
1052    if (!SeenPreds.insert(Pred))
1053      continue;  // Duplicate predecessor entry.
1054
1055    // If the predecessor ends with an indirect goto, we can't change its
1056    // destination.
1057    if (isa<IndirectBrInst>(Pred->getTerminator()))
1058      continue;
1059
1060    ConstantInt *Val = PredValues[i].first;
1061
1062    BasicBlock *DestBB;
1063    if (Val == 0)      // Undef.
1064      DestBB = 0;
1065    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1066      DestBB = BI->getSuccessor(Val->isZero());
1067    else {
1068      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1069      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1070    }
1071
1072    // If we have exactly one destination, remember it for efficiency below.
1073    if (i == 0)
1074      OnlyDest = DestBB;
1075    else if (OnlyDest != DestBB)
1076      OnlyDest = MultipleDestSentinel;
1077
1078    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1079  }
1080
1081  // If all edges were unthreadable, we fail.
1082  if (PredToDestList.empty())
1083    return false;
1084
1085  // Determine which is the most common successor.  If we have many inputs and
1086  // this block is a switch, we want to start by threading the batch that goes
1087  // to the most popular destination first.  If we only know about one
1088  // threadable destination (the common case) we can avoid this.
1089  BasicBlock *MostPopularDest = OnlyDest;
1090
1091  if (MostPopularDest == MultipleDestSentinel)
1092    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1093
1094  // Now that we know what the most popular destination is, factor all
1095  // predecessors that will jump to it into a single predecessor.
1096  SmallVector<BasicBlock*, 16> PredsToFactor;
1097  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1098    if (PredToDestList[i].second == MostPopularDest) {
1099      BasicBlock *Pred = PredToDestList[i].first;
1100
1101      // This predecessor may be a switch or something else that has multiple
1102      // edges to the block.  Factor each of these edges by listing them
1103      // according to # occurrences in PredsToFactor.
1104      TerminatorInst *PredTI = Pred->getTerminator();
1105      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1106        if (PredTI->getSuccessor(i) == BB)
1107          PredsToFactor.push_back(Pred);
1108    }
1109
1110  // If the threadable edges are branching on an undefined value, we get to pick
1111  // the destination that these predecessors should get to.
1112  if (MostPopularDest == 0)
1113    MostPopularDest = BB->getTerminator()->
1114                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1115
1116  // Ok, try to thread it!
1117  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1118}
1119
1120/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1121/// a PHI node in the current block.  See if there are any simplifications we
1122/// can do based on inputs to the phi node.
1123///
1124bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1125  BasicBlock *BB = PN->getParent();
1126
1127  // TODO: We could make use of this to do it once for blocks with common PHI
1128  // values.
1129  SmallVector<BasicBlock*, 1> PredBBs;
1130  PredBBs.resize(1);
1131
1132  // If any of the predecessor blocks end in an unconditional branch, we can
1133  // *duplicate* the conditional branch into that block in order to further
1134  // encourage jump threading and to eliminate cases where we have branch on a
1135  // phi of an icmp (branch on icmp is much better).
1136  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1137    BasicBlock *PredBB = PN->getIncomingBlock(i);
1138    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1139      if (PredBr->isUnconditional()) {
1140        PredBBs[0] = PredBB;
1141        // Try to duplicate BB into PredBB.
1142        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1143          return true;
1144      }
1145  }
1146
1147  return false;
1148}
1149
1150/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1151/// a xor instruction in the current block.  See if there are any
1152/// simplifications we can do based on inputs to the xor.
1153///
1154bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1155  BasicBlock *BB = BO->getParent();
1156
1157  // If either the LHS or RHS of the xor is a constant, don't do this
1158  // optimization.
1159  if (isa<ConstantInt>(BO->getOperand(0)) ||
1160      isa<ConstantInt>(BO->getOperand(1)))
1161    return false;
1162
1163  // If the first instruction in BB isn't a phi, we won't be able to infer
1164  // anything special about any particular predecessor.
1165  if (!isa<PHINode>(BB->front()))
1166    return false;
1167
1168  // If we have a xor as the branch input to this block, and we know that the
1169  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1170  // the condition into the predecessor and fix that value to true, saving some
1171  // logical ops on that path and encouraging other paths to simplify.
1172  //
1173  // This copies something like this:
1174  //
1175  //  BB:
1176  //    %X = phi i1 [1],  [%X']
1177  //    %Y = icmp eq i32 %A, %B
1178  //    %Z = xor i1 %X, %Y
1179  //    br i1 %Z, ...
1180  //
1181  // Into:
1182  //  BB':
1183  //    %Y = icmp ne i32 %A, %B
1184  //    br i1 %Z, ...
1185
1186  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1187  bool isLHS = true;
1188  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1189    assert(XorOpValues.empty());
1190    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1191      return false;
1192    isLHS = false;
1193  }
1194
1195  assert(!XorOpValues.empty() &&
1196         "ComputeValueKnownInPredecessors returned true with no values");
1197
1198  // Scan the information to see which is most popular: true or false.  The
1199  // predecessors can be of the set true, false, or undef.
1200  unsigned NumTrue = 0, NumFalse = 0;
1201  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1202    if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
1203    if (XorOpValues[i].first->isZero())
1204      ++NumFalse;
1205    else
1206      ++NumTrue;
1207  }
1208
1209  // Determine which value to split on, true, false, or undef if neither.
1210  ConstantInt *SplitVal = 0;
1211  if (NumTrue > NumFalse)
1212    SplitVal = ConstantInt::getTrue(BB->getContext());
1213  else if (NumTrue != 0 || NumFalse != 0)
1214    SplitVal = ConstantInt::getFalse(BB->getContext());
1215
1216  // Collect all of the blocks that this can be folded into so that we can
1217  // factor this once and clone it once.
1218  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1219  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1220    if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1221
1222    BlocksToFoldInto.push_back(XorOpValues[i].second);
1223  }
1224
1225  // If we inferred a value for all of the predecessors, then duplication won't
1226  // help us.  However, we can just replace the LHS or RHS with the constant.
1227  if (BlocksToFoldInto.size() ==
1228      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1229    if (SplitVal == 0) {
1230      // If all preds provide undef, just nuke the xor, because it is undef too.
1231      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1232      BO->eraseFromParent();
1233    } else if (SplitVal->isZero()) {
1234      // If all preds provide 0, replace the xor with the other input.
1235      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1236      BO->eraseFromParent();
1237    } else {
1238      // If all preds provide 1, set the computed value to 1.
1239      BO->setOperand(!isLHS, SplitVal);
1240    }
1241
1242    return true;
1243  }
1244
1245  // Try to duplicate BB into PredBB.
1246  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1247}
1248
1249
1250/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1251/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1252/// NewPred using the entries from OldPred (suitably mapped).
1253static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1254                                            BasicBlock *OldPred,
1255                                            BasicBlock *NewPred,
1256                                     DenseMap<Instruction*, Value*> &ValueMap) {
1257  for (BasicBlock::iterator PNI = PHIBB->begin();
1258       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1259    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1260    // DestBlock.
1261    Value *IV = PN->getIncomingValueForBlock(OldPred);
1262
1263    // Remap the value if necessary.
1264    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1265      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1266      if (I != ValueMap.end())
1267        IV = I->second;
1268    }
1269
1270    PN->addIncoming(IV, NewPred);
1271  }
1272}
1273
1274/// ThreadEdge - We have decided that it is safe and profitable to factor the
1275/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1276/// across BB.  Transform the IR to reflect this change.
1277bool JumpThreading::ThreadEdge(BasicBlock *BB,
1278                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1279                               BasicBlock *SuccBB) {
1280  // If threading to the same block as we come from, we would infinite loop.
1281  if (SuccBB == BB) {
1282    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1283          << "' - would thread to self!\n");
1284    return false;
1285  }
1286
1287  // If threading this would thread across a loop header, don't thread the edge.
1288  // See the comments above FindLoopHeaders for justifications and caveats.
1289  if (LoopHeaders.count(BB)) {
1290    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1291          << "' to dest BB '" << SuccBB->getName()
1292          << "' - it might create an irreducible loop!\n");
1293    return false;
1294  }
1295
1296  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1297  if (JumpThreadCost > Threshold) {
1298    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1299          << "' - Cost is too high: " << JumpThreadCost << "\n");
1300    return false;
1301  }
1302
1303  // And finally, do it!  Start by factoring the predecessors is needed.
1304  BasicBlock *PredBB;
1305  if (PredBBs.size() == 1)
1306    PredBB = PredBBs[0];
1307  else {
1308    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1309          << " common predecessors.\n");
1310    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1311                                    ".thr_comm", this);
1312  }
1313
1314  // And finally, do it!
1315  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1316        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1317        << ", across block:\n    "
1318        << *BB << "\n");
1319
1320  if (LVI)
1321    LVI->threadEdge(PredBB, BB, SuccBB);
1322
1323  // We are going to have to map operands from the original BB block to the new
1324  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1325  // account for entry from PredBB.
1326  DenseMap<Instruction*, Value*> ValueMapping;
1327
1328  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1329                                         BB->getName()+".thread",
1330                                         BB->getParent(), BB);
1331  NewBB->moveAfter(PredBB);
1332
1333  BasicBlock::iterator BI = BB->begin();
1334  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1335    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1336
1337  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1338  // mapping and using it to remap operands in the cloned instructions.
1339  for (; !isa<TerminatorInst>(BI); ++BI) {
1340    Instruction *New = BI->clone();
1341    New->setName(BI->getName());
1342    NewBB->getInstList().push_back(New);
1343    ValueMapping[BI] = New;
1344
1345    // Remap operands to patch up intra-block references.
1346    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1347      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1348        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1349        if (I != ValueMapping.end())
1350          New->setOperand(i, I->second);
1351      }
1352  }
1353
1354  // We didn't copy the terminator from BB over to NewBB, because there is now
1355  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1356  BranchInst::Create(SuccBB, NewBB);
1357
1358  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1359  // PHI nodes for NewBB now.
1360  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1361
1362  // If there were values defined in BB that are used outside the block, then we
1363  // now have to update all uses of the value to use either the original value,
1364  // the cloned value, or some PHI derived value.  This can require arbitrary
1365  // PHI insertion, of which we are prepared to do, clean these up now.
1366  SSAUpdater SSAUpdate;
1367  SmallVector<Use*, 16> UsesToRename;
1368  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1369    // Scan all uses of this instruction to see if it is used outside of its
1370    // block, and if so, record them in UsesToRename.
1371    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1372         ++UI) {
1373      Instruction *User = cast<Instruction>(*UI);
1374      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1375        if (UserPN->getIncomingBlock(UI) == BB)
1376          continue;
1377      } else if (User->getParent() == BB)
1378        continue;
1379
1380      UsesToRename.push_back(&UI.getUse());
1381    }
1382
1383    // If there are no uses outside the block, we're done with this instruction.
1384    if (UsesToRename.empty())
1385      continue;
1386
1387    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1388
1389    // We found a use of I outside of BB.  Rename all uses of I that are outside
1390    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1391    // with the two values we know.
1392    SSAUpdate.Initialize(I);
1393    SSAUpdate.AddAvailableValue(BB, I);
1394    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1395
1396    while (!UsesToRename.empty())
1397      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1398    DEBUG(dbgs() << "\n");
1399  }
1400
1401
1402  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1403  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1404  // us to simplify any PHI nodes in BB.
1405  TerminatorInst *PredTerm = PredBB->getTerminator();
1406  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1407    if (PredTerm->getSuccessor(i) == BB) {
1408      RemovePredecessorAndSimplify(BB, PredBB, TD);
1409      PredTerm->setSuccessor(i, NewBB);
1410    }
1411
1412  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1413  // over the new instructions and zap any that are constants or dead.  This
1414  // frequently happens because of phi translation.
1415  SimplifyInstructionsInBlock(NewBB, TD);
1416
1417  // Threaded an edge!
1418  ++NumThreads;
1419  return true;
1420}
1421
1422/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1423/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1424/// If we can duplicate the contents of BB up into PredBB do so now, this
1425/// improves the odds that the branch will be on an analyzable instruction like
1426/// a compare.
1427bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1428                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1429  assert(!PredBBs.empty() && "Can't handle an empty set");
1430
1431  // If BB is a loop header, then duplicating this block outside the loop would
1432  // cause us to transform this into an irreducible loop, don't do this.
1433  // See the comments above FindLoopHeaders for justifications and caveats.
1434  if (LoopHeaders.count(BB)) {
1435    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1436          << "' into predecessor block '" << PredBBs[0]->getName()
1437          << "' - it might create an irreducible loop!\n");
1438    return false;
1439  }
1440
1441  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1442  if (DuplicationCost > Threshold) {
1443    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1444          << "' - Cost is too high: " << DuplicationCost << "\n");
1445    return false;
1446  }
1447
1448  // And finally, do it!  Start by factoring the predecessors is needed.
1449  BasicBlock *PredBB;
1450  if (PredBBs.size() == 1)
1451    PredBB = PredBBs[0];
1452  else {
1453    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1454          << " common predecessors.\n");
1455    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1456                                    ".thr_comm", this);
1457  }
1458
1459  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1460  // of PredBB.
1461  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1462        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1463        << DuplicationCost << " block is:" << *BB << "\n");
1464
1465  // Unless PredBB ends with an unconditional branch, split the edge so that we
1466  // can just clone the bits from BB into the end of the new PredBB.
1467  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1468
1469  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1470    PredBB = SplitEdge(PredBB, BB, this);
1471    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1472  }
1473
1474  // We are going to have to map operands from the original BB block into the
1475  // PredBB block.  Evaluate PHI nodes in BB.
1476  DenseMap<Instruction*, Value*> ValueMapping;
1477
1478  BasicBlock::iterator BI = BB->begin();
1479  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1480    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1481
1482  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1483  // mapping and using it to remap operands in the cloned instructions.
1484  for (; BI != BB->end(); ++BI) {
1485    Instruction *New = BI->clone();
1486
1487    // Remap operands to patch up intra-block references.
1488    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1489      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1490        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1491        if (I != ValueMapping.end())
1492          New->setOperand(i, I->second);
1493      }
1494
1495    // If this instruction can be simplified after the operands are updated,
1496    // just use the simplified value instead.  This frequently happens due to
1497    // phi translation.
1498    if (Value *IV = SimplifyInstruction(New, TD)) {
1499      delete New;
1500      ValueMapping[BI] = IV;
1501    } else {
1502      // Otherwise, insert the new instruction into the block.
1503      New->setName(BI->getName());
1504      PredBB->getInstList().insert(OldPredBranch, New);
1505      ValueMapping[BI] = New;
1506    }
1507  }
1508
1509  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1510  // add entries to the PHI nodes for branch from PredBB now.
1511  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1512  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1513                                  ValueMapping);
1514  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1515                                  ValueMapping);
1516
1517  // If there were values defined in BB that are used outside the block, then we
1518  // now have to update all uses of the value to use either the original value,
1519  // the cloned value, or some PHI derived value.  This can require arbitrary
1520  // PHI insertion, of which we are prepared to do, clean these up now.
1521  SSAUpdater SSAUpdate;
1522  SmallVector<Use*, 16> UsesToRename;
1523  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1524    // Scan all uses of this instruction to see if it is used outside of its
1525    // block, and if so, record them in UsesToRename.
1526    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1527         ++UI) {
1528      Instruction *User = cast<Instruction>(*UI);
1529      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1530        if (UserPN->getIncomingBlock(UI) == BB)
1531          continue;
1532      } else if (User->getParent() == BB)
1533        continue;
1534
1535      UsesToRename.push_back(&UI.getUse());
1536    }
1537
1538    // If there are no uses outside the block, we're done with this instruction.
1539    if (UsesToRename.empty())
1540      continue;
1541
1542    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1543
1544    // We found a use of I outside of BB.  Rename all uses of I that are outside
1545    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1546    // with the two values we know.
1547    SSAUpdate.Initialize(I);
1548    SSAUpdate.AddAvailableValue(BB, I);
1549    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1550
1551    while (!UsesToRename.empty())
1552      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1553    DEBUG(dbgs() << "\n");
1554  }
1555
1556  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1557  // that we nuked.
1558  RemovePredecessorAndSimplify(BB, PredBB, TD);
1559
1560  // Remove the unconditional branch at the end of the PredBB block.
1561  OldPredBranch->eraseFromParent();
1562
1563  ++NumDupes;
1564  return true;
1565}
1566
1567
1568