JumpThreading.cpp revision bdabacdccae980b82b5d92e10697b8aeb3b94cfa
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LazyValueInfo.h"
21#include "llvm/Analysis/Loads.h"
22#include "llvm/Transforms/Utils/BasicBlockUtils.h"
23#include "llvm/Transforms/Utils/Local.h"
24#include "llvm/Transforms/Utils/SSAUpdater.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DenseSet.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ValueHandle.h"
35#include "llvm/Support/raw_ostream.h"
36using namespace llvm;
37
38STATISTIC(NumThreads, "Number of jumps threaded");
39STATISTIC(NumFolds,   "Number of terminators folded");
40STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
41
42static cl::opt<unsigned>
43Threshold("jump-threading-threshold",
44          cl::desc("Max block size to duplicate for jump threading"),
45          cl::init(6), cl::Hidden);
46
47// Turn on use of LazyValueInfo.
48static cl::opt<bool>
49EnableLVI("enable-jump-threading-lvi",
50          cl::desc("Use LVI for jump threading"),
51          cl::init(true),
52          cl::ReallyHidden);
53
54
55
56namespace {
57  /// This pass performs 'jump threading', which looks at blocks that have
58  /// multiple predecessors and multiple successors.  If one or more of the
59  /// predecessors of the block can be proven to always jump to one of the
60  /// successors, we forward the edge from the predecessor to the successor by
61  /// duplicating the contents of this block.
62  ///
63  /// An example of when this can occur is code like this:
64  ///
65  ///   if () { ...
66  ///     X = 4;
67  ///   }
68  ///   if (X < 3) {
69  ///
70  /// In this case, the unconditional branch at the end of the first if can be
71  /// revectored to the false side of the second if.
72  ///
73  class JumpThreading : public FunctionPass {
74    TargetData *TD;
75    LazyValueInfo *LVI;
76#ifdef NDEBUG
77    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
78#else
79    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
80#endif
81    DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
82
83    // RAII helper for updating the recursion stack.
84    struct RecursionSetRemover {
85      DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
86      std::pair<Value*, BasicBlock*> ThePair;
87
88      RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
89                          std::pair<Value*, BasicBlock*> P)
90        : TheSet(S), ThePair(P) { }
91
92      ~RecursionSetRemover() {
93        TheSet.erase(ThePair);
94      }
95    };
96  public:
97    static char ID; // Pass identification
98    JumpThreading() : FunctionPass(ID) {}
99
100    bool runOnFunction(Function &F);
101
102    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
103      if (EnableLVI) {
104        AU.addRequired<LazyValueInfo>();
105        AU.addPreserved<LazyValueInfo>();
106      }
107    }
108
109    void FindLoopHeaders(Function &F);
110    bool ProcessBlock(BasicBlock *BB);
111    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
112                    BasicBlock *SuccBB);
113    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
114                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
115
116    typedef SmallVectorImpl<std::pair<ConstantInt*,
117                                      BasicBlock*> > PredValueInfo;
118
119    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
120                                         PredValueInfo &Result);
121    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
122
123
124    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
125    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
126
127    bool ProcessBranchOnPHI(PHINode *PN);
128    bool ProcessBranchOnXOR(BinaryOperator *BO);
129
130    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
131  };
132}
133
134char JumpThreading::ID = 0;
135INITIALIZE_PASS(JumpThreading, "jump-threading",
136                "Jump Threading", false, false);
137
138// Public interface to the Jump Threading pass
139FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
140
141/// runOnFunction - Top level algorithm.
142///
143bool JumpThreading::runOnFunction(Function &F) {
144  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
145  TD = getAnalysisIfAvailable<TargetData>();
146  LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
147
148  FindLoopHeaders(F);
149
150  bool Changed, EverChanged = false;
151  do {
152    Changed = false;
153    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
154      BasicBlock *BB = I;
155      // Thread all of the branches we can over this block.
156      while (ProcessBlock(BB))
157        Changed = true;
158
159      ++I;
160
161      // If the block is trivially dead, zap it.  This eliminates the successor
162      // edges which simplifies the CFG.
163      if (pred_begin(BB) == pred_end(BB) &&
164          BB != &BB->getParent()->getEntryBlock()) {
165        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
166              << "' with terminator: " << *BB->getTerminator() << '\n');
167        LoopHeaders.erase(BB);
168        if (LVI) LVI->eraseBlock(BB);
169        DeleteDeadBlock(BB);
170        Changed = true;
171      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
172        // Can't thread an unconditional jump, but if the block is "almost
173        // empty", we can replace uses of it with uses of the successor and make
174        // this dead.
175        if (BI->isUnconditional() &&
176            BB != &BB->getParent()->getEntryBlock()) {
177          BasicBlock::iterator BBI = BB->getFirstNonPHI();
178          // Ignore dbg intrinsics.
179          while (isa<DbgInfoIntrinsic>(BBI))
180            ++BBI;
181          // If the terminator is the only non-phi instruction, try to nuke it.
182          if (BBI->isTerminator()) {
183            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
184            // block, we have to make sure it isn't in the LoopHeaders set.  We
185            // reinsert afterward if needed.
186            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
187            BasicBlock *Succ = BI->getSuccessor(0);
188
189            // FIXME: It is always conservatively correct to drop the info
190            // for a block even if it doesn't get erased.  This isn't totally
191            // awesome, but it allows us to use AssertingVH to prevent nasty
192            // dangling pointer issues within LazyValueInfo.
193            if (LVI) LVI->eraseBlock(BB);
194            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
195              Changed = true;
196              // If we deleted BB and BB was the header of a loop, then the
197              // successor is now the header of the loop.
198              BB = Succ;
199            }
200
201            if (ErasedFromLoopHeaders)
202              LoopHeaders.insert(BB);
203          }
204        }
205      }
206    }
207    EverChanged |= Changed;
208  } while (Changed);
209
210  LoopHeaders.clear();
211  return EverChanged;
212}
213
214/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
215/// thread across it.
216static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
217  /// Ignore PHI nodes, these will be flattened when duplication happens.
218  BasicBlock::const_iterator I = BB->getFirstNonPHI();
219
220  // FIXME: THREADING will delete values that are just used to compute the
221  // branch, so they shouldn't count against the duplication cost.
222
223
224  // Sum up the cost of each instruction until we get to the terminator.  Don't
225  // include the terminator because the copy won't include it.
226  unsigned Size = 0;
227  for (; !isa<TerminatorInst>(I); ++I) {
228    // Debugger intrinsics don't incur code size.
229    if (isa<DbgInfoIntrinsic>(I)) continue;
230
231    // If this is a pointer->pointer bitcast, it is free.
232    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
233      continue;
234
235    // All other instructions count for at least one unit.
236    ++Size;
237
238    // Calls are more expensive.  If they are non-intrinsic calls, we model them
239    // as having cost of 4.  If they are a non-vector intrinsic, we model them
240    // as having cost of 2 total, and if they are a vector intrinsic, we model
241    // them as having cost 1.
242    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
243      if (!isa<IntrinsicInst>(CI))
244        Size += 3;
245      else if (!CI->getType()->isVectorTy())
246        Size += 1;
247    }
248  }
249
250  // Threading through a switch statement is particularly profitable.  If this
251  // block ends in a switch, decrease its cost to make it more likely to happen.
252  if (isa<SwitchInst>(I))
253    Size = Size > 6 ? Size-6 : 0;
254
255  return Size;
256}
257
258/// FindLoopHeaders - We do not want jump threading to turn proper loop
259/// structures into irreducible loops.  Doing this breaks up the loop nesting
260/// hierarchy and pessimizes later transformations.  To prevent this from
261/// happening, we first have to find the loop headers.  Here we approximate this
262/// by finding targets of backedges in the CFG.
263///
264/// Note that there definitely are cases when we want to allow threading of
265/// edges across a loop header.  For example, threading a jump from outside the
266/// loop (the preheader) to an exit block of the loop is definitely profitable.
267/// It is also almost always profitable to thread backedges from within the loop
268/// to exit blocks, and is often profitable to thread backedges to other blocks
269/// within the loop (forming a nested loop).  This simple analysis is not rich
270/// enough to track all of these properties and keep it up-to-date as the CFG
271/// mutates, so we don't allow any of these transformations.
272///
273void JumpThreading::FindLoopHeaders(Function &F) {
274  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
275  FindFunctionBackedges(F, Edges);
276
277  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
278    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
279}
280
281// Helper method for ComputeValueKnownInPredecessors.  If Value is a
282// ConstantInt, push it.  If it's an undef, push 0.  Otherwise, do nothing.
283static void PushConstantIntOrUndef(SmallVectorImpl<std::pair<ConstantInt*,
284                                                        BasicBlock*> > &Result,
285                              Constant *Value, BasicBlock* BB){
286  if (ConstantInt *FoldedCInt = dyn_cast<ConstantInt>(Value))
287    Result.push_back(std::make_pair(FoldedCInt, BB));
288  else if (isa<UndefValue>(Value))
289    Result.push_back(std::make_pair((ConstantInt*)0, BB));
290}
291
292/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
293/// if we can infer that the value is a known ConstantInt in any of our
294/// predecessors.  If so, return the known list of value and pred BB in the
295/// result vector.  If a value is known to be undef, it is returned as null.
296///
297/// This returns true if there were any known values.
298///
299bool JumpThreading::
300ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
301  // This method walks up use-def chains recursively.  Because of this, we could
302  // get into an infinite loop going around loops in the use-def chain.  To
303  // prevent this, keep track of what (value, block) pairs we've already visited
304  // and terminate the search if we loop back to them
305  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
306    return false;
307
308  // An RAII help to remove this pair from the recursion set once the recursion
309  // stack pops back out again.
310  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
311
312  // If V is a constantint, then it is known in all predecessors.
313  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
314    ConstantInt *CI = dyn_cast<ConstantInt>(V);
315
316    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
317      Result.push_back(std::make_pair(CI, *PI));
318
319    return true;
320  }
321
322  // If V is a non-instruction value, or an instruction in a different block,
323  // then it can't be derived from a PHI.
324  Instruction *I = dyn_cast<Instruction>(V);
325  if (I == 0 || I->getParent() != BB) {
326
327    // Okay, if this is a live-in value, see if it has a known value at the end
328    // of any of our predecessors.
329    //
330    // FIXME: This should be an edge property, not a block end property.
331    /// TODO: Per PR2563, we could infer value range information about a
332    /// predecessor based on its terminator.
333    //
334    if (LVI) {
335      // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
336      // "I" is a non-local compare-with-a-constant instruction.  This would be
337      // able to handle value inequalities better, for example if the compare is
338      // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
339      // Perhaps getConstantOnEdge should be smart enough to do this?
340
341      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
342        BasicBlock *P = *PI;
343        // If the value is known by LazyValueInfo to be a constant in a
344        // predecessor, use that information to try to thread this block.
345        Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
346        if (PredCst == 0 ||
347            (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
348          continue;
349
350        Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
351      }
352
353      return !Result.empty();
354    }
355
356    return false;
357  }
358
359  /// If I is a PHI node, then we know the incoming values for any constants.
360  if (PHINode *PN = dyn_cast<PHINode>(I)) {
361    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
362      Value *InVal = PN->getIncomingValue(i);
363      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
364        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
365        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
366      } else if (LVI) {
367        Constant *CI = LVI->getConstantOnEdge(InVal,
368                                              PN->getIncomingBlock(i), BB);
369        // LVI returns null is no value could be determined.
370        if (!CI) continue;
371        PushConstantIntOrUndef(Result, CI, PN->getIncomingBlock(i));
372      }
373    }
374
375    return !Result.empty();
376  }
377
378  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
379
380  // Handle some boolean conditions.
381  if (I->getType()->getPrimitiveSizeInBits() == 1) {
382    // X | true -> true
383    // X & false -> false
384    if (I->getOpcode() == Instruction::Or ||
385        I->getOpcode() == Instruction::And) {
386      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
387      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
388
389      if (LHSVals.empty() && RHSVals.empty())
390        return false;
391
392      ConstantInt *InterestingVal;
393      if (I->getOpcode() == Instruction::Or)
394        InterestingVal = ConstantInt::getTrue(I->getContext());
395      else
396        InterestingVal = ConstantInt::getFalse(I->getContext());
397
398      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
399
400      // Scan for the sentinel.  If we find an undef, force it to the
401      // interesting value: x|undef -> true and x&undef -> false.
402      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
403        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
404          Result.push_back(LHSVals[i]);
405          Result.back().first = InterestingVal;
406          LHSKnownBBs.insert(LHSVals[i].second);
407        }
408      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
409        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
410          // If we already inferred a value for this block on the LHS, don't
411          // re-add it.
412          if (!LHSKnownBBs.count(RHSVals[i].second)) {
413            Result.push_back(RHSVals[i]);
414            Result.back().first = InterestingVal;
415          }
416        }
417
418      return !Result.empty();
419    }
420
421    // Handle the NOT form of XOR.
422    if (I->getOpcode() == Instruction::Xor &&
423        isa<ConstantInt>(I->getOperand(1)) &&
424        cast<ConstantInt>(I->getOperand(1))->isOne()) {
425      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
426      if (Result.empty())
427        return false;
428
429      // Invert the known values.
430      for (unsigned i = 0, e = Result.size(); i != e; ++i)
431        if (Result[i].first)
432          Result[i].first =
433            cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
434
435      return true;
436    }
437
438  // Try to simplify some other binary operator values.
439  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
440    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
441      SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
442      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals);
443
444      // Try to use constant folding to simplify the binary operator.
445      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
446        Constant *V = LHSVals[i].first;
447        if (V == 0) V = UndefValue::get(BO->getType());
448        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
449
450        PushConstantIntOrUndef(Result, Folded, LHSVals[i].second);
451      }
452    }
453
454    return !Result.empty();
455  }
456
457  // Handle compare with phi operand, where the PHI is defined in this block.
458  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
459    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
460    if (PN && PN->getParent() == BB) {
461      // We can do this simplification if any comparisons fold to true or false.
462      // See if any do.
463      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
464        BasicBlock *PredBB = PN->getIncomingBlock(i);
465        Value *LHS = PN->getIncomingValue(i);
466        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
467
468        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
469        if (Res == 0) {
470          if (!LVI || !isa<Constant>(RHS))
471            continue;
472
473          LazyValueInfo::Tristate
474            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
475                                           cast<Constant>(RHS), PredBB, BB);
476          if (ResT == LazyValueInfo::Unknown)
477            continue;
478          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
479        }
480
481        if (Constant *ConstRes = dyn_cast<Constant>(Res))
482          PushConstantIntOrUndef(Result, ConstRes, PredBB);
483      }
484
485      return !Result.empty();
486    }
487
488
489    // If comparing a live-in value against a constant, see if we know the
490    // live-in value on any predecessors.
491    if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
492        Cmp->getType()->isIntegerTy()) {
493      if (!isa<Instruction>(Cmp->getOperand(0)) ||
494          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
495        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
496
497        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
498          BasicBlock *P = *PI;
499          // If the value is known by LazyValueInfo to be a constant in a
500          // predecessor, use that information to try to thread this block.
501          LazyValueInfo::Tristate Res =
502            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
503                                    RHSCst, P, BB);
504          if (Res == LazyValueInfo::Unknown)
505            continue;
506
507          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
508          Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P));
509        }
510
511        return !Result.empty();
512      }
513
514      // Try to find a constant value for the LHS of a comparison,
515      // and evaluate it statically if we can.
516      if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
517        SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
518        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
519
520        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
521          Constant *V = LHSVals[i].first;
522          if (V == 0) V = UndefValue::get(CmpConst->getType());
523          Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
524                                                      V, CmpConst);
525          PushConstantIntOrUndef(Result, Folded, LHSVals[i].second);
526        }
527
528        return !Result.empty();
529      }
530    }
531  }
532
533  if (LVI) {
534    // If all else fails, see if LVI can figure out a constant value for us.
535    Constant *CI = LVI->getConstant(V, BB);
536    ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI);
537    if (CInt) {
538      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
539        Result.push_back(std::make_pair(CInt, *PI));
540    }
541
542    return !Result.empty();
543  }
544
545  return false;
546}
547
548
549
550/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
551/// in an undefined jump, decide which block is best to revector to.
552///
553/// Since we can pick an arbitrary destination, we pick the successor with the
554/// fewest predecessors.  This should reduce the in-degree of the others.
555///
556static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
557  TerminatorInst *BBTerm = BB->getTerminator();
558  unsigned MinSucc = 0;
559  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
560  // Compute the successor with the minimum number of predecessors.
561  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
562  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
563    TestBB = BBTerm->getSuccessor(i);
564    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
565    if (NumPreds < MinNumPreds)
566      MinSucc = i;
567  }
568
569  return MinSucc;
570}
571
572/// ProcessBlock - If there are any predecessors whose control can be threaded
573/// through to a successor, transform them now.
574bool JumpThreading::ProcessBlock(BasicBlock *BB) {
575  // If the block is trivially dead, just return and let the caller nuke it.
576  // This simplifies other transformations.
577  if (pred_begin(BB) == pred_end(BB) &&
578      BB != &BB->getParent()->getEntryBlock())
579    return false;
580
581  // If this block has a single predecessor, and if that pred has a single
582  // successor, merge the blocks.  This encourages recursive jump threading
583  // because now the condition in this block can be threaded through
584  // predecessors of our predecessor block.
585  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
586    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
587        SinglePred != BB) {
588      // If SinglePred was a loop header, BB becomes one.
589      if (LoopHeaders.erase(SinglePred))
590        LoopHeaders.insert(BB);
591
592      // Remember if SinglePred was the entry block of the function.  If so, we
593      // will need to move BB back to the entry position.
594      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
595      if (LVI) LVI->eraseBlock(SinglePred);
596      MergeBasicBlockIntoOnlyPred(BB);
597
598      if (isEntry && BB != &BB->getParent()->getEntryBlock())
599        BB->moveBefore(&BB->getParent()->getEntryBlock());
600      return true;
601    }
602  }
603
604  // Look to see if the terminator is a branch of switch, if not we can't thread
605  // it.
606  Value *Condition;
607  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
608    // Can't thread an unconditional jump.
609    if (BI->isUnconditional()) return false;
610    Condition = BI->getCondition();
611  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
612    Condition = SI->getCondition();
613  else
614    return false; // Must be an invoke.
615
616  // If the terminator of this block is branching on a constant, simplify the
617  // terminator to an unconditional branch.  This can occur due to threading in
618  // other blocks.
619  if (isa<ConstantInt>(Condition)) {
620    DEBUG(dbgs() << "  In block '" << BB->getName()
621          << "' folding terminator: " << *BB->getTerminator() << '\n');
622    ++NumFolds;
623    ConstantFoldTerminator(BB);
624    return true;
625  }
626
627  // If the terminator is branching on an undef, we can pick any of the
628  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
629  if (isa<UndefValue>(Condition)) {
630    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
631
632    // Fold the branch/switch.
633    TerminatorInst *BBTerm = BB->getTerminator();
634    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
635      if (i == BestSucc) continue;
636      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
637    }
638
639    DEBUG(dbgs() << "  In block '" << BB->getName()
640          << "' folding undef terminator: " << *BBTerm << '\n');
641    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
642    BBTerm->eraseFromParent();
643    return true;
644  }
645
646  Instruction *CondInst = dyn_cast<Instruction>(Condition);
647
648  // If the condition is an instruction defined in another block, see if a
649  // predecessor has the same condition:
650  //     br COND, BBX, BBY
651  //  BBX:
652  //     br COND, BBZ, BBW
653  if (!LVI &&
654      !Condition->hasOneUse() && // Multiple uses.
655      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
656    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
657    if (isa<BranchInst>(BB->getTerminator())) {
658      for (; PI != E; ++PI) {
659        BasicBlock *P = *PI;
660        if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
661          if (PBI->isConditional() && PBI->getCondition() == Condition &&
662              ProcessBranchOnDuplicateCond(P, BB))
663            return true;
664      }
665    } else {
666      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
667      for (; PI != E; ++PI) {
668        BasicBlock *P = *PI;
669        if (SwitchInst *PSI = dyn_cast<SwitchInst>(P->getTerminator()))
670          if (PSI->getCondition() == Condition &&
671              ProcessSwitchOnDuplicateCond(P, BB))
672            return true;
673      }
674    }
675  }
676
677  // All the rest of our checks depend on the condition being an instruction.
678  if (CondInst == 0) {
679    // FIXME: Unify this with code below.
680    if (LVI && ProcessThreadableEdges(Condition, BB))
681      return true;
682    return false;
683  }
684
685
686  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
687    if (!LVI &&
688        (!isa<PHINode>(CondCmp->getOperand(0)) ||
689         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
690      // If we have a comparison, loop over the predecessors to see if there is
691      // a condition with a lexically identical value.
692      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
693      for (; PI != E; ++PI) {
694        BasicBlock *P = *PI;
695        if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
696          if (PBI->isConditional() && P != BB) {
697            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
698              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
699                  CI->getOperand(1) == CondCmp->getOperand(1) &&
700                  CI->getPredicate() == CondCmp->getPredicate()) {
701                // TODO: Could handle things like (x != 4) --> (x == 17)
702                if (ProcessBranchOnDuplicateCond(P, BB))
703                  return true;
704              }
705            }
706          }
707      }
708    }
709
710    // For a comparison where the LHS is outside this block, it's possible
711    // that we've branched on it before.  Used LVI to see if we can simplify
712    // the branch based on that.
713    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
714    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
715    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
716    if (LVI && CondBr && CondConst && CondBr->isConditional() && PI != PE &&
717        (!isa<Instruction>(CondCmp->getOperand(0)) ||
718         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
719      // For predecessor edge, determine if the comparison is true or false
720      // on that edge.  If they're all true or all false, we can simplify the
721      // branch.
722      // FIXME: We could handle mixed true/false by duplicating code.
723      LazyValueInfo::Tristate Baseline =
724        LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
725                                CondConst, *PI, BB);
726      if (Baseline != LazyValueInfo::Unknown) {
727        // Check that all remaining incoming values match the first one.
728        while (++PI != PE) {
729          LazyValueInfo::Tristate Ret =
730            LVI->getPredicateOnEdge(CondCmp->getPredicate(),
731                                    CondCmp->getOperand(0), CondConst, *PI, BB);
732          if (Ret != Baseline) break;
733        }
734
735        // If we terminated early, then one of the values didn't match.
736        if (PI == PE) {
737          unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
738          unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
739          RemovePredecessorAndSimplify(CondBr->getSuccessor(ToRemove), BB, TD);
740          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
741          CondBr->eraseFromParent();
742          return true;
743        }
744      }
745    }
746  }
747
748  // Check for some cases that are worth simplifying.  Right now we want to look
749  // for loads that are used by a switch or by the condition for the branch.  If
750  // we see one, check to see if it's partially redundant.  If so, insert a PHI
751  // which can then be used to thread the values.
752  //
753  Value *SimplifyValue = CondInst;
754  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
755    if (isa<Constant>(CondCmp->getOperand(1)))
756      SimplifyValue = CondCmp->getOperand(0);
757
758  // TODO: There are other places where load PRE would be profitable, such as
759  // more complex comparisons.
760  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
761    if (SimplifyPartiallyRedundantLoad(LI))
762      return true;
763
764
765  // Handle a variety of cases where we are branching on something derived from
766  // a PHI node in the current block.  If we can prove that any predecessors
767  // compute a predictable value based on a PHI node, thread those predecessors.
768  //
769  if (ProcessThreadableEdges(CondInst, BB))
770    return true;
771
772  // If this is an otherwise-unfoldable branch on a phi node in the current
773  // block, see if we can simplify.
774  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
775    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
776      return ProcessBranchOnPHI(PN);
777
778
779  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
780  if (CondInst->getOpcode() == Instruction::Xor &&
781      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
782    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
783
784
785  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
786  // "(X == 4)", thread through this block.
787
788  return false;
789}
790
791/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
792/// block that jump on exactly the same condition.  This means that we almost
793/// always know the direction of the edge in the DESTBB:
794///  PREDBB:
795///     br COND, DESTBB, BBY
796///  DESTBB:
797///     br COND, BBZ, BBW
798///
799/// If DESTBB has multiple predecessors, we can't just constant fold the branch
800/// in DESTBB, we have to thread over it.
801bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
802                                                 BasicBlock *BB) {
803  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
804
805  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
806  // fold the branch to an unconditional one, which allows other recursive
807  // simplifications.
808  bool BranchDir;
809  if (PredBI->getSuccessor(1) != BB)
810    BranchDir = true;
811  else if (PredBI->getSuccessor(0) != BB)
812    BranchDir = false;
813  else {
814    DEBUG(dbgs() << "  In block '" << PredBB->getName()
815          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
816    ++NumFolds;
817    ConstantFoldTerminator(PredBB);
818    return true;
819  }
820
821  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
822
823  // If the dest block has one predecessor, just fix the branch condition to a
824  // constant and fold it.
825  if (BB->getSinglePredecessor()) {
826    DEBUG(dbgs() << "  In block '" << BB->getName()
827          << "' folding condition to '" << BranchDir << "': "
828          << *BB->getTerminator() << '\n');
829    ++NumFolds;
830    Value *OldCond = DestBI->getCondition();
831    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
832                                          BranchDir));
833    // Delete dead instructions before we fold the branch.  Folding the branch
834    // can eliminate edges from the CFG which can end up deleting OldCond.
835    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
836    ConstantFoldTerminator(BB);
837    return true;
838  }
839
840
841  // Next, figure out which successor we are threading to.
842  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
843
844  SmallVector<BasicBlock*, 2> Preds;
845  Preds.push_back(PredBB);
846
847  // Ok, try to thread it!
848  return ThreadEdge(BB, Preds, SuccBB);
849}
850
851/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
852/// block that switch on exactly the same condition.  This means that we almost
853/// always know the direction of the edge in the DESTBB:
854///  PREDBB:
855///     switch COND [... DESTBB, BBY ... ]
856///  DESTBB:
857///     switch COND [... BBZ, BBW ]
858///
859/// Optimizing switches like this is very important, because simplifycfg builds
860/// switches out of repeated 'if' conditions.
861bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
862                                                 BasicBlock *DestBB) {
863  // Can't thread edge to self.
864  if (PredBB == DestBB)
865    return false;
866
867  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
868  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
869
870  // There are a variety of optimizations that we can potentially do on these
871  // blocks: we order them from most to least preferable.
872
873  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
874  // directly to their destination.  This does not introduce *any* code size
875  // growth.  Skip debug info first.
876  BasicBlock::iterator BBI = DestBB->begin();
877  while (isa<DbgInfoIntrinsic>(BBI))
878    BBI++;
879
880  // FIXME: Thread if it just contains a PHI.
881  if (isa<SwitchInst>(BBI)) {
882    bool MadeChange = false;
883    // Ignore the default edge for now.
884    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
885      ConstantInt *DestVal = DestSI->getCaseValue(i);
886      BasicBlock *DestSucc = DestSI->getSuccessor(i);
887
888      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
889      // PredSI has an explicit case for it.  If so, forward.  If it is covered
890      // by the default case, we can't update PredSI.
891      unsigned PredCase = PredSI->findCaseValue(DestVal);
892      if (PredCase == 0) continue;
893
894      // If PredSI doesn't go to DestBB on this value, then it won't reach the
895      // case on this condition.
896      if (PredSI->getSuccessor(PredCase) != DestBB &&
897          DestSI->getSuccessor(i) != DestBB)
898        continue;
899
900      // Do not forward this if it already goes to this destination, this would
901      // be an infinite loop.
902      if (PredSI->getSuccessor(PredCase) == DestSucc)
903        continue;
904
905      // Otherwise, we're safe to make the change.  Make sure that the edge from
906      // DestSI to DestSucc is not critical and has no PHI nodes.
907      DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
908      DEBUG(dbgs() << "THROUGH: " << *DestSI);
909
910      // If the destination has PHI nodes, just split the edge for updating
911      // simplicity.
912      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
913        SplitCriticalEdge(DestSI, i, this);
914        DestSucc = DestSI->getSuccessor(i);
915      }
916      FoldSingleEntryPHINodes(DestSucc);
917      PredSI->setSuccessor(PredCase, DestSucc);
918      MadeChange = true;
919    }
920
921    if (MadeChange)
922      return true;
923  }
924
925  return false;
926}
927
928
929/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
930/// load instruction, eliminate it by replacing it with a PHI node.  This is an
931/// important optimization that encourages jump threading, and needs to be run
932/// interlaced with other jump threading tasks.
933bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
934  // Don't hack volatile loads.
935  if (LI->isVolatile()) return false;
936
937  // If the load is defined in a block with exactly one predecessor, it can't be
938  // partially redundant.
939  BasicBlock *LoadBB = LI->getParent();
940  if (LoadBB->getSinglePredecessor())
941    return false;
942
943  Value *LoadedPtr = LI->getOperand(0);
944
945  // If the loaded operand is defined in the LoadBB, it can't be available.
946  // TODO: Could do simple PHI translation, that would be fun :)
947  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
948    if (PtrOp->getParent() == LoadBB)
949      return false;
950
951  // Scan a few instructions up from the load, to see if it is obviously live at
952  // the entry to its block.
953  BasicBlock::iterator BBIt = LI;
954
955  if (Value *AvailableVal =
956        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
957    // If the value if the load is locally available within the block, just use
958    // it.  This frequently occurs for reg2mem'd allocas.
959    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
960
961    // If the returned value is the load itself, replace with an undef. This can
962    // only happen in dead loops.
963    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
964    LI->replaceAllUsesWith(AvailableVal);
965    LI->eraseFromParent();
966    return true;
967  }
968
969  // Otherwise, if we scanned the whole block and got to the top of the block,
970  // we know the block is locally transparent to the load.  If not, something
971  // might clobber its value.
972  if (BBIt != LoadBB->begin())
973    return false;
974
975
976  SmallPtrSet<BasicBlock*, 8> PredsScanned;
977  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
978  AvailablePredsTy AvailablePreds;
979  BasicBlock *OneUnavailablePred = 0;
980
981  // If we got here, the loaded value is transparent through to the start of the
982  // block.  Check to see if it is available in any of the predecessor blocks.
983  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
984       PI != PE; ++PI) {
985    BasicBlock *PredBB = *PI;
986
987    // If we already scanned this predecessor, skip it.
988    if (!PredsScanned.insert(PredBB))
989      continue;
990
991    // Scan the predecessor to see if the value is available in the pred.
992    BBIt = PredBB->end();
993    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
994    if (!PredAvailable) {
995      OneUnavailablePred = PredBB;
996      continue;
997    }
998
999    // If so, this load is partially redundant.  Remember this info so that we
1000    // can create a PHI node.
1001    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1002  }
1003
1004  // If the loaded value isn't available in any predecessor, it isn't partially
1005  // redundant.
1006  if (AvailablePreds.empty()) return false;
1007
1008  // Okay, the loaded value is available in at least one (and maybe all!)
1009  // predecessors.  If the value is unavailable in more than one unique
1010  // predecessor, we want to insert a merge block for those common predecessors.
1011  // This ensures that we only have to insert one reload, thus not increasing
1012  // code size.
1013  BasicBlock *UnavailablePred = 0;
1014
1015  // If there is exactly one predecessor where the value is unavailable, the
1016  // already computed 'OneUnavailablePred' block is it.  If it ends in an
1017  // unconditional branch, we know that it isn't a critical edge.
1018  if (PredsScanned.size() == AvailablePreds.size()+1 &&
1019      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1020    UnavailablePred = OneUnavailablePred;
1021  } else if (PredsScanned.size() != AvailablePreds.size()) {
1022    // Otherwise, we had multiple unavailable predecessors or we had a critical
1023    // edge from the one.
1024    SmallVector<BasicBlock*, 8> PredsToSplit;
1025    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1026
1027    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
1028      AvailablePredSet.insert(AvailablePreds[i].first);
1029
1030    // Add all the unavailable predecessors to the PredsToSplit list.
1031    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
1032         PI != PE; ++PI) {
1033      BasicBlock *P = *PI;
1034      // If the predecessor is an indirect goto, we can't split the edge.
1035      if (isa<IndirectBrInst>(P->getTerminator()))
1036        return false;
1037
1038      if (!AvailablePredSet.count(P))
1039        PredsToSplit.push_back(P);
1040    }
1041
1042    // Split them out to their own block.
1043    UnavailablePred =
1044      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
1045                             "thread-pre-split", this);
1046  }
1047
1048  // If the value isn't available in all predecessors, then there will be
1049  // exactly one where it isn't available.  Insert a load on that edge and add
1050  // it to the AvailablePreds list.
1051  if (UnavailablePred) {
1052    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1053           "Can't handle critical edge here!");
1054    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
1055                                 LI->getAlignment(),
1056                                 UnavailablePred->getTerminator());
1057    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1058  }
1059
1060  // Now we know that each predecessor of this block has a value in
1061  // AvailablePreds, sort them for efficient access as we're walking the preds.
1062  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1063
1064  // Create a PHI node at the start of the block for the PRE'd load value.
1065  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
1066  PN->takeName(LI);
1067
1068  // Insert new entries into the PHI for each predecessor.  A single block may
1069  // have multiple entries here.
1070  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
1071       ++PI) {
1072    BasicBlock *P = *PI;
1073    AvailablePredsTy::iterator I =
1074      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1075                       std::make_pair(P, (Value*)0));
1076
1077    assert(I != AvailablePreds.end() && I->first == P &&
1078           "Didn't find entry for predecessor!");
1079
1080    PN->addIncoming(I->second, I->first);
1081  }
1082
1083  //cerr << "PRE: " << *LI << *PN << "\n";
1084
1085  LI->replaceAllUsesWith(PN);
1086  LI->eraseFromParent();
1087
1088  return true;
1089}
1090
1091/// FindMostPopularDest - The specified list contains multiple possible
1092/// threadable destinations.  Pick the one that occurs the most frequently in
1093/// the list.
1094static BasicBlock *
1095FindMostPopularDest(BasicBlock *BB,
1096                    const SmallVectorImpl<std::pair<BasicBlock*,
1097                                  BasicBlock*> > &PredToDestList) {
1098  assert(!PredToDestList.empty());
1099
1100  // Determine popularity.  If there are multiple possible destinations, we
1101  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1102  // blocks with known and real destinations to threading undef.  We'll handle
1103  // them later if interesting.
1104  DenseMap<BasicBlock*, unsigned> DestPopularity;
1105  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1106    if (PredToDestList[i].second)
1107      DestPopularity[PredToDestList[i].second]++;
1108
1109  // Find the most popular dest.
1110  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1111  BasicBlock *MostPopularDest = DPI->first;
1112  unsigned Popularity = DPI->second;
1113  SmallVector<BasicBlock*, 4> SamePopularity;
1114
1115  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1116    // If the popularity of this entry isn't higher than the popularity we've
1117    // seen so far, ignore it.
1118    if (DPI->second < Popularity)
1119      ; // ignore.
1120    else if (DPI->second == Popularity) {
1121      // If it is the same as what we've seen so far, keep track of it.
1122      SamePopularity.push_back(DPI->first);
1123    } else {
1124      // If it is more popular, remember it.
1125      SamePopularity.clear();
1126      MostPopularDest = DPI->first;
1127      Popularity = DPI->second;
1128    }
1129  }
1130
1131  // Okay, now we know the most popular destination.  If there is more than
1132  // destination, we need to determine one.  This is arbitrary, but we need
1133  // to make a deterministic decision.  Pick the first one that appears in the
1134  // successor list.
1135  if (!SamePopularity.empty()) {
1136    SamePopularity.push_back(MostPopularDest);
1137    TerminatorInst *TI = BB->getTerminator();
1138    for (unsigned i = 0; ; ++i) {
1139      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1140
1141      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1142                    TI->getSuccessor(i)) == SamePopularity.end())
1143        continue;
1144
1145      MostPopularDest = TI->getSuccessor(i);
1146      break;
1147    }
1148  }
1149
1150  // Okay, we have finally picked the most popular destination.
1151  return MostPopularDest;
1152}
1153
1154bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
1155  // If threading this would thread across a loop header, don't even try to
1156  // thread the edge.
1157  if (LoopHeaders.count(BB))
1158    return false;
1159
1160  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
1161  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
1162    return false;
1163
1164  assert(!PredValues.empty() &&
1165         "ComputeValueKnownInPredecessors returned true with no values");
1166
1167  DEBUG(dbgs() << "IN BB: " << *BB;
1168        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1169          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
1170          if (PredValues[i].first)
1171            dbgs() << *PredValues[i].first;
1172          else
1173            dbgs() << "UNDEF";
1174          dbgs() << " for pred '" << PredValues[i].second->getName()
1175          << "'.\n";
1176        });
1177
1178  // Decide what we want to thread through.  Convert our list of known values to
1179  // a list of known destinations for each pred.  This also discards duplicate
1180  // predecessors and keeps track of the undefined inputs (which are represented
1181  // as a null dest in the PredToDestList).
1182  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1183  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1184
1185  BasicBlock *OnlyDest = 0;
1186  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1187
1188  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1189    BasicBlock *Pred = PredValues[i].second;
1190    if (!SeenPreds.insert(Pred))
1191      continue;  // Duplicate predecessor entry.
1192
1193    // If the predecessor ends with an indirect goto, we can't change its
1194    // destination.
1195    if (isa<IndirectBrInst>(Pred->getTerminator()))
1196      continue;
1197
1198    ConstantInt *Val = PredValues[i].first;
1199
1200    BasicBlock *DestBB;
1201    if (Val == 0)      // Undef.
1202      DestBB = 0;
1203    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1204      DestBB = BI->getSuccessor(Val->isZero());
1205    else {
1206      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1207      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1208    }
1209
1210    // If we have exactly one destination, remember it for efficiency below.
1211    if (i == 0)
1212      OnlyDest = DestBB;
1213    else if (OnlyDest != DestBB)
1214      OnlyDest = MultipleDestSentinel;
1215
1216    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1217  }
1218
1219  // If all edges were unthreadable, we fail.
1220  if (PredToDestList.empty())
1221    return false;
1222
1223  // Determine which is the most common successor.  If we have many inputs and
1224  // this block is a switch, we want to start by threading the batch that goes
1225  // to the most popular destination first.  If we only know about one
1226  // threadable destination (the common case) we can avoid this.
1227  BasicBlock *MostPopularDest = OnlyDest;
1228
1229  if (MostPopularDest == MultipleDestSentinel)
1230    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1231
1232  // Now that we know what the most popular destination is, factor all
1233  // predecessors that will jump to it into a single predecessor.
1234  SmallVector<BasicBlock*, 16> PredsToFactor;
1235  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1236    if (PredToDestList[i].second == MostPopularDest) {
1237      BasicBlock *Pred = PredToDestList[i].first;
1238
1239      // This predecessor may be a switch or something else that has multiple
1240      // edges to the block.  Factor each of these edges by listing them
1241      // according to # occurrences in PredsToFactor.
1242      TerminatorInst *PredTI = Pred->getTerminator();
1243      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1244        if (PredTI->getSuccessor(i) == BB)
1245          PredsToFactor.push_back(Pred);
1246    }
1247
1248  // If the threadable edges are branching on an undefined value, we get to pick
1249  // the destination that these predecessors should get to.
1250  if (MostPopularDest == 0)
1251    MostPopularDest = BB->getTerminator()->
1252                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1253
1254  // Ok, try to thread it!
1255  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1256}
1257
1258/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1259/// a PHI node in the current block.  See if there are any simplifications we
1260/// can do based on inputs to the phi node.
1261///
1262bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1263  BasicBlock *BB = PN->getParent();
1264
1265  // TODO: We could make use of this to do it once for blocks with common PHI
1266  // values.
1267  SmallVector<BasicBlock*, 1> PredBBs;
1268  PredBBs.resize(1);
1269
1270  // If any of the predecessor blocks end in an unconditional branch, we can
1271  // *duplicate* the conditional branch into that block in order to further
1272  // encourage jump threading and to eliminate cases where we have branch on a
1273  // phi of an icmp (branch on icmp is much better).
1274  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1275    BasicBlock *PredBB = PN->getIncomingBlock(i);
1276    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1277      if (PredBr->isUnconditional()) {
1278        PredBBs[0] = PredBB;
1279        // Try to duplicate BB into PredBB.
1280        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1281          return true;
1282      }
1283  }
1284
1285  return false;
1286}
1287
1288/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1289/// a xor instruction in the current block.  See if there are any
1290/// simplifications we can do based on inputs to the xor.
1291///
1292bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1293  BasicBlock *BB = BO->getParent();
1294
1295  // If either the LHS or RHS of the xor is a constant, don't do this
1296  // optimization.
1297  if (isa<ConstantInt>(BO->getOperand(0)) ||
1298      isa<ConstantInt>(BO->getOperand(1)))
1299    return false;
1300
1301  // If the first instruction in BB isn't a phi, we won't be able to infer
1302  // anything special about any particular predecessor.
1303  if (!isa<PHINode>(BB->front()))
1304    return false;
1305
1306  // If we have a xor as the branch input to this block, and we know that the
1307  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1308  // the condition into the predecessor and fix that value to true, saving some
1309  // logical ops on that path and encouraging other paths to simplify.
1310  //
1311  // This copies something like this:
1312  //
1313  //  BB:
1314  //    %X = phi i1 [1],  [%X']
1315  //    %Y = icmp eq i32 %A, %B
1316  //    %Z = xor i1 %X, %Y
1317  //    br i1 %Z, ...
1318  //
1319  // Into:
1320  //  BB':
1321  //    %Y = icmp ne i32 %A, %B
1322  //    br i1 %Z, ...
1323
1324  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1325  bool isLHS = true;
1326  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1327    assert(XorOpValues.empty());
1328    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1329      return false;
1330    isLHS = false;
1331  }
1332
1333  assert(!XorOpValues.empty() &&
1334         "ComputeValueKnownInPredecessors returned true with no values");
1335
1336  // Scan the information to see which is most popular: true or false.  The
1337  // predecessors can be of the set true, false, or undef.
1338  unsigned NumTrue = 0, NumFalse = 0;
1339  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1340    if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
1341    if (XorOpValues[i].first->isZero())
1342      ++NumFalse;
1343    else
1344      ++NumTrue;
1345  }
1346
1347  // Determine which value to split on, true, false, or undef if neither.
1348  ConstantInt *SplitVal = 0;
1349  if (NumTrue > NumFalse)
1350    SplitVal = ConstantInt::getTrue(BB->getContext());
1351  else if (NumTrue != 0 || NumFalse != 0)
1352    SplitVal = ConstantInt::getFalse(BB->getContext());
1353
1354  // Collect all of the blocks that this can be folded into so that we can
1355  // factor this once and clone it once.
1356  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1357  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1358    if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1359
1360    BlocksToFoldInto.push_back(XorOpValues[i].second);
1361  }
1362
1363  // If we inferred a value for all of the predecessors, then duplication won't
1364  // help us.  However, we can just replace the LHS or RHS with the constant.
1365  if (BlocksToFoldInto.size() ==
1366      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1367    if (SplitVal == 0) {
1368      // If all preds provide undef, just nuke the xor, because it is undef too.
1369      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1370      BO->eraseFromParent();
1371    } else if (SplitVal->isZero()) {
1372      // If all preds provide 0, replace the xor with the other input.
1373      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1374      BO->eraseFromParent();
1375    } else {
1376      // If all preds provide 1, set the computed value to 1.
1377      BO->setOperand(!isLHS, SplitVal);
1378    }
1379
1380    return true;
1381  }
1382
1383  // Try to duplicate BB into PredBB.
1384  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1385}
1386
1387
1388/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1389/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1390/// NewPred using the entries from OldPred (suitably mapped).
1391static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1392                                            BasicBlock *OldPred,
1393                                            BasicBlock *NewPred,
1394                                     DenseMap<Instruction*, Value*> &ValueMap) {
1395  for (BasicBlock::iterator PNI = PHIBB->begin();
1396       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1397    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1398    // DestBlock.
1399    Value *IV = PN->getIncomingValueForBlock(OldPred);
1400
1401    // Remap the value if necessary.
1402    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1403      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1404      if (I != ValueMap.end())
1405        IV = I->second;
1406    }
1407
1408    PN->addIncoming(IV, NewPred);
1409  }
1410}
1411
1412/// ThreadEdge - We have decided that it is safe and profitable to factor the
1413/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1414/// across BB.  Transform the IR to reflect this change.
1415bool JumpThreading::ThreadEdge(BasicBlock *BB,
1416                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1417                               BasicBlock *SuccBB) {
1418  // If threading to the same block as we come from, we would infinite loop.
1419  if (SuccBB == BB) {
1420    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1421          << "' - would thread to self!\n");
1422    return false;
1423  }
1424
1425  // If threading this would thread across a loop header, don't thread the edge.
1426  // See the comments above FindLoopHeaders for justifications and caveats.
1427  if (LoopHeaders.count(BB)) {
1428    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1429          << "' to dest BB '" << SuccBB->getName()
1430          << "' - it might create an irreducible loop!\n");
1431    return false;
1432  }
1433
1434  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1435  if (JumpThreadCost > Threshold) {
1436    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1437          << "' - Cost is too high: " << JumpThreadCost << "\n");
1438    return false;
1439  }
1440
1441  // And finally, do it!  Start by factoring the predecessors is needed.
1442  BasicBlock *PredBB;
1443  if (PredBBs.size() == 1)
1444    PredBB = PredBBs[0];
1445  else {
1446    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1447          << " common predecessors.\n");
1448    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1449                                    ".thr_comm", this);
1450  }
1451
1452  // And finally, do it!
1453  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1454        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1455        << ", across block:\n    "
1456        << *BB << "\n");
1457
1458  if (LVI)
1459    LVI->threadEdge(PredBB, BB, SuccBB);
1460
1461  // We are going to have to map operands from the original BB block to the new
1462  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1463  // account for entry from PredBB.
1464  DenseMap<Instruction*, Value*> ValueMapping;
1465
1466  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1467                                         BB->getName()+".thread",
1468                                         BB->getParent(), BB);
1469  NewBB->moveAfter(PredBB);
1470
1471  BasicBlock::iterator BI = BB->begin();
1472  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1473    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1474
1475  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1476  // mapping and using it to remap operands in the cloned instructions.
1477  for (; !isa<TerminatorInst>(BI); ++BI) {
1478    Instruction *New = BI->clone();
1479    New->setName(BI->getName());
1480    NewBB->getInstList().push_back(New);
1481    ValueMapping[BI] = New;
1482
1483    // Remap operands to patch up intra-block references.
1484    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1485      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1486        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1487        if (I != ValueMapping.end())
1488          New->setOperand(i, I->second);
1489      }
1490  }
1491
1492  // We didn't copy the terminator from BB over to NewBB, because there is now
1493  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1494  BranchInst::Create(SuccBB, NewBB);
1495
1496  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1497  // PHI nodes for NewBB now.
1498  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1499
1500  // If there were values defined in BB that are used outside the block, then we
1501  // now have to update all uses of the value to use either the original value,
1502  // the cloned value, or some PHI derived value.  This can require arbitrary
1503  // PHI insertion, of which we are prepared to do, clean these up now.
1504  SSAUpdater SSAUpdate;
1505  SmallVector<Use*, 16> UsesToRename;
1506  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1507    // Scan all uses of this instruction to see if it is used outside of its
1508    // block, and if so, record them in UsesToRename.
1509    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1510         ++UI) {
1511      Instruction *User = cast<Instruction>(*UI);
1512      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1513        if (UserPN->getIncomingBlock(UI) == BB)
1514          continue;
1515      } else if (User->getParent() == BB)
1516        continue;
1517
1518      UsesToRename.push_back(&UI.getUse());
1519    }
1520
1521    // If there are no uses outside the block, we're done with this instruction.
1522    if (UsesToRename.empty())
1523      continue;
1524
1525    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1526
1527    // We found a use of I outside of BB.  Rename all uses of I that are outside
1528    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1529    // with the two values we know.
1530    SSAUpdate.Initialize(I->getType(), I->getName());
1531    SSAUpdate.AddAvailableValue(BB, I);
1532    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1533
1534    while (!UsesToRename.empty())
1535      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1536    DEBUG(dbgs() << "\n");
1537  }
1538
1539
1540  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1541  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1542  // us to simplify any PHI nodes in BB.
1543  TerminatorInst *PredTerm = PredBB->getTerminator();
1544  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1545    if (PredTerm->getSuccessor(i) == BB) {
1546      RemovePredecessorAndSimplify(BB, PredBB, TD);
1547      PredTerm->setSuccessor(i, NewBB);
1548    }
1549
1550  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1551  // over the new instructions and zap any that are constants or dead.  This
1552  // frequently happens because of phi translation.
1553  SimplifyInstructionsInBlock(NewBB, TD);
1554
1555  // Threaded an edge!
1556  ++NumThreads;
1557  return true;
1558}
1559
1560/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1561/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1562/// If we can duplicate the contents of BB up into PredBB do so now, this
1563/// improves the odds that the branch will be on an analyzable instruction like
1564/// a compare.
1565bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1566                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1567  assert(!PredBBs.empty() && "Can't handle an empty set");
1568
1569  // If BB is a loop header, then duplicating this block outside the loop would
1570  // cause us to transform this into an irreducible loop, don't do this.
1571  // See the comments above FindLoopHeaders for justifications and caveats.
1572  if (LoopHeaders.count(BB)) {
1573    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1574          << "' into predecessor block '" << PredBBs[0]->getName()
1575          << "' - it might create an irreducible loop!\n");
1576    return false;
1577  }
1578
1579  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1580  if (DuplicationCost > Threshold) {
1581    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1582          << "' - Cost is too high: " << DuplicationCost << "\n");
1583    return false;
1584  }
1585
1586  // And finally, do it!  Start by factoring the predecessors is needed.
1587  BasicBlock *PredBB;
1588  if (PredBBs.size() == 1)
1589    PredBB = PredBBs[0];
1590  else {
1591    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1592          << " common predecessors.\n");
1593    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1594                                    ".thr_comm", this);
1595  }
1596
1597  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1598  // of PredBB.
1599  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1600        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1601        << DuplicationCost << " block is:" << *BB << "\n");
1602
1603  // Unless PredBB ends with an unconditional branch, split the edge so that we
1604  // can just clone the bits from BB into the end of the new PredBB.
1605  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1606
1607  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1608    PredBB = SplitEdge(PredBB, BB, this);
1609    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1610  }
1611
1612  // We are going to have to map operands from the original BB block into the
1613  // PredBB block.  Evaluate PHI nodes in BB.
1614  DenseMap<Instruction*, Value*> ValueMapping;
1615
1616  BasicBlock::iterator BI = BB->begin();
1617  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1618    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1619
1620  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1621  // mapping and using it to remap operands in the cloned instructions.
1622  for (; BI != BB->end(); ++BI) {
1623    Instruction *New = BI->clone();
1624
1625    // Remap operands to patch up intra-block references.
1626    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1627      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1628        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1629        if (I != ValueMapping.end())
1630          New->setOperand(i, I->second);
1631      }
1632
1633    // If this instruction can be simplified after the operands are updated,
1634    // just use the simplified value instead.  This frequently happens due to
1635    // phi translation.
1636    if (Value *IV = SimplifyInstruction(New, TD)) {
1637      delete New;
1638      ValueMapping[BI] = IV;
1639    } else {
1640      // Otherwise, insert the new instruction into the block.
1641      New->setName(BI->getName());
1642      PredBB->getInstList().insert(OldPredBranch, New);
1643      ValueMapping[BI] = New;
1644    }
1645  }
1646
1647  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1648  // add entries to the PHI nodes for branch from PredBB now.
1649  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1650  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1651                                  ValueMapping);
1652  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1653                                  ValueMapping);
1654
1655  // If there were values defined in BB that are used outside the block, then we
1656  // now have to update all uses of the value to use either the original value,
1657  // the cloned value, or some PHI derived value.  This can require arbitrary
1658  // PHI insertion, of which we are prepared to do, clean these up now.
1659  SSAUpdater SSAUpdate;
1660  SmallVector<Use*, 16> UsesToRename;
1661  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1662    // Scan all uses of this instruction to see if it is used outside of its
1663    // block, and if so, record them in UsesToRename.
1664    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1665         ++UI) {
1666      Instruction *User = cast<Instruction>(*UI);
1667      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1668        if (UserPN->getIncomingBlock(UI) == BB)
1669          continue;
1670      } else if (User->getParent() == BB)
1671        continue;
1672
1673      UsesToRename.push_back(&UI.getUse());
1674    }
1675
1676    // If there are no uses outside the block, we're done with this instruction.
1677    if (UsesToRename.empty())
1678      continue;
1679
1680    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1681
1682    // We found a use of I outside of BB.  Rename all uses of I that are outside
1683    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1684    // with the two values we know.
1685    SSAUpdate.Initialize(I->getType(), I->getName());
1686    SSAUpdate.AddAvailableValue(BB, I);
1687    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1688
1689    while (!UsesToRename.empty())
1690      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1691    DEBUG(dbgs() << "\n");
1692  }
1693
1694  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1695  // that we nuked.
1696  RemovePredecessorAndSimplify(BB, PredBB, TD);
1697
1698  // Remove the unconditional branch at the end of the PredBB block.
1699  OldPredBranch->eraseFromParent();
1700
1701  ++NumDupes;
1702  return true;
1703}
1704
1705
1706