JumpThreading.cpp revision d13db2c59cc94162d6cf0a04187d408bfef6d4a7
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LazyValueInfo.h"
21#include "llvm/Analysis/Loads.h"
22#include "llvm/Transforms/Utils/BasicBlockUtils.h"
23#include "llvm/Transforms/Utils/Local.h"
24#include "llvm/Transforms/Utils/SSAUpdater.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ValueHandle.h"
34#include "llvm/Support/raw_ostream.h"
35using namespace llvm;
36
37STATISTIC(NumThreads, "Number of jumps threaded");
38STATISTIC(NumFolds,   "Number of terminators folded");
39STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
40
41static cl::opt<unsigned>
42Threshold("jump-threading-threshold",
43          cl::desc("Max block size to duplicate for jump threading"),
44          cl::init(6), cl::Hidden);
45
46// Turn on use of LazyValueInfo.
47static cl::opt<bool>
48EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
49
50
51
52namespace {
53  /// This pass performs 'jump threading', which looks at blocks that have
54  /// multiple predecessors and multiple successors.  If one or more of the
55  /// predecessors of the block can be proven to always jump to one of the
56  /// successors, we forward the edge from the predecessor to the successor by
57  /// duplicating the contents of this block.
58  ///
59  /// An example of when this can occur is code like this:
60  ///
61  ///   if () { ...
62  ///     X = 4;
63  ///   }
64  ///   if (X < 3) {
65  ///
66  /// In this case, the unconditional branch at the end of the first if can be
67  /// revectored to the false side of the second if.
68  ///
69  class JumpThreading : public FunctionPass {
70    TargetData *TD;
71    LazyValueInfo *LVI;
72#ifdef NDEBUG
73    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
74#else
75    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
76#endif
77  public:
78    static char ID; // Pass identification
79    JumpThreading() : FunctionPass(&ID) {}
80
81    bool runOnFunction(Function &F);
82
83    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
84      if (EnableLVI)
85        AU.addRequired<LazyValueInfo>();
86    }
87
88    void FindLoopHeaders(Function &F);
89    bool ProcessBlock(BasicBlock *BB);
90    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
91                    BasicBlock *SuccBB);
92    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
93                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
94
95    typedef SmallVectorImpl<std::pair<ConstantInt*,
96                                      BasicBlock*> > PredValueInfo;
97
98    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
99                                         PredValueInfo &Result);
100    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
101
102
103    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
104    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
105
106    bool ProcessBranchOnPHI(PHINode *PN);
107    bool ProcessBranchOnXOR(BinaryOperator *BO);
108
109    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
110  };
111}
112
113char JumpThreading::ID = 0;
114INITIALIZE_PASS(JumpThreading, "jump-threading",
115                "Jump Threading", false, false);
116
117// Public interface to the Jump Threading pass
118FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
119
120/// runOnFunction - Top level algorithm.
121///
122bool JumpThreading::runOnFunction(Function &F) {
123  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
124  TD = getAnalysisIfAvailable<TargetData>();
125  LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
126
127  FindLoopHeaders(F);
128
129  bool Changed, EverChanged = false;
130  do {
131    Changed = false;
132    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
133      BasicBlock *BB = I;
134      // Thread all of the branches we can over this block.
135      while (ProcessBlock(BB))
136        Changed = true;
137
138      ++I;
139
140      // If the block is trivially dead, zap it.  This eliminates the successor
141      // edges which simplifies the CFG.
142      if (pred_begin(BB) == pred_end(BB) &&
143          BB != &BB->getParent()->getEntryBlock()) {
144        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
145              << "' with terminator: " << *BB->getTerminator() << '\n');
146        LoopHeaders.erase(BB);
147        DeleteDeadBlock(BB);
148        Changed = true;
149      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
150        // Can't thread an unconditional jump, but if the block is "almost
151        // empty", we can replace uses of it with uses of the successor and make
152        // this dead.
153        if (BI->isUnconditional() &&
154            BB != &BB->getParent()->getEntryBlock()) {
155          BasicBlock::iterator BBI = BB->getFirstNonPHI();
156          // Ignore dbg intrinsics.
157          while (isa<DbgInfoIntrinsic>(BBI))
158            ++BBI;
159          // If the terminator is the only non-phi instruction, try to nuke it.
160          if (BBI->isTerminator()) {
161            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
162            // block, we have to make sure it isn't in the LoopHeaders set.  We
163            // reinsert afterward if needed.
164            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
165            BasicBlock *Succ = BI->getSuccessor(0);
166
167            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
168              Changed = true;
169              // If we deleted BB and BB was the header of a loop, then the
170              // successor is now the header of the loop.
171              BB = Succ;
172            }
173
174            if (ErasedFromLoopHeaders)
175              LoopHeaders.insert(BB);
176          }
177        }
178      }
179    }
180    EverChanged |= Changed;
181  } while (Changed);
182
183  LoopHeaders.clear();
184  return EverChanged;
185}
186
187/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
188/// thread across it.
189static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
190  /// Ignore PHI nodes, these will be flattened when duplication happens.
191  BasicBlock::const_iterator I = BB->getFirstNonPHI();
192
193  // FIXME: THREADING will delete values that are just used to compute the
194  // branch, so they shouldn't count against the duplication cost.
195
196
197  // Sum up the cost of each instruction until we get to the terminator.  Don't
198  // include the terminator because the copy won't include it.
199  unsigned Size = 0;
200  for (; !isa<TerminatorInst>(I); ++I) {
201    // Debugger intrinsics don't incur code size.
202    if (isa<DbgInfoIntrinsic>(I)) continue;
203
204    // If this is a pointer->pointer bitcast, it is free.
205    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
206      continue;
207
208    // All other instructions count for at least one unit.
209    ++Size;
210
211    // Calls are more expensive.  If they are non-intrinsic calls, we model them
212    // as having cost of 4.  If they are a non-vector intrinsic, we model them
213    // as having cost of 2 total, and if they are a vector intrinsic, we model
214    // them as having cost 1.
215    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
216      if (!isa<IntrinsicInst>(CI))
217        Size += 3;
218      else if (!CI->getType()->isVectorTy())
219        Size += 1;
220    }
221  }
222
223  // Threading through a switch statement is particularly profitable.  If this
224  // block ends in a switch, decrease its cost to make it more likely to happen.
225  if (isa<SwitchInst>(I))
226    Size = Size > 6 ? Size-6 : 0;
227
228  return Size;
229}
230
231/// FindLoopHeaders - We do not want jump threading to turn proper loop
232/// structures into irreducible loops.  Doing this breaks up the loop nesting
233/// hierarchy and pessimizes later transformations.  To prevent this from
234/// happening, we first have to find the loop headers.  Here we approximate this
235/// by finding targets of backedges in the CFG.
236///
237/// Note that there definitely are cases when we want to allow threading of
238/// edges across a loop header.  For example, threading a jump from outside the
239/// loop (the preheader) to an exit block of the loop is definitely profitable.
240/// It is also almost always profitable to thread backedges from within the loop
241/// to exit blocks, and is often profitable to thread backedges to other blocks
242/// within the loop (forming a nested loop).  This simple analysis is not rich
243/// enough to track all of these properties and keep it up-to-date as the CFG
244/// mutates, so we don't allow any of these transformations.
245///
246void JumpThreading::FindLoopHeaders(Function &F) {
247  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
248  FindFunctionBackedges(F, Edges);
249
250  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
251    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
252}
253
254/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
255/// if we can infer that the value is a known ConstantInt in any of our
256/// predecessors.  If so, return the known list of value and pred BB in the
257/// result vector.  If a value is known to be undef, it is returned as null.
258///
259/// This returns true if there were any known values.
260///
261bool JumpThreading::
262ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
263  // If V is a constantint, then it is known in all predecessors.
264  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
265    ConstantInt *CI = dyn_cast<ConstantInt>(V);
266
267    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
268      Result.push_back(std::make_pair(CI, *PI));
269    return true;
270  }
271
272  // If V is a non-instruction value, or an instruction in a different block,
273  // then it can't be derived from a PHI.
274  Instruction *I = dyn_cast<Instruction>(V);
275  if (I == 0 || I->getParent() != BB) {
276
277    // Okay, if this is a live-in value, see if it has a known value at the end
278    // of any of our predecessors.
279    //
280    // FIXME: This should be an edge property, not a block end property.
281    /// TODO: Per PR2563, we could infer value range information about a
282    /// predecessor based on its terminator.
283    //
284    if (LVI) {
285      // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
286      // "I" is a non-local compare-with-a-constant instruction.  This would be
287      // able to handle value inequalities better, for example if the compare is
288      // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
289      // Perhaps getConstantOnEdge should be smart enough to do this?
290
291      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
292        BasicBlock *P = *PI;
293        // If the value is known by LazyValueInfo to be a constant in a
294        // predecessor, use that information to try to thread this block.
295        Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
296        if (PredCst == 0 ||
297            (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
298          continue;
299
300        Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
301      }
302
303      return !Result.empty();
304    }
305
306    return false;
307  }
308
309  /// If I is a PHI node, then we know the incoming values for any constants.
310  if (PHINode *PN = dyn_cast<PHINode>(I)) {
311    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
312      Value *InVal = PN->getIncomingValue(i);
313      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
314        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
315        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
316      }
317    }
318    return !Result.empty();
319  }
320
321  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
322
323  // Handle some boolean conditions.
324  if (I->getType()->getPrimitiveSizeInBits() == 1) {
325    // X | true -> true
326    // X & false -> false
327    if (I->getOpcode() == Instruction::Or ||
328        I->getOpcode() == Instruction::And) {
329      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
330      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
331
332      if (LHSVals.empty() && RHSVals.empty())
333        return false;
334
335      ConstantInt *InterestingVal;
336      if (I->getOpcode() == Instruction::Or)
337        InterestingVal = ConstantInt::getTrue(I->getContext());
338      else
339        InterestingVal = ConstantInt::getFalse(I->getContext());
340
341      // Scan for the sentinel.  If we find an undef, force it to the
342      // interesting value: x|undef -> true and x&undef -> false.
343      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
344        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
345          Result.push_back(LHSVals[i]);
346          Result.back().first = InterestingVal;
347        }
348      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
349        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
350          // If we already inferred a value for this block on the LHS, don't
351          // re-add it.
352          bool HasValue = false;
353          for (unsigned r = 0, e = Result.size(); r != e; ++r)
354            if (Result[r].second == RHSVals[i].second) {
355              HasValue = true;
356              break;
357            }
358
359          if (!HasValue) {
360            Result.push_back(RHSVals[i]);
361            Result.back().first = InterestingVal;
362          }
363        }
364      return !Result.empty();
365    }
366
367    // Handle the NOT form of XOR.
368    if (I->getOpcode() == Instruction::Xor &&
369        isa<ConstantInt>(I->getOperand(1)) &&
370        cast<ConstantInt>(I->getOperand(1))->isOne()) {
371      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
372      if (Result.empty())
373        return false;
374
375      // Invert the known values.
376      for (unsigned i = 0, e = Result.size(); i != e; ++i)
377        if (Result[i].first)
378          Result[i].first =
379            cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
380      return true;
381    }
382  }
383
384  // Handle compare with phi operand, where the PHI is defined in this block.
385  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
386    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
387    if (PN && PN->getParent() == BB) {
388      // We can do this simplification if any comparisons fold to true or false.
389      // See if any do.
390      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
391        BasicBlock *PredBB = PN->getIncomingBlock(i);
392        Value *LHS = PN->getIncomingValue(i);
393        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
394
395        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
396        if (Res == 0) {
397          if (!LVI || !isa<Constant>(RHS))
398            continue;
399
400          LazyValueInfo::Tristate
401            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
402                                           cast<Constant>(RHS), PredBB, BB);
403          if (ResT == LazyValueInfo::Unknown)
404            continue;
405          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
406        }
407
408        if (isa<UndefValue>(Res))
409          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
410        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
411          Result.push_back(std::make_pair(CI, PredBB));
412      }
413
414      return !Result.empty();
415    }
416
417
418    // If comparing a live-in value against a constant, see if we know the
419    // live-in value on any predecessors.
420    if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
421        Cmp->getType()->isIntegerTy() && // Not vector compare.
422        (!isa<Instruction>(Cmp->getOperand(0)) ||
423         cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
424      Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
425
426      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
427        BasicBlock *P = *PI;
428        // If the value is known by LazyValueInfo to be a constant in a
429        // predecessor, use that information to try to thread this block.
430        LazyValueInfo::Tristate
431          Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
432                                        RHSCst, P, BB);
433        if (Res == LazyValueInfo::Unknown)
434          continue;
435
436        Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
437        Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P));
438      }
439
440      return !Result.empty();
441    }
442  }
443  return false;
444}
445
446
447
448/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
449/// in an undefined jump, decide which block is best to revector to.
450///
451/// Since we can pick an arbitrary destination, we pick the successor with the
452/// fewest predecessors.  This should reduce the in-degree of the others.
453///
454static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
455  TerminatorInst *BBTerm = BB->getTerminator();
456  unsigned MinSucc = 0;
457  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
458  // Compute the successor with the minimum number of predecessors.
459  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
460  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
461    TestBB = BBTerm->getSuccessor(i);
462    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
463    if (NumPreds < MinNumPreds)
464      MinSucc = i;
465  }
466
467  return MinSucc;
468}
469
470/// ProcessBlock - If there are any predecessors whose control can be threaded
471/// through to a successor, transform them now.
472bool JumpThreading::ProcessBlock(BasicBlock *BB) {
473  // If the block is trivially dead, just return and let the caller nuke it.
474  // This simplifies other transformations.
475  if (pred_begin(BB) == pred_end(BB) &&
476      BB != &BB->getParent()->getEntryBlock())
477    return false;
478
479  // If this block has a single predecessor, and if that pred has a single
480  // successor, merge the blocks.  This encourages recursive jump threading
481  // because now the condition in this block can be threaded through
482  // predecessors of our predecessor block.
483  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
484    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
485        SinglePred != BB) {
486      // If SinglePred was a loop header, BB becomes one.
487      if (LoopHeaders.erase(SinglePred))
488        LoopHeaders.insert(BB);
489
490      // Remember if SinglePred was the entry block of the function.  If so, we
491      // will need to move BB back to the entry position.
492      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
493      MergeBasicBlockIntoOnlyPred(BB);
494
495      if (isEntry && BB != &BB->getParent()->getEntryBlock())
496        BB->moveBefore(&BB->getParent()->getEntryBlock());
497      return true;
498    }
499  }
500
501  // Look to see if the terminator is a branch of switch, if not we can't thread
502  // it.
503  Value *Condition;
504  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
505    // Can't thread an unconditional jump.
506    if (BI->isUnconditional()) return false;
507    Condition = BI->getCondition();
508  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
509    Condition = SI->getCondition();
510  else
511    return false; // Must be an invoke.
512
513  // If the terminator of this block is branching on a constant, simplify the
514  // terminator to an unconditional branch.  This can occur due to threading in
515  // other blocks.
516  if (isa<ConstantInt>(Condition)) {
517    DEBUG(dbgs() << "  In block '" << BB->getName()
518          << "' folding terminator: " << *BB->getTerminator() << '\n');
519    ++NumFolds;
520    ConstantFoldTerminator(BB);
521    return true;
522  }
523
524  // If the terminator is branching on an undef, we can pick any of the
525  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
526  if (isa<UndefValue>(Condition)) {
527    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
528
529    // Fold the branch/switch.
530    TerminatorInst *BBTerm = BB->getTerminator();
531    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
532      if (i == BestSucc) continue;
533      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
534    }
535
536    DEBUG(dbgs() << "  In block '" << BB->getName()
537          << "' folding undef terminator: " << *BBTerm << '\n');
538    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
539    BBTerm->eraseFromParent();
540    return true;
541  }
542
543  Instruction *CondInst = dyn_cast<Instruction>(Condition);
544
545  // If the condition is an instruction defined in another block, see if a
546  // predecessor has the same condition:
547  //     br COND, BBX, BBY
548  //  BBX:
549  //     br COND, BBZ, BBW
550  if (!LVI &&
551      !Condition->hasOneUse() && // Multiple uses.
552      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
553    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
554    if (isa<BranchInst>(BB->getTerminator())) {
555      for (; PI != E; ++PI) {
556        BasicBlock *P = *PI;
557        if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
558          if (PBI->isConditional() && PBI->getCondition() == Condition &&
559              ProcessBranchOnDuplicateCond(P, BB))
560            return true;
561      }
562    } else {
563      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
564      for (; PI != E; ++PI) {
565        BasicBlock *P = *PI;
566        if (SwitchInst *PSI = dyn_cast<SwitchInst>(P->getTerminator()))
567          if (PSI->getCondition() == Condition &&
568              ProcessSwitchOnDuplicateCond(P, BB))
569            return true;
570      }
571    }
572  }
573
574  // All the rest of our checks depend on the condition being an instruction.
575  if (CondInst == 0) {
576    // FIXME: Unify this with code below.
577    if (LVI && ProcessThreadableEdges(Condition, BB))
578      return true;
579    return false;
580  }
581
582
583  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
584    if (!LVI &&
585        (!isa<PHINode>(CondCmp->getOperand(0)) ||
586         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
587      // If we have a comparison, loop over the predecessors to see if there is
588      // a condition with a lexically identical value.
589      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
590      for (; PI != E; ++PI) {
591        BasicBlock *P = *PI;
592        if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
593          if (PBI->isConditional() && P != BB) {
594            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
595              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
596                  CI->getOperand(1) == CondCmp->getOperand(1) &&
597                  CI->getPredicate() == CondCmp->getPredicate()) {
598                // TODO: Could handle things like (x != 4) --> (x == 17)
599                if (ProcessBranchOnDuplicateCond(P, BB))
600                  return true;
601              }
602            }
603          }
604      }
605    }
606  }
607
608  // Check for some cases that are worth simplifying.  Right now we want to look
609  // for loads that are used by a switch or by the condition for the branch.  If
610  // we see one, check to see if it's partially redundant.  If so, insert a PHI
611  // which can then be used to thread the values.
612  //
613  Value *SimplifyValue = CondInst;
614  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
615    if (isa<Constant>(CondCmp->getOperand(1)))
616      SimplifyValue = CondCmp->getOperand(0);
617
618  // TODO: There are other places where load PRE would be profitable, such as
619  // more complex comparisons.
620  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
621    if (SimplifyPartiallyRedundantLoad(LI))
622      return true;
623
624
625  // Handle a variety of cases where we are branching on something derived from
626  // a PHI node in the current block.  If we can prove that any predecessors
627  // compute a predictable value based on a PHI node, thread those predecessors.
628  //
629  if (ProcessThreadableEdges(CondInst, BB))
630    return true;
631
632  // If this is an otherwise-unfoldable branch on a phi node in the current
633  // block, see if we can simplify.
634  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
635    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
636      return ProcessBranchOnPHI(PN);
637
638
639  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
640  if (CondInst->getOpcode() == Instruction::Xor &&
641      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
642    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
643
644
645  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
646  // "(X == 4)", thread through this block.
647
648  return false;
649}
650
651/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
652/// block that jump on exactly the same condition.  This means that we almost
653/// always know the direction of the edge in the DESTBB:
654///  PREDBB:
655///     br COND, DESTBB, BBY
656///  DESTBB:
657///     br COND, BBZ, BBW
658///
659/// If DESTBB has multiple predecessors, we can't just constant fold the branch
660/// in DESTBB, we have to thread over it.
661bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
662                                                 BasicBlock *BB) {
663  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
664
665  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
666  // fold the branch to an unconditional one, which allows other recursive
667  // simplifications.
668  bool BranchDir;
669  if (PredBI->getSuccessor(1) != BB)
670    BranchDir = true;
671  else if (PredBI->getSuccessor(0) != BB)
672    BranchDir = false;
673  else {
674    DEBUG(dbgs() << "  In block '" << PredBB->getName()
675          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
676    ++NumFolds;
677    ConstantFoldTerminator(PredBB);
678    return true;
679  }
680
681  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
682
683  // If the dest block has one predecessor, just fix the branch condition to a
684  // constant and fold it.
685  if (BB->getSinglePredecessor()) {
686    DEBUG(dbgs() << "  In block '" << BB->getName()
687          << "' folding condition to '" << BranchDir << "': "
688          << *BB->getTerminator() << '\n');
689    ++NumFolds;
690    Value *OldCond = DestBI->getCondition();
691    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
692                                          BranchDir));
693    // Delete dead instructions before we fold the branch.  Folding the branch
694    // can eliminate edges from the CFG which can end up deleting OldCond.
695    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
696    ConstantFoldTerminator(BB);
697    return true;
698  }
699
700
701  // Next, figure out which successor we are threading to.
702  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
703
704  SmallVector<BasicBlock*, 2> Preds;
705  Preds.push_back(PredBB);
706
707  // Ok, try to thread it!
708  return ThreadEdge(BB, Preds, SuccBB);
709}
710
711/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
712/// block that switch on exactly the same condition.  This means that we almost
713/// always know the direction of the edge in the DESTBB:
714///  PREDBB:
715///     switch COND [... DESTBB, BBY ... ]
716///  DESTBB:
717///     switch COND [... BBZ, BBW ]
718///
719/// Optimizing switches like this is very important, because simplifycfg builds
720/// switches out of repeated 'if' conditions.
721bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
722                                                 BasicBlock *DestBB) {
723  // Can't thread edge to self.
724  if (PredBB == DestBB)
725    return false;
726
727  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
728  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
729
730  // There are a variety of optimizations that we can potentially do on these
731  // blocks: we order them from most to least preferable.
732
733  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
734  // directly to their destination.  This does not introduce *any* code size
735  // growth.  Skip debug info first.
736  BasicBlock::iterator BBI = DestBB->begin();
737  while (isa<DbgInfoIntrinsic>(BBI))
738    BBI++;
739
740  // FIXME: Thread if it just contains a PHI.
741  if (isa<SwitchInst>(BBI)) {
742    bool MadeChange = false;
743    // Ignore the default edge for now.
744    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
745      ConstantInt *DestVal = DestSI->getCaseValue(i);
746      BasicBlock *DestSucc = DestSI->getSuccessor(i);
747
748      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
749      // PredSI has an explicit case for it.  If so, forward.  If it is covered
750      // by the default case, we can't update PredSI.
751      unsigned PredCase = PredSI->findCaseValue(DestVal);
752      if (PredCase == 0) continue;
753
754      // If PredSI doesn't go to DestBB on this value, then it won't reach the
755      // case on this condition.
756      if (PredSI->getSuccessor(PredCase) != DestBB &&
757          DestSI->getSuccessor(i) != DestBB)
758        continue;
759
760      // Do not forward this if it already goes to this destination, this would
761      // be an infinite loop.
762      if (PredSI->getSuccessor(PredCase) == DestSucc)
763        continue;
764
765      // Otherwise, we're safe to make the change.  Make sure that the edge from
766      // DestSI to DestSucc is not critical and has no PHI nodes.
767      DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
768      DEBUG(dbgs() << "THROUGH: " << *DestSI);
769
770      // If the destination has PHI nodes, just split the edge for updating
771      // simplicity.
772      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
773        SplitCriticalEdge(DestSI, i, this);
774        DestSucc = DestSI->getSuccessor(i);
775      }
776      FoldSingleEntryPHINodes(DestSucc);
777      PredSI->setSuccessor(PredCase, DestSucc);
778      MadeChange = true;
779    }
780
781    if (MadeChange)
782      return true;
783  }
784
785  return false;
786}
787
788
789/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
790/// load instruction, eliminate it by replacing it with a PHI node.  This is an
791/// important optimization that encourages jump threading, and needs to be run
792/// interlaced with other jump threading tasks.
793bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
794  // Don't hack volatile loads.
795  if (LI->isVolatile()) return false;
796
797  // If the load is defined in a block with exactly one predecessor, it can't be
798  // partially redundant.
799  BasicBlock *LoadBB = LI->getParent();
800  if (LoadBB->getSinglePredecessor())
801    return false;
802
803  Value *LoadedPtr = LI->getOperand(0);
804
805  // If the loaded operand is defined in the LoadBB, it can't be available.
806  // TODO: Could do simple PHI translation, that would be fun :)
807  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
808    if (PtrOp->getParent() == LoadBB)
809      return false;
810
811  // Scan a few instructions up from the load, to see if it is obviously live at
812  // the entry to its block.
813  BasicBlock::iterator BBIt = LI;
814
815  if (Value *AvailableVal =
816        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
817    // If the value if the load is locally available within the block, just use
818    // it.  This frequently occurs for reg2mem'd allocas.
819    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
820
821    // If the returned value is the load itself, replace with an undef. This can
822    // only happen in dead loops.
823    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
824    LI->replaceAllUsesWith(AvailableVal);
825    LI->eraseFromParent();
826    return true;
827  }
828
829  // Otherwise, if we scanned the whole block and got to the top of the block,
830  // we know the block is locally transparent to the load.  If not, something
831  // might clobber its value.
832  if (BBIt != LoadBB->begin())
833    return false;
834
835
836  SmallPtrSet<BasicBlock*, 8> PredsScanned;
837  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
838  AvailablePredsTy AvailablePreds;
839  BasicBlock *OneUnavailablePred = 0;
840
841  // If we got here, the loaded value is transparent through to the start of the
842  // block.  Check to see if it is available in any of the predecessor blocks.
843  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
844       PI != PE; ++PI) {
845    BasicBlock *PredBB = *PI;
846
847    // If we already scanned this predecessor, skip it.
848    if (!PredsScanned.insert(PredBB))
849      continue;
850
851    // Scan the predecessor to see if the value is available in the pred.
852    BBIt = PredBB->end();
853    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
854    if (!PredAvailable) {
855      OneUnavailablePred = PredBB;
856      continue;
857    }
858
859    // If so, this load is partially redundant.  Remember this info so that we
860    // can create a PHI node.
861    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
862  }
863
864  // If the loaded value isn't available in any predecessor, it isn't partially
865  // redundant.
866  if (AvailablePreds.empty()) return false;
867
868  // Okay, the loaded value is available in at least one (and maybe all!)
869  // predecessors.  If the value is unavailable in more than one unique
870  // predecessor, we want to insert a merge block for those common predecessors.
871  // This ensures that we only have to insert one reload, thus not increasing
872  // code size.
873  BasicBlock *UnavailablePred = 0;
874
875  // If there is exactly one predecessor where the value is unavailable, the
876  // already computed 'OneUnavailablePred' block is it.  If it ends in an
877  // unconditional branch, we know that it isn't a critical edge.
878  if (PredsScanned.size() == AvailablePreds.size()+1 &&
879      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
880    UnavailablePred = OneUnavailablePred;
881  } else if (PredsScanned.size() != AvailablePreds.size()) {
882    // Otherwise, we had multiple unavailable predecessors or we had a critical
883    // edge from the one.
884    SmallVector<BasicBlock*, 8> PredsToSplit;
885    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
886
887    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
888      AvailablePredSet.insert(AvailablePreds[i].first);
889
890    // Add all the unavailable predecessors to the PredsToSplit list.
891    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
892         PI != PE; ++PI) {
893      BasicBlock *P = *PI;
894      // If the predecessor is an indirect goto, we can't split the edge.
895      if (isa<IndirectBrInst>(P->getTerminator()))
896        return false;
897
898      if (!AvailablePredSet.count(P))
899        PredsToSplit.push_back(P);
900    }
901
902    // Split them out to their own block.
903    UnavailablePred =
904      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
905                             "thread-pre-split", this);
906  }
907
908  // If the value isn't available in all predecessors, then there will be
909  // exactly one where it isn't available.  Insert a load on that edge and add
910  // it to the AvailablePreds list.
911  if (UnavailablePred) {
912    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
913           "Can't handle critical edge here!");
914    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
915                                 LI->getAlignment(),
916                                 UnavailablePred->getTerminator());
917    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
918  }
919
920  // Now we know that each predecessor of this block has a value in
921  // AvailablePreds, sort them for efficient access as we're walking the preds.
922  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
923
924  // Create a PHI node at the start of the block for the PRE'd load value.
925  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
926  PN->takeName(LI);
927
928  // Insert new entries into the PHI for each predecessor.  A single block may
929  // have multiple entries here.
930  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
931       ++PI) {
932    BasicBlock *P = *PI;
933    AvailablePredsTy::iterator I =
934      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
935                       std::make_pair(P, (Value*)0));
936
937    assert(I != AvailablePreds.end() && I->first == P &&
938           "Didn't find entry for predecessor!");
939
940    PN->addIncoming(I->second, I->first);
941  }
942
943  //cerr << "PRE: " << *LI << *PN << "\n";
944
945  LI->replaceAllUsesWith(PN);
946  LI->eraseFromParent();
947
948  return true;
949}
950
951/// FindMostPopularDest - The specified list contains multiple possible
952/// threadable destinations.  Pick the one that occurs the most frequently in
953/// the list.
954static BasicBlock *
955FindMostPopularDest(BasicBlock *BB,
956                    const SmallVectorImpl<std::pair<BasicBlock*,
957                                  BasicBlock*> > &PredToDestList) {
958  assert(!PredToDestList.empty());
959
960  // Determine popularity.  If there are multiple possible destinations, we
961  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
962  // blocks with known and real destinations to threading undef.  We'll handle
963  // them later if interesting.
964  DenseMap<BasicBlock*, unsigned> DestPopularity;
965  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
966    if (PredToDestList[i].second)
967      DestPopularity[PredToDestList[i].second]++;
968
969  // Find the most popular dest.
970  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
971  BasicBlock *MostPopularDest = DPI->first;
972  unsigned Popularity = DPI->second;
973  SmallVector<BasicBlock*, 4> SamePopularity;
974
975  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
976    // If the popularity of this entry isn't higher than the popularity we've
977    // seen so far, ignore it.
978    if (DPI->second < Popularity)
979      ; // ignore.
980    else if (DPI->second == Popularity) {
981      // If it is the same as what we've seen so far, keep track of it.
982      SamePopularity.push_back(DPI->first);
983    } else {
984      // If it is more popular, remember it.
985      SamePopularity.clear();
986      MostPopularDest = DPI->first;
987      Popularity = DPI->second;
988    }
989  }
990
991  // Okay, now we know the most popular destination.  If there is more than
992  // destination, we need to determine one.  This is arbitrary, but we need
993  // to make a deterministic decision.  Pick the first one that appears in the
994  // successor list.
995  if (!SamePopularity.empty()) {
996    SamePopularity.push_back(MostPopularDest);
997    TerminatorInst *TI = BB->getTerminator();
998    for (unsigned i = 0; ; ++i) {
999      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1000
1001      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1002                    TI->getSuccessor(i)) == SamePopularity.end())
1003        continue;
1004
1005      MostPopularDest = TI->getSuccessor(i);
1006      break;
1007    }
1008  }
1009
1010  // Okay, we have finally picked the most popular destination.
1011  return MostPopularDest;
1012}
1013
1014bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
1015  // If threading this would thread across a loop header, don't even try to
1016  // thread the edge.
1017  if (LoopHeaders.count(BB))
1018    return false;
1019
1020  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
1021  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
1022    return false;
1023  assert(!PredValues.empty() &&
1024         "ComputeValueKnownInPredecessors returned true with no values");
1025
1026  DEBUG(dbgs() << "IN BB: " << *BB;
1027        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1028          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
1029          if (PredValues[i].first)
1030            dbgs() << *PredValues[i].first;
1031          else
1032            dbgs() << "UNDEF";
1033          dbgs() << " for pred '" << PredValues[i].second->getName()
1034          << "'.\n";
1035        });
1036
1037  // Decide what we want to thread through.  Convert our list of known values to
1038  // a list of known destinations for each pred.  This also discards duplicate
1039  // predecessors and keeps track of the undefined inputs (which are represented
1040  // as a null dest in the PredToDestList).
1041  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1042  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1043
1044  BasicBlock *OnlyDest = 0;
1045  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1046
1047  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1048    BasicBlock *Pred = PredValues[i].second;
1049    if (!SeenPreds.insert(Pred))
1050      continue;  // Duplicate predecessor entry.
1051
1052    // If the predecessor ends with an indirect goto, we can't change its
1053    // destination.
1054    if (isa<IndirectBrInst>(Pred->getTerminator()))
1055      continue;
1056
1057    ConstantInt *Val = PredValues[i].first;
1058
1059    BasicBlock *DestBB;
1060    if (Val == 0)      // Undef.
1061      DestBB = 0;
1062    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1063      DestBB = BI->getSuccessor(Val->isZero());
1064    else {
1065      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1066      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1067    }
1068
1069    // If we have exactly one destination, remember it for efficiency below.
1070    if (i == 0)
1071      OnlyDest = DestBB;
1072    else if (OnlyDest != DestBB)
1073      OnlyDest = MultipleDestSentinel;
1074
1075    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1076  }
1077
1078  // If all edges were unthreadable, we fail.
1079  if (PredToDestList.empty())
1080    return false;
1081
1082  // Determine which is the most common successor.  If we have many inputs and
1083  // this block is a switch, we want to start by threading the batch that goes
1084  // to the most popular destination first.  If we only know about one
1085  // threadable destination (the common case) we can avoid this.
1086  BasicBlock *MostPopularDest = OnlyDest;
1087
1088  if (MostPopularDest == MultipleDestSentinel)
1089    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1090
1091  // Now that we know what the most popular destination is, factor all
1092  // predecessors that will jump to it into a single predecessor.
1093  SmallVector<BasicBlock*, 16> PredsToFactor;
1094  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1095    if (PredToDestList[i].second == MostPopularDest) {
1096      BasicBlock *Pred = PredToDestList[i].first;
1097
1098      // This predecessor may be a switch or something else that has multiple
1099      // edges to the block.  Factor each of these edges by listing them
1100      // according to # occurrences in PredsToFactor.
1101      TerminatorInst *PredTI = Pred->getTerminator();
1102      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1103        if (PredTI->getSuccessor(i) == BB)
1104          PredsToFactor.push_back(Pred);
1105    }
1106
1107  // If the threadable edges are branching on an undefined value, we get to pick
1108  // the destination that these predecessors should get to.
1109  if (MostPopularDest == 0)
1110    MostPopularDest = BB->getTerminator()->
1111                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1112
1113  // Ok, try to thread it!
1114  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1115}
1116
1117/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1118/// a PHI node in the current block.  See if there are any simplifications we
1119/// can do based on inputs to the phi node.
1120///
1121bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1122  BasicBlock *BB = PN->getParent();
1123
1124  // TODO: We could make use of this to do it once for blocks with common PHI
1125  // values.
1126  SmallVector<BasicBlock*, 1> PredBBs;
1127  PredBBs.resize(1);
1128
1129  // If any of the predecessor blocks end in an unconditional branch, we can
1130  // *duplicate* the conditional branch into that block in order to further
1131  // encourage jump threading and to eliminate cases where we have branch on a
1132  // phi of an icmp (branch on icmp is much better).
1133  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1134    BasicBlock *PredBB = PN->getIncomingBlock(i);
1135    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1136      if (PredBr->isUnconditional()) {
1137        PredBBs[0] = PredBB;
1138        // Try to duplicate BB into PredBB.
1139        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1140          return true;
1141      }
1142  }
1143
1144  return false;
1145}
1146
1147/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1148/// a xor instruction in the current block.  See if there are any
1149/// simplifications we can do based on inputs to the xor.
1150///
1151bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1152  BasicBlock *BB = BO->getParent();
1153
1154  // If either the LHS or RHS of the xor is a constant, don't do this
1155  // optimization.
1156  if (isa<ConstantInt>(BO->getOperand(0)) ||
1157      isa<ConstantInt>(BO->getOperand(1)))
1158    return false;
1159
1160  // If the first instruction in BB isn't a phi, we won't be able to infer
1161  // anything special about any particular predecessor.
1162  if (!isa<PHINode>(BB->front()))
1163    return false;
1164
1165  // If we have a xor as the branch input to this block, and we know that the
1166  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1167  // the condition into the predecessor and fix that value to true, saving some
1168  // logical ops on that path and encouraging other paths to simplify.
1169  //
1170  // This copies something like this:
1171  //
1172  //  BB:
1173  //    %X = phi i1 [1],  [%X']
1174  //    %Y = icmp eq i32 %A, %B
1175  //    %Z = xor i1 %X, %Y
1176  //    br i1 %Z, ...
1177  //
1178  // Into:
1179  //  BB':
1180  //    %Y = icmp ne i32 %A, %B
1181  //    br i1 %Z, ...
1182
1183  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1184  bool isLHS = true;
1185  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1186    assert(XorOpValues.empty());
1187    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1188      return false;
1189    isLHS = false;
1190  }
1191
1192  assert(!XorOpValues.empty() &&
1193         "ComputeValueKnownInPredecessors returned true with no values");
1194
1195  // Scan the information to see which is most popular: true or false.  The
1196  // predecessors can be of the set true, false, or undef.
1197  unsigned NumTrue = 0, NumFalse = 0;
1198  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1199    if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
1200    if (XorOpValues[i].first->isZero())
1201      ++NumFalse;
1202    else
1203      ++NumTrue;
1204  }
1205
1206  // Determine which value to split on, true, false, or undef if neither.
1207  ConstantInt *SplitVal = 0;
1208  if (NumTrue > NumFalse)
1209    SplitVal = ConstantInt::getTrue(BB->getContext());
1210  else if (NumTrue != 0 || NumFalse != 0)
1211    SplitVal = ConstantInt::getFalse(BB->getContext());
1212
1213  // Collect all of the blocks that this can be folded into so that we can
1214  // factor this once and clone it once.
1215  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1216  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1217    if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1218
1219    BlocksToFoldInto.push_back(XorOpValues[i].second);
1220  }
1221
1222  // If we inferred a value for all of the predecessors, then duplication won't
1223  // help us.  However, we can just replace the LHS or RHS with the constant.
1224  if (BlocksToFoldInto.size() ==
1225      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1226    if (SplitVal == 0) {
1227      // If all preds provide undef, just nuke the xor, because it is undef too.
1228      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1229      BO->eraseFromParent();
1230    } else if (SplitVal->isZero()) {
1231      // If all preds provide 0, replace the xor with the other input.
1232      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1233      BO->eraseFromParent();
1234    } else {
1235      // If all preds provide 1, set the computed value to 1.
1236      BO->setOperand(!isLHS, SplitVal);
1237    }
1238
1239    return true;
1240  }
1241
1242  // Try to duplicate BB into PredBB.
1243  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1244}
1245
1246
1247/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1248/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1249/// NewPred using the entries from OldPred (suitably mapped).
1250static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1251                                            BasicBlock *OldPred,
1252                                            BasicBlock *NewPred,
1253                                     DenseMap<Instruction*, Value*> &ValueMap) {
1254  for (BasicBlock::iterator PNI = PHIBB->begin();
1255       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1256    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1257    // DestBlock.
1258    Value *IV = PN->getIncomingValueForBlock(OldPred);
1259
1260    // Remap the value if necessary.
1261    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1262      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1263      if (I != ValueMap.end())
1264        IV = I->second;
1265    }
1266
1267    PN->addIncoming(IV, NewPred);
1268  }
1269}
1270
1271/// ThreadEdge - We have decided that it is safe and profitable to factor the
1272/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1273/// across BB.  Transform the IR to reflect this change.
1274bool JumpThreading::ThreadEdge(BasicBlock *BB,
1275                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1276                               BasicBlock *SuccBB) {
1277  // If threading to the same block as we come from, we would infinite loop.
1278  if (SuccBB == BB) {
1279    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1280          << "' - would thread to self!\n");
1281    return false;
1282  }
1283
1284  // If threading this would thread across a loop header, don't thread the edge.
1285  // See the comments above FindLoopHeaders for justifications and caveats.
1286  if (LoopHeaders.count(BB)) {
1287    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1288          << "' to dest BB '" << SuccBB->getName()
1289          << "' - it might create an irreducible loop!\n");
1290    return false;
1291  }
1292
1293  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1294  if (JumpThreadCost > Threshold) {
1295    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1296          << "' - Cost is too high: " << JumpThreadCost << "\n");
1297    return false;
1298  }
1299
1300  // And finally, do it!  Start by factoring the predecessors is needed.
1301  BasicBlock *PredBB;
1302  if (PredBBs.size() == 1)
1303    PredBB = PredBBs[0];
1304  else {
1305    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1306          << " common predecessors.\n");
1307    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1308                                    ".thr_comm", this);
1309  }
1310
1311  // And finally, do it!
1312  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1313        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1314        << ", across block:\n    "
1315        << *BB << "\n");
1316
1317  // We are going to have to map operands from the original BB block to the new
1318  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1319  // account for entry from PredBB.
1320  DenseMap<Instruction*, Value*> ValueMapping;
1321
1322  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1323                                         BB->getName()+".thread",
1324                                         BB->getParent(), BB);
1325  NewBB->moveAfter(PredBB);
1326
1327  BasicBlock::iterator BI = BB->begin();
1328  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1329    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1330
1331  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1332  // mapping and using it to remap operands in the cloned instructions.
1333  for (; !isa<TerminatorInst>(BI); ++BI) {
1334    Instruction *New = BI->clone();
1335    New->setName(BI->getName());
1336    NewBB->getInstList().push_back(New);
1337    ValueMapping[BI] = New;
1338
1339    // Remap operands to patch up intra-block references.
1340    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1341      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1342        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1343        if (I != ValueMapping.end())
1344          New->setOperand(i, I->second);
1345      }
1346  }
1347
1348  // We didn't copy the terminator from BB over to NewBB, because there is now
1349  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1350  BranchInst::Create(SuccBB, NewBB);
1351
1352  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1353  // PHI nodes for NewBB now.
1354  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1355
1356  // If there were values defined in BB that are used outside the block, then we
1357  // now have to update all uses of the value to use either the original value,
1358  // the cloned value, or some PHI derived value.  This can require arbitrary
1359  // PHI insertion, of which we are prepared to do, clean these up now.
1360  SSAUpdater SSAUpdate;
1361  SmallVector<Use*, 16> UsesToRename;
1362  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1363    // Scan all uses of this instruction to see if it is used outside of its
1364    // block, and if so, record them in UsesToRename.
1365    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1366         ++UI) {
1367      Instruction *User = cast<Instruction>(*UI);
1368      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1369        if (UserPN->getIncomingBlock(UI) == BB)
1370          continue;
1371      } else if (User->getParent() == BB)
1372        continue;
1373
1374      UsesToRename.push_back(&UI.getUse());
1375    }
1376
1377    // If there are no uses outside the block, we're done with this instruction.
1378    if (UsesToRename.empty())
1379      continue;
1380
1381    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1382
1383    // We found a use of I outside of BB.  Rename all uses of I that are outside
1384    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1385    // with the two values we know.
1386    SSAUpdate.Initialize(I);
1387    SSAUpdate.AddAvailableValue(BB, I);
1388    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1389
1390    while (!UsesToRename.empty())
1391      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1392    DEBUG(dbgs() << "\n");
1393  }
1394
1395
1396  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1397  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1398  // us to simplify any PHI nodes in BB.
1399  TerminatorInst *PredTerm = PredBB->getTerminator();
1400  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1401    if (PredTerm->getSuccessor(i) == BB) {
1402      RemovePredecessorAndSimplify(BB, PredBB, TD);
1403      PredTerm->setSuccessor(i, NewBB);
1404    }
1405
1406  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1407  // over the new instructions and zap any that are constants or dead.  This
1408  // frequently happens because of phi translation.
1409  SimplifyInstructionsInBlock(NewBB, TD);
1410
1411  // Threaded an edge!
1412  ++NumThreads;
1413  return true;
1414}
1415
1416/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1417/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1418/// If we can duplicate the contents of BB up into PredBB do so now, this
1419/// improves the odds that the branch will be on an analyzable instruction like
1420/// a compare.
1421bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1422                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1423  assert(!PredBBs.empty() && "Can't handle an empty set");
1424
1425  // If BB is a loop header, then duplicating this block outside the loop would
1426  // cause us to transform this into an irreducible loop, don't do this.
1427  // See the comments above FindLoopHeaders for justifications and caveats.
1428  if (LoopHeaders.count(BB)) {
1429    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1430          << "' into predecessor block '" << PredBBs[0]->getName()
1431          << "' - it might create an irreducible loop!\n");
1432    return false;
1433  }
1434
1435  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1436  if (DuplicationCost > Threshold) {
1437    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1438          << "' - Cost is too high: " << DuplicationCost << "\n");
1439    return false;
1440  }
1441
1442  // And finally, do it!  Start by factoring the predecessors is needed.
1443  BasicBlock *PredBB;
1444  if (PredBBs.size() == 1)
1445    PredBB = PredBBs[0];
1446  else {
1447    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1448          << " common predecessors.\n");
1449    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1450                                    ".thr_comm", this);
1451  }
1452
1453  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1454  // of PredBB.
1455  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1456        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1457        << DuplicationCost << " block is:" << *BB << "\n");
1458
1459  // Unless PredBB ends with an unconditional branch, split the edge so that we
1460  // can just clone the bits from BB into the end of the new PredBB.
1461  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1462
1463  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1464    PredBB = SplitEdge(PredBB, BB, this);
1465    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1466  }
1467
1468  // We are going to have to map operands from the original BB block into the
1469  // PredBB block.  Evaluate PHI nodes in BB.
1470  DenseMap<Instruction*, Value*> ValueMapping;
1471
1472  BasicBlock::iterator BI = BB->begin();
1473  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1474    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1475
1476  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1477  // mapping and using it to remap operands in the cloned instructions.
1478  for (; BI != BB->end(); ++BI) {
1479    Instruction *New = BI->clone();
1480
1481    // Remap operands to patch up intra-block references.
1482    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1483      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1484        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1485        if (I != ValueMapping.end())
1486          New->setOperand(i, I->second);
1487      }
1488
1489    // If this instruction can be simplified after the operands are updated,
1490    // just use the simplified value instead.  This frequently happens due to
1491    // phi translation.
1492    if (Value *IV = SimplifyInstruction(New, TD)) {
1493      delete New;
1494      ValueMapping[BI] = IV;
1495    } else {
1496      // Otherwise, insert the new instruction into the block.
1497      New->setName(BI->getName());
1498      PredBB->getInstList().insert(OldPredBranch, New);
1499      ValueMapping[BI] = New;
1500    }
1501  }
1502
1503  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1504  // add entries to the PHI nodes for branch from PredBB now.
1505  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1506  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1507                                  ValueMapping);
1508  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1509                                  ValueMapping);
1510
1511  // If there were values defined in BB that are used outside the block, then we
1512  // now have to update all uses of the value to use either the original value,
1513  // the cloned value, or some PHI derived value.  This can require arbitrary
1514  // PHI insertion, of which we are prepared to do, clean these up now.
1515  SSAUpdater SSAUpdate;
1516  SmallVector<Use*, 16> UsesToRename;
1517  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1518    // Scan all uses of this instruction to see if it is used outside of its
1519    // block, and if so, record them in UsesToRename.
1520    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1521         ++UI) {
1522      Instruction *User = cast<Instruction>(*UI);
1523      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1524        if (UserPN->getIncomingBlock(UI) == BB)
1525          continue;
1526      } else if (User->getParent() == BB)
1527        continue;
1528
1529      UsesToRename.push_back(&UI.getUse());
1530    }
1531
1532    // If there are no uses outside the block, we're done with this instruction.
1533    if (UsesToRename.empty())
1534      continue;
1535
1536    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1537
1538    // We found a use of I outside of BB.  Rename all uses of I that are outside
1539    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1540    // with the two values we know.
1541    SSAUpdate.Initialize(I);
1542    SSAUpdate.AddAvailableValue(BB, I);
1543    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1544
1545    while (!UsesToRename.empty())
1546      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1547    DEBUG(dbgs() << "\n");
1548  }
1549
1550  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1551  // that we nuked.
1552  RemovePredecessorAndSimplify(BB, PredBB, TD);
1553
1554  // Remove the unconditional branch at the end of the PredBB block.
1555  OldPredBranch->eraseFromParent();
1556
1557  ++NumDupes;
1558  return true;
1559}
1560
1561
1562