JumpThreading.cpp revision d668839cb9b5db6865fd98e5e7dfccd64abf3e95
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LazyValueInfo.h"
21#include "llvm/Transforms/Utils/BasicBlockUtils.h"
22#include "llvm/Transforms/Utils/Local.h"
23#include "llvm/Transforms/Utils/SSAUpdater.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ValueHandle.h"
33#include "llvm/Support/raw_ostream.h"
34using namespace llvm;
35
36STATISTIC(NumThreads, "Number of jumps threaded");
37STATISTIC(NumFolds,   "Number of terminators folded");
38STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
39
40static cl::opt<unsigned>
41Threshold("jump-threading-threshold",
42          cl::desc("Max block size to duplicate for jump threading"),
43          cl::init(6), cl::Hidden);
44
45// Turn on use of LazyValueInfo.
46static cl::opt<bool>
47EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
48
49
50
51namespace {
52  /// This pass performs 'jump threading', which looks at blocks that have
53  /// multiple predecessors and multiple successors.  If one or more of the
54  /// predecessors of the block can be proven to always jump to one of the
55  /// successors, we forward the edge from the predecessor to the successor by
56  /// duplicating the contents of this block.
57  ///
58  /// An example of when this can occur is code like this:
59  ///
60  ///   if () { ...
61  ///     X = 4;
62  ///   }
63  ///   if (X < 3) {
64  ///
65  /// In this case, the unconditional branch at the end of the first if can be
66  /// revectored to the false side of the second if.
67  ///
68  class JumpThreading : public FunctionPass {
69    TargetData *TD;
70    LazyValueInfo *LVI;
71#ifdef NDEBUG
72    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
73#else
74    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
75#endif
76  public:
77    static char ID; // Pass identification
78    JumpThreading() : FunctionPass(&ID) {}
79
80    bool runOnFunction(Function &F);
81
82    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83      if (EnableLVI)
84        AU.addRequired<LazyValueInfo>();
85    }
86
87    void FindLoopHeaders(Function &F);
88    bool ProcessBlock(BasicBlock *BB);
89    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
90                    BasicBlock *SuccBB);
91    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
92                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
93
94    typedef SmallVectorImpl<std::pair<ConstantInt*,
95                                      BasicBlock*> > PredValueInfo;
96
97    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
98                                         PredValueInfo &Result);
99    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
100
101
102    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
103    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
104
105    bool ProcessBranchOnPHI(PHINode *PN);
106    bool ProcessBranchOnXOR(BinaryOperator *BO);
107
108    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
109  };
110}
111
112char JumpThreading::ID = 0;
113static RegisterPass<JumpThreading>
114X("jump-threading", "Jump Threading");
115
116// Public interface to the Jump Threading pass
117FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
118
119/// runOnFunction - Top level algorithm.
120///
121bool JumpThreading::runOnFunction(Function &F) {
122  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
123  TD = getAnalysisIfAvailable<TargetData>();
124  LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
125
126  FindLoopHeaders(F);
127
128  bool Changed, EverChanged = false;
129  do {
130    Changed = false;
131    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
132      BasicBlock *BB = I;
133      // Thread all of the branches we can over this block.
134      while (ProcessBlock(BB))
135        Changed = true;
136
137      ++I;
138
139      // If the block is trivially dead, zap it.  This eliminates the successor
140      // edges which simplifies the CFG.
141      if (pred_begin(BB) == pred_end(BB) &&
142          BB != &BB->getParent()->getEntryBlock()) {
143        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
144              << "' with terminator: " << *BB->getTerminator() << '\n');
145        LoopHeaders.erase(BB);
146        DeleteDeadBlock(BB);
147        Changed = true;
148      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
149        // Can't thread an unconditional jump, but if the block is "almost
150        // empty", we can replace uses of it with uses of the successor and make
151        // this dead.
152        if (BI->isUnconditional() &&
153            BB != &BB->getParent()->getEntryBlock()) {
154          BasicBlock::iterator BBI = BB->getFirstNonPHI();
155          // Ignore dbg intrinsics.
156          while (isa<DbgInfoIntrinsic>(BBI))
157            ++BBI;
158          // If the terminator is the only non-phi instruction, try to nuke it.
159          if (BBI->isTerminator()) {
160            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
161            // block, we have to make sure it isn't in the LoopHeaders set.  We
162            // reinsert afterward if needed.
163            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
164            BasicBlock *Succ = BI->getSuccessor(0);
165
166            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
167              Changed = true;
168              // If we deleted BB and BB was the header of a loop, then the
169              // successor is now the header of the loop.
170              BB = Succ;
171            }
172
173            if (ErasedFromLoopHeaders)
174              LoopHeaders.insert(BB);
175          }
176        }
177      }
178    }
179    EverChanged |= Changed;
180  } while (Changed);
181
182  LoopHeaders.clear();
183  return EverChanged;
184}
185
186/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
187/// thread across it.
188static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
189  /// Ignore PHI nodes, these will be flattened when duplication happens.
190  BasicBlock::const_iterator I = BB->getFirstNonPHI();
191
192  // FIXME: THREADING will delete values that are just used to compute the
193  // branch, so they shouldn't count against the duplication cost.
194
195
196  // Sum up the cost of each instruction until we get to the terminator.  Don't
197  // include the terminator because the copy won't include it.
198  unsigned Size = 0;
199  for (; !isa<TerminatorInst>(I); ++I) {
200    // Debugger intrinsics don't incur code size.
201    if (isa<DbgInfoIntrinsic>(I)) continue;
202
203    // If this is a pointer->pointer bitcast, it is free.
204    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
205      continue;
206
207    // All other instructions count for at least one unit.
208    ++Size;
209
210    // Calls are more expensive.  If they are non-intrinsic calls, we model them
211    // as having cost of 4.  If they are a non-vector intrinsic, we model them
212    // as having cost of 2 total, and if they are a vector intrinsic, we model
213    // them as having cost 1.
214    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
215      if (!isa<IntrinsicInst>(CI))
216        Size += 3;
217      else if (!isa<VectorType>(CI->getType()))
218        Size += 1;
219    }
220  }
221
222  // Threading through a switch statement is particularly profitable.  If this
223  // block ends in a switch, decrease its cost to make it more likely to happen.
224  if (isa<SwitchInst>(I))
225    Size = Size > 6 ? Size-6 : 0;
226
227  return Size;
228}
229
230/// FindLoopHeaders - We do not want jump threading to turn proper loop
231/// structures into irreducible loops.  Doing this breaks up the loop nesting
232/// hierarchy and pessimizes later transformations.  To prevent this from
233/// happening, we first have to find the loop headers.  Here we approximate this
234/// by finding targets of backedges in the CFG.
235///
236/// Note that there definitely are cases when we want to allow threading of
237/// edges across a loop header.  For example, threading a jump from outside the
238/// loop (the preheader) to an exit block of the loop is definitely profitable.
239/// It is also almost always profitable to thread backedges from within the loop
240/// to exit blocks, and is often profitable to thread backedges to other blocks
241/// within the loop (forming a nested loop).  This simple analysis is not rich
242/// enough to track all of these properties and keep it up-to-date as the CFG
243/// mutates, so we don't allow any of these transformations.
244///
245void JumpThreading::FindLoopHeaders(Function &F) {
246  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
247  FindFunctionBackedges(F, Edges);
248
249  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
250    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
251}
252
253/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
254/// if we can infer that the value is a known ConstantInt in any of our
255/// predecessors.  If so, return the known list of value and pred BB in the
256/// result vector.  If a value is known to be undef, it is returned as null.
257///
258/// This returns true if there were any known values.
259///
260bool JumpThreading::
261ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
262  // If V is a constantint, then it is known in all predecessors.
263  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
264    ConstantInt *CI = dyn_cast<ConstantInt>(V);
265
266    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
267      Result.push_back(std::make_pair(CI, *PI));
268    return true;
269  }
270
271  // If V is a non-instruction value, or an instruction in a different block,
272  // then it can't be derived from a PHI.
273  Instruction *I = dyn_cast<Instruction>(V);
274  if (I == 0 || I->getParent() != BB) {
275
276    // Okay, if this is a live-in value, see if it has a known value at the end
277    // of any of our predecessors.
278    //
279    // FIXME: This should be an edge property, not a block end property.
280    /// TODO: Per PR2563, we could infer value range information about a
281    /// predecessor based on its terminator.
282    //
283    if (LVI) {
284      // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
285      // "I" is a non-local compare-with-a-constant instruction.  This would be
286      // able to handle value inequalities better, for example if the compare is
287      // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
288      // Perhaps getConstantOnEdge should be smart enough to do this?
289
290      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
291        // If the value is known by LazyValueInfo to be a constant in a
292        // predecessor, use that information to try to thread this block.
293        Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
294        if (PredCst == 0 ||
295            (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
296          continue;
297
298        Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
299      }
300
301      return !Result.empty();
302    }
303
304    return false;
305  }
306
307  /// If I is a PHI node, then we know the incoming values for any constants.
308  if (PHINode *PN = dyn_cast<PHINode>(I)) {
309    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
310      Value *InVal = PN->getIncomingValue(i);
311      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
312        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
313        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
314      }
315    }
316    return !Result.empty();
317  }
318
319  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
320
321  // Handle some boolean conditions.
322  if (I->getType()->getPrimitiveSizeInBits() == 1) {
323    // X | true -> true
324    // X & false -> false
325    if (I->getOpcode() == Instruction::Or ||
326        I->getOpcode() == Instruction::And) {
327      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
328      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
329
330      if (LHSVals.empty() && RHSVals.empty())
331        return false;
332
333      ConstantInt *InterestingVal;
334      if (I->getOpcode() == Instruction::Or)
335        InterestingVal = ConstantInt::getTrue(I->getContext());
336      else
337        InterestingVal = ConstantInt::getFalse(I->getContext());
338
339      // Scan for the sentinel.
340      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
341        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
342          Result.push_back(LHSVals[i]);
343      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
344        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
345          Result.push_back(RHSVals[i]);
346      return !Result.empty();
347    }
348
349    // Handle the NOT form of XOR.
350    if (I->getOpcode() == Instruction::Xor &&
351        isa<ConstantInt>(I->getOperand(1)) &&
352        cast<ConstantInt>(I->getOperand(1))->isOne()) {
353      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
354      if (Result.empty())
355        return false;
356
357      // Invert the known values.
358      for (unsigned i = 0, e = Result.size(); i != e; ++i)
359        if (Result[i].first)
360          Result[i].first =
361            cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
362      return true;
363    }
364  }
365
366  // Handle compare with phi operand, where the PHI is defined in this block.
367  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
368    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
369    if (PN && PN->getParent() == BB) {
370      // We can do this simplification if any comparisons fold to true or false.
371      // See if any do.
372      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
373        BasicBlock *PredBB = PN->getIncomingBlock(i);
374        Value *LHS = PN->getIncomingValue(i);
375        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
376
377        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
378        if (Res == 0) {
379          if (!LVI || !isa<Constant>(RHS))
380            continue;
381
382          LazyValueInfo::Tristate
383            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
384                                           cast<Constant>(RHS), PredBB, BB);
385          if (ResT == LazyValueInfo::Unknown)
386            continue;
387          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
388        }
389
390        if (isa<UndefValue>(Res))
391          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
392        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
393          Result.push_back(std::make_pair(CI, PredBB));
394      }
395
396      return !Result.empty();
397    }
398
399
400    // If comparing a live-in value against a constant, see if we know the
401    // live-in value on any predecessors.
402    if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
403        Cmp->getType()->isInteger() && // Not vector compare.
404        (!isa<Instruction>(Cmp->getOperand(0)) ||
405         cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
406      Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
407
408      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
409        // If the value is known by LazyValueInfo to be a constant in a
410        // predecessor, use that information to try to thread this block.
411        LazyValueInfo::Tristate
412          Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
413                                        RHSCst, *PI, BB);
414        if (Res == LazyValueInfo::Unknown)
415          continue;
416
417        Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
418        Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
419      }
420
421      return !Result.empty();
422    }
423  }
424  return false;
425}
426
427
428
429/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
430/// in an undefined jump, decide which block is best to revector to.
431///
432/// Since we can pick an arbitrary destination, we pick the successor with the
433/// fewest predecessors.  This should reduce the in-degree of the others.
434///
435static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
436  TerminatorInst *BBTerm = BB->getTerminator();
437  unsigned MinSucc = 0;
438  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
439  // Compute the successor with the minimum number of predecessors.
440  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
441  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
442    TestBB = BBTerm->getSuccessor(i);
443    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
444    if (NumPreds < MinNumPreds)
445      MinSucc = i;
446  }
447
448  return MinSucc;
449}
450
451/// ProcessBlock - If there are any predecessors whose control can be threaded
452/// through to a successor, transform them now.
453bool JumpThreading::ProcessBlock(BasicBlock *BB) {
454  // If the block is trivially dead, just return and let the caller nuke it.
455  // This simplifies other transformations.
456  if (pred_begin(BB) == pred_end(BB) &&
457      BB != &BB->getParent()->getEntryBlock())
458    return false;
459
460  // If this block has a single predecessor, and if that pred has a single
461  // successor, merge the blocks.  This encourages recursive jump threading
462  // because now the condition in this block can be threaded through
463  // predecessors of our predecessor block.
464  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
465    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
466        SinglePred != BB) {
467      // If SinglePred was a loop header, BB becomes one.
468      if (LoopHeaders.erase(SinglePred))
469        LoopHeaders.insert(BB);
470
471      // Remember if SinglePred was the entry block of the function.  If so, we
472      // will need to move BB back to the entry position.
473      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
474      MergeBasicBlockIntoOnlyPred(BB);
475
476      if (isEntry && BB != &BB->getParent()->getEntryBlock())
477        BB->moveBefore(&BB->getParent()->getEntryBlock());
478      return true;
479    }
480  }
481
482  // Look to see if the terminator is a branch of switch, if not we can't thread
483  // it.
484  Value *Condition;
485  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
486    // Can't thread an unconditional jump.
487    if (BI->isUnconditional()) return false;
488    Condition = BI->getCondition();
489  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
490    Condition = SI->getCondition();
491  else
492    return false; // Must be an invoke.
493
494  // If the terminator of this block is branching on a constant, simplify the
495  // terminator to an unconditional branch.  This can occur due to threading in
496  // other blocks.
497  if (isa<ConstantInt>(Condition)) {
498    DEBUG(dbgs() << "  In block '" << BB->getName()
499          << "' folding terminator: " << *BB->getTerminator() << '\n');
500    ++NumFolds;
501    ConstantFoldTerminator(BB);
502    return true;
503  }
504
505  // If the terminator is branching on an undef, we can pick any of the
506  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
507  if (isa<UndefValue>(Condition)) {
508    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
509
510    // Fold the branch/switch.
511    TerminatorInst *BBTerm = BB->getTerminator();
512    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
513      if (i == BestSucc) continue;
514      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
515    }
516
517    DEBUG(dbgs() << "  In block '" << BB->getName()
518          << "' folding undef terminator: " << *BBTerm << '\n');
519    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
520    BBTerm->eraseFromParent();
521    return true;
522  }
523
524  Instruction *CondInst = dyn_cast<Instruction>(Condition);
525
526  // If the condition is an instruction defined in another block, see if a
527  // predecessor has the same condition:
528  //     br COND, BBX, BBY
529  //  BBX:
530  //     br COND, BBZ, BBW
531  if (!LVI &&
532      !Condition->hasOneUse() && // Multiple uses.
533      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
534    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
535    if (isa<BranchInst>(BB->getTerminator())) {
536      for (; PI != E; ++PI)
537        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
538          if (PBI->isConditional() && PBI->getCondition() == Condition &&
539              ProcessBranchOnDuplicateCond(*PI, BB))
540            return true;
541    } else {
542      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
543      for (; PI != E; ++PI)
544        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
545          if (PSI->getCondition() == Condition &&
546              ProcessSwitchOnDuplicateCond(*PI, BB))
547            return true;
548    }
549  }
550
551  // All the rest of our checks depend on the condition being an instruction.
552  if (CondInst == 0) {
553    // FIXME: Unify this with code below.
554    if (LVI && ProcessThreadableEdges(Condition, BB))
555      return true;
556    return false;
557  }
558
559
560  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
561    if (!LVI &&
562        (!isa<PHINode>(CondCmp->getOperand(0)) ||
563         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
564      // If we have a comparison, loop over the predecessors to see if there is
565      // a condition with a lexically identical value.
566      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
567      for (; PI != E; ++PI)
568        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
569          if (PBI->isConditional() && *PI != BB) {
570            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
571              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
572                  CI->getOperand(1) == CondCmp->getOperand(1) &&
573                  CI->getPredicate() == CondCmp->getPredicate()) {
574                // TODO: Could handle things like (x != 4) --> (x == 17)
575                if (ProcessBranchOnDuplicateCond(*PI, BB))
576                  return true;
577              }
578            }
579          }
580    }
581  }
582
583  // Check for some cases that are worth simplifying.  Right now we want to look
584  // for loads that are used by a switch or by the condition for the branch.  If
585  // we see one, check to see if it's partially redundant.  If so, insert a PHI
586  // which can then be used to thread the values.
587  //
588  Value *SimplifyValue = CondInst;
589  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
590    if (isa<Constant>(CondCmp->getOperand(1)))
591      SimplifyValue = CondCmp->getOperand(0);
592
593  // TODO: There are other places where load PRE would be profitable, such as
594  // more complex comparisons.
595  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
596    if (SimplifyPartiallyRedundantLoad(LI))
597      return true;
598
599
600  // Handle a variety of cases where we are branching on something derived from
601  // a PHI node in the current block.  If we can prove that any predecessors
602  // compute a predictable value based on a PHI node, thread those predecessors.
603  //
604  if (ProcessThreadableEdges(CondInst, BB))
605    return true;
606
607  // If this is an otherwise-unfoldable branch on a phi node in the current
608  // block, see if we can simplify.
609  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
610    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
611      return ProcessBranchOnPHI(PN);
612
613
614  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
615  if (CondInst->getOpcode() == Instruction::Xor &&
616      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
617    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
618
619
620  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
621  // "(X == 4)", thread through this block.
622
623  return false;
624}
625
626/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
627/// block that jump on exactly the same condition.  This means that we almost
628/// always know the direction of the edge in the DESTBB:
629///  PREDBB:
630///     br COND, DESTBB, BBY
631///  DESTBB:
632///     br COND, BBZ, BBW
633///
634/// If DESTBB has multiple predecessors, we can't just constant fold the branch
635/// in DESTBB, we have to thread over it.
636bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
637                                                 BasicBlock *BB) {
638  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
639
640  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
641  // fold the branch to an unconditional one, which allows other recursive
642  // simplifications.
643  bool BranchDir;
644  if (PredBI->getSuccessor(1) != BB)
645    BranchDir = true;
646  else if (PredBI->getSuccessor(0) != BB)
647    BranchDir = false;
648  else {
649    DEBUG(dbgs() << "  In block '" << PredBB->getName()
650          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
651    ++NumFolds;
652    ConstantFoldTerminator(PredBB);
653    return true;
654  }
655
656  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
657
658  // If the dest block has one predecessor, just fix the branch condition to a
659  // constant and fold it.
660  if (BB->getSinglePredecessor()) {
661    DEBUG(dbgs() << "  In block '" << BB->getName()
662          << "' folding condition to '" << BranchDir << "': "
663          << *BB->getTerminator() << '\n');
664    ++NumFolds;
665    Value *OldCond = DestBI->getCondition();
666    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
667                                          BranchDir));
668    ConstantFoldTerminator(BB);
669    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
670    return true;
671  }
672
673
674  // Next, figure out which successor we are threading to.
675  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
676
677  SmallVector<BasicBlock*, 2> Preds;
678  Preds.push_back(PredBB);
679
680  // Ok, try to thread it!
681  return ThreadEdge(BB, Preds, SuccBB);
682}
683
684/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
685/// block that switch on exactly the same condition.  This means that we almost
686/// always know the direction of the edge in the DESTBB:
687///  PREDBB:
688///     switch COND [... DESTBB, BBY ... ]
689///  DESTBB:
690///     switch COND [... BBZ, BBW ]
691///
692/// Optimizing switches like this is very important, because simplifycfg builds
693/// switches out of repeated 'if' conditions.
694bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
695                                                 BasicBlock *DestBB) {
696  // Can't thread edge to self.
697  if (PredBB == DestBB)
698    return false;
699
700  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
701  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
702
703  // There are a variety of optimizations that we can potentially do on these
704  // blocks: we order them from most to least preferable.
705
706  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
707  // directly to their destination.  This does not introduce *any* code size
708  // growth.  Skip debug info first.
709  BasicBlock::iterator BBI = DestBB->begin();
710  while (isa<DbgInfoIntrinsic>(BBI))
711    BBI++;
712
713  // FIXME: Thread if it just contains a PHI.
714  if (isa<SwitchInst>(BBI)) {
715    bool MadeChange = false;
716    // Ignore the default edge for now.
717    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
718      ConstantInt *DestVal = DestSI->getCaseValue(i);
719      BasicBlock *DestSucc = DestSI->getSuccessor(i);
720
721      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
722      // PredSI has an explicit case for it.  If so, forward.  If it is covered
723      // by the default case, we can't update PredSI.
724      unsigned PredCase = PredSI->findCaseValue(DestVal);
725      if (PredCase == 0) continue;
726
727      // If PredSI doesn't go to DestBB on this value, then it won't reach the
728      // case on this condition.
729      if (PredSI->getSuccessor(PredCase) != DestBB &&
730          DestSI->getSuccessor(i) != DestBB)
731        continue;
732
733      // Do not forward this if it already goes to this destination, this would
734      // be an infinite loop.
735      if (PredSI->getSuccessor(PredCase) == DestSucc)
736        continue;
737
738      // Otherwise, we're safe to make the change.  Make sure that the edge from
739      // DestSI to DestSucc is not critical and has no PHI nodes.
740      DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
741      DEBUG(dbgs() << "THROUGH: " << *DestSI);
742
743      // If the destination has PHI nodes, just split the edge for updating
744      // simplicity.
745      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
746        SplitCriticalEdge(DestSI, i, this);
747        DestSucc = DestSI->getSuccessor(i);
748      }
749      FoldSingleEntryPHINodes(DestSucc);
750      PredSI->setSuccessor(PredCase, DestSucc);
751      MadeChange = true;
752    }
753
754    if (MadeChange)
755      return true;
756  }
757
758  return false;
759}
760
761
762/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
763/// load instruction, eliminate it by replacing it with a PHI node.  This is an
764/// important optimization that encourages jump threading, and needs to be run
765/// interlaced with other jump threading tasks.
766bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
767  // Don't hack volatile loads.
768  if (LI->isVolatile()) return false;
769
770  // If the load is defined in a block with exactly one predecessor, it can't be
771  // partially redundant.
772  BasicBlock *LoadBB = LI->getParent();
773  if (LoadBB->getSinglePredecessor())
774    return false;
775
776  Value *LoadedPtr = LI->getOperand(0);
777
778  // If the loaded operand is defined in the LoadBB, it can't be available.
779  // TODO: Could do simple PHI translation, that would be fun :)
780  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
781    if (PtrOp->getParent() == LoadBB)
782      return false;
783
784  // Scan a few instructions up from the load, to see if it is obviously live at
785  // the entry to its block.
786  BasicBlock::iterator BBIt = LI;
787
788  if (Value *AvailableVal =
789        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
790    // If the value if the load is locally available within the block, just use
791    // it.  This frequently occurs for reg2mem'd allocas.
792    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
793
794    // If the returned value is the load itself, replace with an undef. This can
795    // only happen in dead loops.
796    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
797    LI->replaceAllUsesWith(AvailableVal);
798    LI->eraseFromParent();
799    return true;
800  }
801
802  // Otherwise, if we scanned the whole block and got to the top of the block,
803  // we know the block is locally transparent to the load.  If not, something
804  // might clobber its value.
805  if (BBIt != LoadBB->begin())
806    return false;
807
808
809  SmallPtrSet<BasicBlock*, 8> PredsScanned;
810  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
811  AvailablePredsTy AvailablePreds;
812  BasicBlock *OneUnavailablePred = 0;
813
814  // If we got here, the loaded value is transparent through to the start of the
815  // block.  Check to see if it is available in any of the predecessor blocks.
816  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
817       PI != PE; ++PI) {
818    BasicBlock *PredBB = *PI;
819
820    // If we already scanned this predecessor, skip it.
821    if (!PredsScanned.insert(PredBB))
822      continue;
823
824    // Scan the predecessor to see if the value is available in the pred.
825    BBIt = PredBB->end();
826    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
827    if (!PredAvailable) {
828      OneUnavailablePred = PredBB;
829      continue;
830    }
831
832    // If so, this load is partially redundant.  Remember this info so that we
833    // can create a PHI node.
834    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
835  }
836
837  // If the loaded value isn't available in any predecessor, it isn't partially
838  // redundant.
839  if (AvailablePreds.empty()) return false;
840
841  // Okay, the loaded value is available in at least one (and maybe all!)
842  // predecessors.  If the value is unavailable in more than one unique
843  // predecessor, we want to insert a merge block for those common predecessors.
844  // This ensures that we only have to insert one reload, thus not increasing
845  // code size.
846  BasicBlock *UnavailablePred = 0;
847
848  // If there is exactly one predecessor where the value is unavailable, the
849  // already computed 'OneUnavailablePred' block is it.  If it ends in an
850  // unconditional branch, we know that it isn't a critical edge.
851  if (PredsScanned.size() == AvailablePreds.size()+1 &&
852      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
853    UnavailablePred = OneUnavailablePred;
854  } else if (PredsScanned.size() != AvailablePreds.size()) {
855    // Otherwise, we had multiple unavailable predecessors or we had a critical
856    // edge from the one.
857    SmallVector<BasicBlock*, 8> PredsToSplit;
858    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
859
860    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
861      AvailablePredSet.insert(AvailablePreds[i].first);
862
863    // Add all the unavailable predecessors to the PredsToSplit list.
864    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
865         PI != PE; ++PI)
866      if (!AvailablePredSet.count(*PI))
867        PredsToSplit.push_back(*PI);
868
869    // Split them out to their own block.
870    UnavailablePred =
871      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
872                             "thread-pre-split", this);
873  }
874
875  // If the value isn't available in all predecessors, then there will be
876  // exactly one where it isn't available.  Insert a load on that edge and add
877  // it to the AvailablePreds list.
878  if (UnavailablePred) {
879    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
880           "Can't handle critical edge here!");
881    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
882                                 LI->getAlignment(),
883                                 UnavailablePred->getTerminator());
884    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
885  }
886
887  // Now we know that each predecessor of this block has a value in
888  // AvailablePreds, sort them for efficient access as we're walking the preds.
889  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
890
891  // Create a PHI node at the start of the block for the PRE'd load value.
892  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
893  PN->takeName(LI);
894
895  // Insert new entries into the PHI for each predecessor.  A single block may
896  // have multiple entries here.
897  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
898       ++PI) {
899    AvailablePredsTy::iterator I =
900      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
901                       std::make_pair(*PI, (Value*)0));
902
903    assert(I != AvailablePreds.end() && I->first == *PI &&
904           "Didn't find entry for predecessor!");
905
906    PN->addIncoming(I->second, I->first);
907  }
908
909  //cerr << "PRE: " << *LI << *PN << "\n";
910
911  LI->replaceAllUsesWith(PN);
912  LI->eraseFromParent();
913
914  return true;
915}
916
917/// FindMostPopularDest - The specified list contains multiple possible
918/// threadable destinations.  Pick the one that occurs the most frequently in
919/// the list.
920static BasicBlock *
921FindMostPopularDest(BasicBlock *BB,
922                    const SmallVectorImpl<std::pair<BasicBlock*,
923                                  BasicBlock*> > &PredToDestList) {
924  assert(!PredToDestList.empty());
925
926  // Determine popularity.  If there are multiple possible destinations, we
927  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
928  // blocks with known and real destinations to threading undef.  We'll handle
929  // them later if interesting.
930  DenseMap<BasicBlock*, unsigned> DestPopularity;
931  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
932    if (PredToDestList[i].second)
933      DestPopularity[PredToDestList[i].second]++;
934
935  // Find the most popular dest.
936  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
937  BasicBlock *MostPopularDest = DPI->first;
938  unsigned Popularity = DPI->second;
939  SmallVector<BasicBlock*, 4> SamePopularity;
940
941  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
942    // If the popularity of this entry isn't higher than the popularity we've
943    // seen so far, ignore it.
944    if (DPI->second < Popularity)
945      ; // ignore.
946    else if (DPI->second == Popularity) {
947      // If it is the same as what we've seen so far, keep track of it.
948      SamePopularity.push_back(DPI->first);
949    } else {
950      // If it is more popular, remember it.
951      SamePopularity.clear();
952      MostPopularDest = DPI->first;
953      Popularity = DPI->second;
954    }
955  }
956
957  // Okay, now we know the most popular destination.  If there is more than
958  // destination, we need to determine one.  This is arbitrary, but we need
959  // to make a deterministic decision.  Pick the first one that appears in the
960  // successor list.
961  if (!SamePopularity.empty()) {
962    SamePopularity.push_back(MostPopularDest);
963    TerminatorInst *TI = BB->getTerminator();
964    for (unsigned i = 0; ; ++i) {
965      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
966
967      if (std::find(SamePopularity.begin(), SamePopularity.end(),
968                    TI->getSuccessor(i)) == SamePopularity.end())
969        continue;
970
971      MostPopularDest = TI->getSuccessor(i);
972      break;
973    }
974  }
975
976  // Okay, we have finally picked the most popular destination.
977  return MostPopularDest;
978}
979
980bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
981  // If threading this would thread across a loop header, don't even try to
982  // thread the edge.
983  if (LoopHeaders.count(BB))
984    return false;
985
986  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
987  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
988    return false;
989  assert(!PredValues.empty() &&
990         "ComputeValueKnownInPredecessors returned true with no values");
991
992  DEBUG(dbgs() << "IN BB: " << *BB;
993        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
994          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
995          if (PredValues[i].first)
996            dbgs() << *PredValues[i].first;
997          else
998            dbgs() << "UNDEF";
999          dbgs() << " for pred '" << PredValues[i].second->getName()
1000          << "'.\n";
1001        });
1002
1003  // Decide what we want to thread through.  Convert our list of known values to
1004  // a list of known destinations for each pred.  This also discards duplicate
1005  // predecessors and keeps track of the undefined inputs (which are represented
1006  // as a null dest in the PredToDestList).
1007  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1008  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1009
1010  BasicBlock *OnlyDest = 0;
1011  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1012
1013  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1014    BasicBlock *Pred = PredValues[i].second;
1015    if (!SeenPreds.insert(Pred))
1016      continue;  // Duplicate predecessor entry.
1017
1018    // If the predecessor ends with an indirect goto, we can't change its
1019    // destination.
1020    if (isa<IndirectBrInst>(Pred->getTerminator()))
1021      continue;
1022
1023    ConstantInt *Val = PredValues[i].first;
1024
1025    BasicBlock *DestBB;
1026    if (Val == 0)      // Undef.
1027      DestBB = 0;
1028    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1029      DestBB = BI->getSuccessor(Val->isZero());
1030    else {
1031      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1032      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1033    }
1034
1035    // If we have exactly one destination, remember it for efficiency below.
1036    if (i == 0)
1037      OnlyDest = DestBB;
1038    else if (OnlyDest != DestBB)
1039      OnlyDest = MultipleDestSentinel;
1040
1041    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1042  }
1043
1044  // If all edges were unthreadable, we fail.
1045  if (PredToDestList.empty())
1046    return false;
1047
1048  // Determine which is the most common successor.  If we have many inputs and
1049  // this block is a switch, we want to start by threading the batch that goes
1050  // to the most popular destination first.  If we only know about one
1051  // threadable destination (the common case) we can avoid this.
1052  BasicBlock *MostPopularDest = OnlyDest;
1053
1054  if (MostPopularDest == MultipleDestSentinel)
1055    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1056
1057  // Now that we know what the most popular destination is, factor all
1058  // predecessors that will jump to it into a single predecessor.
1059  SmallVector<BasicBlock*, 16> PredsToFactor;
1060  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1061    if (PredToDestList[i].second == MostPopularDest) {
1062      BasicBlock *Pred = PredToDestList[i].first;
1063
1064      // This predecessor may be a switch or something else that has multiple
1065      // edges to the block.  Factor each of these edges by listing them
1066      // according to # occurrences in PredsToFactor.
1067      TerminatorInst *PredTI = Pred->getTerminator();
1068      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1069        if (PredTI->getSuccessor(i) == BB)
1070          PredsToFactor.push_back(Pred);
1071    }
1072
1073  // If the threadable edges are branching on an undefined value, we get to pick
1074  // the destination that these predecessors should get to.
1075  if (MostPopularDest == 0)
1076    MostPopularDest = BB->getTerminator()->
1077                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1078
1079  // Ok, try to thread it!
1080  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1081}
1082
1083/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1084/// a PHI node in the current block.  See if there are any simplifications we
1085/// can do based on inputs to the phi node.
1086///
1087bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1088  BasicBlock *BB = PN->getParent();
1089
1090  // TODO: We could make use of this to do it once for blocks with common PHI
1091  // values.
1092  SmallVector<BasicBlock*, 1> PredBBs;
1093  PredBBs.resize(1);
1094
1095  // If any of the predecessor blocks end in an unconditional branch, we can
1096  // *duplicate* the conditional branch into that block in order to further
1097  // encourage jump threading and to eliminate cases where we have branch on a
1098  // phi of an icmp (branch on icmp is much better).
1099  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1100    BasicBlock *PredBB = PN->getIncomingBlock(i);
1101    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1102      if (PredBr->isUnconditional()) {
1103        PredBBs[0] = PredBB;
1104        // Try to duplicate BB into PredBB.
1105        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1106          return true;
1107      }
1108  }
1109
1110  return false;
1111}
1112
1113/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1114/// a xor instruction in the current block.  See if there are any
1115/// simplifications we can do based on inputs to the xor.
1116///
1117bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1118  BasicBlock *BB = BO->getParent();
1119
1120  // If either the LHS or RHS of the xor is a constant, don't do this
1121  // optimization.
1122  if (isa<ConstantInt>(BO->getOperand(0)) ||
1123      isa<ConstantInt>(BO->getOperand(1)))
1124    return false;
1125
1126  // If the first instruction in BB isn't a phi, we won't be able to infer
1127  // anything special about any particular predecessor.
1128  if (!isa<PHINode>(BB->front()))
1129    return false;
1130
1131  // If we have a xor as the branch input to this block, and we know that the
1132  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1133  // the condition into the predecessor and fix that value to true, saving some
1134  // logical ops on that path and encouraging other paths to simplify.
1135  //
1136  // This copies something like this:
1137  //
1138  //  BB:
1139  //    %X = phi i1 [1],  [%X']
1140  //    %Y = icmp eq i32 %A, %B
1141  //    %Z = xor i1 %X, %Y
1142  //    br i1 %Z, ...
1143  //
1144  // Into:
1145  //  BB':
1146  //    %Y = icmp ne i32 %A, %B
1147  //    br i1 %Z, ...
1148
1149  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1150  bool isLHS = true;
1151  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1152    assert(XorOpValues.empty());
1153    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1154      return false;
1155    isLHS = false;
1156  }
1157
1158  assert(!XorOpValues.empty() &&
1159         "ComputeValueKnownInPredecessors returned true with no values");
1160
1161  // Scan the information to see which is most popular: true or false.  The
1162  // predecessors can be of the set true, false, or undef.
1163  unsigned NumTrue = 0, NumFalse = 0;
1164  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1165    if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
1166    if (XorOpValues[i].first->isZero())
1167      ++NumFalse;
1168    else
1169      ++NumTrue;
1170  }
1171
1172  // Determine which value to split on, true, false, or undef if neither.
1173  ConstantInt *SplitVal = 0;
1174  if (NumTrue > NumFalse)
1175    SplitVal = ConstantInt::getTrue(BB->getContext());
1176  else if (NumTrue != 0 || NumFalse != 0)
1177    SplitVal = ConstantInt::getFalse(BB->getContext());
1178
1179  // Collect all of the blocks that this can be folded into so that we can
1180  // factor this once and clone it once.
1181  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1182  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1183    if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1184
1185    BlocksToFoldInto.push_back(XorOpValues[i].second);
1186  }
1187
1188  // If we inferred a value for all of the predecessors, then duplication won't
1189  // help us.  However, we can just replace the LHS or RHS with the constant.
1190  if (BlocksToFoldInto.size() ==
1191      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1192    if (SplitVal == 0) {
1193      // If all preds provide undef, just nuke the xor, because it is undef too.
1194      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1195      BO->eraseFromParent();
1196    } else if (SplitVal->isZero()) {
1197      // If all preds provide 0, replace the xor with the other input.
1198      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1199      BO->eraseFromParent();
1200    } else {
1201      // If all preds provide 1, set the computed value to 1.
1202      BO->setOperand(!isLHS, SplitVal);
1203    }
1204
1205    return true;
1206  }
1207
1208  // Try to duplicate BB into PredBB.
1209  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1210}
1211
1212
1213/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1214/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1215/// NewPred using the entries from OldPred (suitably mapped).
1216static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1217                                            BasicBlock *OldPred,
1218                                            BasicBlock *NewPred,
1219                                     DenseMap<Instruction*, Value*> &ValueMap) {
1220  for (BasicBlock::iterator PNI = PHIBB->begin();
1221       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1222    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1223    // DestBlock.
1224    Value *IV = PN->getIncomingValueForBlock(OldPred);
1225
1226    // Remap the value if necessary.
1227    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1228      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1229      if (I != ValueMap.end())
1230        IV = I->second;
1231    }
1232
1233    PN->addIncoming(IV, NewPred);
1234  }
1235}
1236
1237/// ThreadEdge - We have decided that it is safe and profitable to factor the
1238/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1239/// across BB.  Transform the IR to reflect this change.
1240bool JumpThreading::ThreadEdge(BasicBlock *BB,
1241                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1242                               BasicBlock *SuccBB) {
1243  // If threading to the same block as we come from, we would infinite loop.
1244  if (SuccBB == BB) {
1245    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1246          << "' - would thread to self!\n");
1247    return false;
1248  }
1249
1250  // If threading this would thread across a loop header, don't thread the edge.
1251  // See the comments above FindLoopHeaders for justifications and caveats.
1252  if (LoopHeaders.count(BB)) {
1253    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1254          << "' to dest BB '" << SuccBB->getName()
1255          << "' - it might create an irreducible loop!\n");
1256    return false;
1257  }
1258
1259  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1260  if (JumpThreadCost > Threshold) {
1261    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1262          << "' - Cost is too high: " << JumpThreadCost << "\n");
1263    return false;
1264  }
1265
1266  // And finally, do it!  Start by factoring the predecessors is needed.
1267  BasicBlock *PredBB;
1268  if (PredBBs.size() == 1)
1269    PredBB = PredBBs[0];
1270  else {
1271    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1272          << " common predecessors.\n");
1273    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1274                                    ".thr_comm", this);
1275  }
1276
1277  // And finally, do it!
1278  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1279        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1280        << ", across block:\n    "
1281        << *BB << "\n");
1282
1283  // We are going to have to map operands from the original BB block to the new
1284  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1285  // account for entry from PredBB.
1286  DenseMap<Instruction*, Value*> ValueMapping;
1287
1288  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1289                                         BB->getName()+".thread",
1290                                         BB->getParent(), BB);
1291  NewBB->moveAfter(PredBB);
1292
1293  BasicBlock::iterator BI = BB->begin();
1294  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1295    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1296
1297  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1298  // mapping and using it to remap operands in the cloned instructions.
1299  for (; !isa<TerminatorInst>(BI); ++BI) {
1300    Instruction *New = BI->clone();
1301    New->setName(BI->getName());
1302    NewBB->getInstList().push_back(New);
1303    ValueMapping[BI] = New;
1304
1305    // Remap operands to patch up intra-block references.
1306    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1307      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1308        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1309        if (I != ValueMapping.end())
1310          New->setOperand(i, I->second);
1311      }
1312  }
1313
1314  // We didn't copy the terminator from BB over to NewBB, because there is now
1315  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1316  BranchInst::Create(SuccBB, NewBB);
1317
1318  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1319  // PHI nodes for NewBB now.
1320  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1321
1322  // If there were values defined in BB that are used outside the block, then we
1323  // now have to update all uses of the value to use either the original value,
1324  // the cloned value, or some PHI derived value.  This can require arbitrary
1325  // PHI insertion, of which we are prepared to do, clean these up now.
1326  SSAUpdater SSAUpdate;
1327  SmallVector<Use*, 16> UsesToRename;
1328  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1329    // Scan all uses of this instruction to see if it is used outside of its
1330    // block, and if so, record them in UsesToRename.
1331    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1332         ++UI) {
1333      Instruction *User = cast<Instruction>(*UI);
1334      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1335        if (UserPN->getIncomingBlock(UI) == BB)
1336          continue;
1337      } else if (User->getParent() == BB)
1338        continue;
1339
1340      UsesToRename.push_back(&UI.getUse());
1341    }
1342
1343    // If there are no uses outside the block, we're done with this instruction.
1344    if (UsesToRename.empty())
1345      continue;
1346
1347    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1348
1349    // We found a use of I outside of BB.  Rename all uses of I that are outside
1350    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1351    // with the two values we know.
1352    SSAUpdate.Initialize(I);
1353    SSAUpdate.AddAvailableValue(BB, I);
1354    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1355
1356    while (!UsesToRename.empty())
1357      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1358    DEBUG(dbgs() << "\n");
1359  }
1360
1361
1362  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1363  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1364  // us to simplify any PHI nodes in BB.
1365  TerminatorInst *PredTerm = PredBB->getTerminator();
1366  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1367    if (PredTerm->getSuccessor(i) == BB) {
1368      RemovePredecessorAndSimplify(BB, PredBB, TD);
1369      PredTerm->setSuccessor(i, NewBB);
1370    }
1371
1372  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1373  // over the new instructions and zap any that are constants or dead.  This
1374  // frequently happens because of phi translation.
1375  SimplifyInstructionsInBlock(NewBB, TD);
1376
1377  // Threaded an edge!
1378  ++NumThreads;
1379  return true;
1380}
1381
1382/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1383/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1384/// If we can duplicate the contents of BB up into PredBB do so now, this
1385/// improves the odds that the branch will be on an analyzable instruction like
1386/// a compare.
1387bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1388                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1389  assert(!PredBBs.empty() && "Can't handle an empty set");
1390
1391  // If BB is a loop header, then duplicating this block outside the loop would
1392  // cause us to transform this into an irreducible loop, don't do this.
1393  // See the comments above FindLoopHeaders for justifications and caveats.
1394  if (LoopHeaders.count(BB)) {
1395    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1396          << "' into predecessor block '" << PredBBs[0]->getName()
1397          << "' - it might create an irreducible loop!\n");
1398    return false;
1399  }
1400
1401  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1402  if (DuplicationCost > Threshold) {
1403    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1404          << "' - Cost is too high: " << DuplicationCost << "\n");
1405    return false;
1406  }
1407
1408  // And finally, do it!  Start by factoring the predecessors is needed.
1409  BasicBlock *PredBB;
1410  if (PredBBs.size() == 1)
1411    PredBB = PredBBs[0];
1412  else {
1413    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1414          << " common predecessors.\n");
1415    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1416                                    ".thr_comm", this);
1417  }
1418
1419  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1420  // of PredBB.
1421  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1422        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1423        << DuplicationCost << " block is:" << *BB << "\n");
1424
1425  // Unless PredBB ends with an unconditional branch, split the edge so that we
1426  // can just clone the bits from BB into the end of the new PredBB.
1427  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1428
1429  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1430    PredBB = SplitEdge(PredBB, BB, this);
1431    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1432  }
1433
1434  // We are going to have to map operands from the original BB block into the
1435  // PredBB block.  Evaluate PHI nodes in BB.
1436  DenseMap<Instruction*, Value*> ValueMapping;
1437
1438  BasicBlock::iterator BI = BB->begin();
1439  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1440    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1441
1442  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1443  // mapping and using it to remap operands in the cloned instructions.
1444  for (; BI != BB->end(); ++BI) {
1445    Instruction *New = BI->clone();
1446
1447    // Remap operands to patch up intra-block references.
1448    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1449      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1450        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1451        if (I != ValueMapping.end())
1452          New->setOperand(i, I->second);
1453      }
1454
1455    // If this instruction can be simplified after the operands are updated,
1456    // just use the simplified value instead.  This frequently happens due to
1457    // phi translation.
1458    if (Value *IV = SimplifyInstruction(New, TD)) {
1459      delete New;
1460      ValueMapping[BI] = IV;
1461    } else {
1462      // Otherwise, insert the new instruction into the block.
1463      New->setName(BI->getName());
1464      PredBB->getInstList().insert(OldPredBranch, New);
1465      ValueMapping[BI] = New;
1466    }
1467  }
1468
1469  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1470  // add entries to the PHI nodes for branch from PredBB now.
1471  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1472  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1473                                  ValueMapping);
1474  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1475                                  ValueMapping);
1476
1477  // If there were values defined in BB that are used outside the block, then we
1478  // now have to update all uses of the value to use either the original value,
1479  // the cloned value, or some PHI derived value.  This can require arbitrary
1480  // PHI insertion, of which we are prepared to do, clean these up now.
1481  SSAUpdater SSAUpdate;
1482  SmallVector<Use*, 16> UsesToRename;
1483  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1484    // Scan all uses of this instruction to see if it is used outside of its
1485    // block, and if so, record them in UsesToRename.
1486    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1487         ++UI) {
1488      Instruction *User = cast<Instruction>(*UI);
1489      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1490        if (UserPN->getIncomingBlock(UI) == BB)
1491          continue;
1492      } else if (User->getParent() == BB)
1493        continue;
1494
1495      UsesToRename.push_back(&UI.getUse());
1496    }
1497
1498    // If there are no uses outside the block, we're done with this instruction.
1499    if (UsesToRename.empty())
1500      continue;
1501
1502    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1503
1504    // We found a use of I outside of BB.  Rename all uses of I that are outside
1505    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1506    // with the two values we know.
1507    SSAUpdate.Initialize(I);
1508    SSAUpdate.AddAvailableValue(BB, I);
1509    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1510
1511    while (!UsesToRename.empty())
1512      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1513    DEBUG(dbgs() << "\n");
1514  }
1515
1516  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1517  // that we nuked.
1518  RemovePredecessorAndSimplify(BB, PredBB, TD);
1519
1520  // Remove the unconditional branch at the end of the PredBB block.
1521  OldPredBranch->eraseFromParent();
1522
1523  ++NumDupes;
1524  return true;
1525}
1526
1527
1528