JumpThreading.cpp revision e33583b7c2b4d715a24e4d668bf446af9c836e54
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Transforms/Utils/Local.h"
22#include "llvm/Transforms/Utils/SSAUpdater.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(NumThreads, "Number of jumps threaded");
35STATISTIC(NumFolds,   "Number of terminators folded");
36
37static cl::opt<unsigned>
38Threshold("jump-threading-threshold",
39          cl::desc("Max block size to duplicate for jump threading"),
40          cl::init(6), cl::Hidden);
41
42namespace {
43  /// This pass performs 'jump threading', which looks at blocks that have
44  /// multiple predecessors and multiple successors.  If one or more of the
45  /// predecessors of the block can be proven to always jump to one of the
46  /// successors, we forward the edge from the predecessor to the successor by
47  /// duplicating the contents of this block.
48  ///
49  /// An example of when this can occur is code like this:
50  ///
51  ///   if () { ...
52  ///     X = 4;
53  ///   }
54  ///   if (X < 3) {
55  ///
56  /// In this case, the unconditional branch at the end of the first if can be
57  /// revectored to the false side of the second if.
58  ///
59  class JumpThreading : public FunctionPass {
60    TargetData *TD;
61#ifdef NDEBUG
62    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
63#else
64    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
65#endif
66  public:
67    static char ID; // Pass identification
68    JumpThreading() : FunctionPass(&ID) {}
69
70    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
71    }
72
73    bool runOnFunction(Function &F);
74    void FindLoopHeaders(Function &F);
75
76    bool ProcessBlock(BasicBlock *BB);
77    bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB,
78                    unsigned JumpThreadCost);
79    BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
80    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
81    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
82
83    bool ProcessJumpOnPHI(PHINode *PN);
84    bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
85    bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
86
87    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
88  };
89}
90
91char JumpThreading::ID = 0;
92static RegisterPass<JumpThreading>
93X("jump-threading", "Jump Threading");
94
95// Public interface to the Jump Threading pass
96FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
97
98/// runOnFunction - Top level algorithm.
99///
100bool JumpThreading::runOnFunction(Function &F) {
101  DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
102  TD = getAnalysisIfAvailable<TargetData>();
103
104  FindLoopHeaders(F);
105
106  bool AnotherIteration = true, EverChanged = false;
107  while (AnotherIteration) {
108    AnotherIteration = false;
109    bool Changed = false;
110    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
111      BasicBlock *BB = I;
112      while (ProcessBlock(BB))
113        Changed = true;
114
115      ++I;
116
117      // If the block is trivially dead, zap it.  This eliminates the successor
118      // edges which simplifies the CFG.
119      if (pred_begin(BB) == pred_end(BB) &&
120          BB != &BB->getParent()->getEntryBlock()) {
121        DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
122              << "' with terminator: " << *BB->getTerminator());
123        LoopHeaders.erase(BB);
124        DeleteDeadBlock(BB);
125        Changed = true;
126      }
127    }
128    AnotherIteration = Changed;
129    EverChanged |= Changed;
130  }
131
132  LoopHeaders.clear();
133  return EverChanged;
134}
135
136/// FindLoopHeaders - We do not want jump threading to turn proper loop
137/// structures into irreducible loops.  Doing this breaks up the loop nesting
138/// hierarchy and pessimizes later transformations.  To prevent this from
139/// happening, we first have to find the loop headers.  Here we approximate this
140/// by finding targets of backedges in the CFG.
141///
142/// Note that there definitely are cases when we want to allow threading of
143/// edges across a loop header.  For example, threading a jump from outside the
144/// loop (the preheader) to an exit block of the loop is definitely profitable.
145/// It is also almost always profitable to thread backedges from within the loop
146/// to exit blocks, and is often profitable to thread backedges to other blocks
147/// within the loop (forming a nested loop).  This simple analysis is not rich
148/// enough to track all of these properties and keep it up-to-date as the CFG
149/// mutates, so we don't allow any of these transformations.
150///
151void JumpThreading::FindLoopHeaders(Function &F) {
152  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
153  FindFunctionBackedges(F, Edges);
154
155  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
156    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
157}
158
159
160/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
161/// value for the PHI, factor them together so we get one block to thread for
162/// the whole group.
163/// This is important for things like "phi i1 [true, true, false, true, x]"
164/// where we only need to clone the block for the true blocks once.
165///
166BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
167  SmallVector<BasicBlock*, 16> CommonPreds;
168  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
169    if (PN->getIncomingValue(i) == Val)
170      CommonPreds.push_back(PN->getIncomingBlock(i));
171
172  if (CommonPreds.size() == 1)
173    return CommonPreds[0];
174
175  DEBUG(errs() << "  Factoring out " << CommonPreds.size()
176        << " common predecessors.\n");
177  return SplitBlockPredecessors(PN->getParent(),
178                                &CommonPreds[0], CommonPreds.size(),
179                                ".thr_comm", this);
180}
181
182
183/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
184/// thread across it.
185static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
186  /// Ignore PHI nodes, these will be flattened when duplication happens.
187  BasicBlock::const_iterator I = BB->getFirstNonPHI();
188
189  // Sum up the cost of each instruction until we get to the terminator.  Don't
190  // include the terminator because the copy won't include it.
191  unsigned Size = 0;
192  for (; !isa<TerminatorInst>(I); ++I) {
193    // Debugger intrinsics don't incur code size.
194    if (isa<DbgInfoIntrinsic>(I)) continue;
195
196    // If this is a pointer->pointer bitcast, it is free.
197    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
198      continue;
199
200    // All other instructions count for at least one unit.
201    ++Size;
202
203    // Calls are more expensive.  If they are non-intrinsic calls, we model them
204    // as having cost of 4.  If they are a non-vector intrinsic, we model them
205    // as having cost of 2 total, and if they are a vector intrinsic, we model
206    // them as having cost 1.
207    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
208      if (!isa<IntrinsicInst>(CI))
209        Size += 3;
210      else if (!isa<VectorType>(CI->getType()))
211        Size += 1;
212    }
213  }
214
215  // Threading through a switch statement is particularly profitable.  If this
216  // block ends in a switch, decrease its cost to make it more likely to happen.
217  if (isa<SwitchInst>(I))
218    Size = Size > 6 ? Size-6 : 0;
219
220  return Size;
221}
222
223/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
224/// in an undefined jump, decide which block is best to revector to.
225///
226/// Since we can pick an arbitrary destination, we pick the successor with the
227/// fewest predecessors.  This should reduce the in-degree of the others.
228///
229static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
230  TerminatorInst *BBTerm = BB->getTerminator();
231  unsigned MinSucc = 0;
232  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
233  // Compute the successor with the minimum number of predecessors.
234  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
235  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
236    TestBB = BBTerm->getSuccessor(i);
237    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
238    if (NumPreds < MinNumPreds)
239      MinSucc = i;
240  }
241
242  return MinSucc;
243}
244
245/// ProcessBlock - If there are any predecessors whose control can be threaded
246/// through to a successor, transform them now.
247bool JumpThreading::ProcessBlock(BasicBlock *BB) {
248  // If this block has a single predecessor, and if that pred has a single
249  // successor, merge the blocks.  This encourages recursive jump threading
250  // because now the condition in this block can be threaded through
251  // predecessors of our predecessor block.
252  if (BasicBlock *SinglePred = BB->getSinglePredecessor())
253    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
254        SinglePred != BB) {
255      // If SinglePred was a loop header, BB becomes one.
256      if (LoopHeaders.erase(SinglePred))
257        LoopHeaders.insert(BB);
258
259      // Remember if SinglePred was the entry block of the function.  If so, we
260      // will need to move BB back to the entry position.
261      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
262      MergeBasicBlockIntoOnlyPred(BB);
263
264      if (isEntry && BB != &BB->getParent()->getEntryBlock())
265        BB->moveBefore(&BB->getParent()->getEntryBlock());
266      return true;
267    }
268
269  // See if this block ends with a branch or switch.  If so, see if the
270  // condition is a phi node.  If so, and if an entry of the phi node is a
271  // constant, we can thread the block.
272  Value *Condition;
273  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
274    // Can't thread an unconditional jump.
275    if (BI->isUnconditional()) return false;
276    Condition = BI->getCondition();
277  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
278    Condition = SI->getCondition();
279  else
280    return false; // Must be an invoke.
281
282  // If the terminator of this block is branching on a constant, simplify the
283  // terminator to an unconditional branch.  This can occur due to threading in
284  // other blocks.
285  if (isa<ConstantInt>(Condition)) {
286    DEBUG(errs() << "  In block '" << BB->getName()
287          << "' folding terminator: " << *BB->getTerminator());
288    ++NumFolds;
289    ConstantFoldTerminator(BB);
290    return true;
291  }
292
293  // If the terminator is branching on an undef, we can pick any of the
294  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
295  if (isa<UndefValue>(Condition)) {
296    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
297
298    // Fold the branch/switch.
299    TerminatorInst *BBTerm = BB->getTerminator();
300    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
301      if (i == BestSucc) continue;
302      BBTerm->getSuccessor(i)->removePredecessor(BB);
303    }
304
305    DEBUG(errs() << "  In block '" << BB->getName()
306          << "' folding undef terminator: " << *BBTerm);
307    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
308    BBTerm->eraseFromParent();
309    return true;
310  }
311
312  Instruction *CondInst = dyn_cast<Instruction>(Condition);
313
314  // If the condition is an instruction defined in another block, see if a
315  // predecessor has the same condition:
316  //     br COND, BBX, BBY
317  //  BBX:
318  //     br COND, BBZ, BBW
319  if (!Condition->hasOneUse() && // Multiple uses.
320      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
321    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
322    if (isa<BranchInst>(BB->getTerminator())) {
323      for (; PI != E; ++PI)
324        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
325          if (PBI->isConditional() && PBI->getCondition() == Condition &&
326              ProcessBranchOnDuplicateCond(*PI, BB))
327            return true;
328    } else {
329      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
330      for (; PI != E; ++PI)
331        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
332          if (PSI->getCondition() == Condition &&
333              ProcessSwitchOnDuplicateCond(*PI, BB))
334            return true;
335    }
336  }
337
338  // All the rest of our checks depend on the condition being an instruction.
339  if (CondInst == 0)
340    return false;
341
342  // See if this is a phi node in the current block.
343  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
344    if (PN->getParent() == BB)
345      return ProcessJumpOnPHI(PN);
346
347  // If this is a conditional branch whose condition is and/or of a phi, try to
348  // simplify it.
349  if ((CondInst->getOpcode() == Instruction::And ||
350       CondInst->getOpcode() == Instruction::Or) &&
351      isa<BranchInst>(BB->getTerminator()) &&
352      ProcessBranchOnLogical(CondInst, BB,
353                             CondInst->getOpcode() == Instruction::And))
354    return true;
355
356  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
357    if (isa<PHINode>(CondCmp->getOperand(0))) {
358      // If we have "br (phi != 42)" and the phi node has any constant values
359      // as operands, we can thread through this block.
360      //
361      // If we have "br (cmp phi, x)" and the phi node contains x such that the
362      // comparison uniquely identifies the branch target, we can thread
363      // through this block.
364
365      if (ProcessBranchOnCompare(CondCmp, BB))
366        return true;
367    }
368
369    // If we have a comparison, loop over the predecessors to see if there is
370    // a condition with the same value.
371    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
372    for (; PI != E; ++PI)
373      if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
374        if (PBI->isConditional() && *PI != BB) {
375          if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
376            if (CI->getOperand(0) == CondCmp->getOperand(0) &&
377                CI->getOperand(1) == CondCmp->getOperand(1) &&
378                CI->getPredicate() == CondCmp->getPredicate()) {
379              // TODO: Could handle things like (x != 4) --> (x == 17)
380              if (ProcessBranchOnDuplicateCond(*PI, BB))
381                return true;
382            }
383          }
384        }
385  }
386
387  // Check for some cases that are worth simplifying.  Right now we want to look
388  // for loads that are used by a switch or by the condition for the branch.  If
389  // we see one, check to see if it's partially redundant.  If so, insert a PHI
390  // which can then be used to thread the values.
391  //
392  // This is particularly important because reg2mem inserts loads and stores all
393  // over the place, and this blocks jump threading if we don't zap them.
394  Value *SimplifyValue = CondInst;
395  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
396    if (isa<Constant>(CondCmp->getOperand(1)))
397      SimplifyValue = CondCmp->getOperand(0);
398
399  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
400    if (SimplifyPartiallyRedundantLoad(LI))
401      return true;
402
403  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
404  // "(X == 4)" thread through this block.
405
406  return false;
407}
408
409/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
410/// block that jump on exactly the same condition.  This means that we almost
411/// always know the direction of the edge in the DESTBB:
412///  PREDBB:
413///     br COND, DESTBB, BBY
414///  DESTBB:
415///     br COND, BBZ, BBW
416///
417/// If DESTBB has multiple predecessors, we can't just constant fold the branch
418/// in DESTBB, we have to thread over it.
419bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
420                                                 BasicBlock *BB) {
421  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
422
423  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
424  // fold the branch to an unconditional one, which allows other recursive
425  // simplifications.
426  bool BranchDir;
427  if (PredBI->getSuccessor(1) != BB)
428    BranchDir = true;
429  else if (PredBI->getSuccessor(0) != BB)
430    BranchDir = false;
431  else {
432    DEBUG(errs() << "  In block '" << PredBB->getName()
433          << "' folding terminator: " << *PredBB->getTerminator());
434    ++NumFolds;
435    ConstantFoldTerminator(PredBB);
436    return true;
437  }
438
439  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
440
441  // If the dest block has one predecessor, just fix the branch condition to a
442  // constant and fold it.
443  if (BB->getSinglePredecessor()) {
444    DEBUG(errs() << "  In block '" << BB->getName()
445          << "' folding condition to '" << BranchDir << "': "
446          << *BB->getTerminator());
447    ++NumFolds;
448    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
449                                          BranchDir));
450    ConstantFoldTerminator(BB);
451    return true;
452  }
453
454  // Otherwise we need to thread from PredBB to DestBB's successor which
455  // involves code duplication.  Check to see if it is worth it.
456  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
457  if (JumpThreadCost > Threshold) {
458    DEBUG(errs() << "  Not threading BB '" << BB->getName()
459          << "' - Cost is too high: " << JumpThreadCost << "\n");
460    return false;
461  }
462
463  // Next, figure out which successor we are threading to.
464  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
465
466  // Ok, try to thread it!
467  return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
468}
469
470/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
471/// block that switch on exactly the same condition.  This means that we almost
472/// always know the direction of the edge in the DESTBB:
473///  PREDBB:
474///     switch COND [... DESTBB, BBY ... ]
475///  DESTBB:
476///     switch COND [... BBZ, BBW ]
477///
478/// Optimizing switches like this is very important, because simplifycfg builds
479/// switches out of repeated 'if' conditions.
480bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
481                                                 BasicBlock *DestBB) {
482  // Can't thread edge to self.
483  if (PredBB == DestBB)
484    return false;
485
486  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
487  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
488
489  // There are a variety of optimizations that we can potentially do on these
490  // blocks: we order them from most to least preferable.
491
492  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
493  // directly to their destination.  This does not introduce *any* code size
494  // growth.  Skip debug info first.
495  BasicBlock::iterator BBI = DestBB->begin();
496  while (isa<DbgInfoIntrinsic>(BBI))
497    BBI++;
498
499  // FIXME: Thread if it just contains a PHI.
500  if (isa<SwitchInst>(BBI)) {
501    bool MadeChange = false;
502    // Ignore the default edge for now.
503    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
504      ConstantInt *DestVal = DestSI->getCaseValue(i);
505      BasicBlock *DestSucc = DestSI->getSuccessor(i);
506
507      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
508      // PredSI has an explicit case for it.  If so, forward.  If it is covered
509      // by the default case, we can't update PredSI.
510      unsigned PredCase = PredSI->findCaseValue(DestVal);
511      if (PredCase == 0) continue;
512
513      // If PredSI doesn't go to DestBB on this value, then it won't reach the
514      // case on this condition.
515      if (PredSI->getSuccessor(PredCase) != DestBB &&
516          DestSI->getSuccessor(i) != DestBB)
517        continue;
518
519      // Otherwise, we're safe to make the change.  Make sure that the edge from
520      // DestSI to DestSucc is not critical and has no PHI nodes.
521      DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
522      DEBUG(errs() << "THROUGH: " << *DestSI);
523
524      // If the destination has PHI nodes, just split the edge for updating
525      // simplicity.
526      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
527        SplitCriticalEdge(DestSI, i, this);
528        DestSucc = DestSI->getSuccessor(i);
529      }
530      FoldSingleEntryPHINodes(DestSucc);
531      PredSI->setSuccessor(PredCase, DestSucc);
532      MadeChange = true;
533    }
534
535    if (MadeChange)
536      return true;
537  }
538
539  return false;
540}
541
542
543/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
544/// load instruction, eliminate it by replacing it with a PHI node.  This is an
545/// important optimization that encourages jump threading, and needs to be run
546/// interlaced with other jump threading tasks.
547bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
548  // Don't hack volatile loads.
549  if (LI->isVolatile()) return false;
550
551  // If the load is defined in a block with exactly one predecessor, it can't be
552  // partially redundant.
553  BasicBlock *LoadBB = LI->getParent();
554  if (LoadBB->getSinglePredecessor())
555    return false;
556
557  Value *LoadedPtr = LI->getOperand(0);
558
559  // If the loaded operand is defined in the LoadBB, it can't be available.
560  // FIXME: Could do PHI translation, that would be fun :)
561  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
562    if (PtrOp->getParent() == LoadBB)
563      return false;
564
565  // Scan a few instructions up from the load, to see if it is obviously live at
566  // the entry to its block.
567  BasicBlock::iterator BBIt = LI;
568
569  if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
570                                                     BBIt, 6)) {
571    // If the value if the load is locally available within the block, just use
572    // it.  This frequently occurs for reg2mem'd allocas.
573    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
574
575    // If the returned value is the load itself, replace with an undef. This can
576    // only happen in dead loops.
577    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
578    LI->replaceAllUsesWith(AvailableVal);
579    LI->eraseFromParent();
580    return true;
581  }
582
583  // Otherwise, if we scanned the whole block and got to the top of the block,
584  // we know the block is locally transparent to the load.  If not, something
585  // might clobber its value.
586  if (BBIt != LoadBB->begin())
587    return false;
588
589
590  SmallPtrSet<BasicBlock*, 8> PredsScanned;
591  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
592  AvailablePredsTy AvailablePreds;
593  BasicBlock *OneUnavailablePred = 0;
594
595  // If we got here, the loaded value is transparent through to the start of the
596  // block.  Check to see if it is available in any of the predecessor blocks.
597  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
598       PI != PE; ++PI) {
599    BasicBlock *PredBB = *PI;
600
601    // If we already scanned this predecessor, skip it.
602    if (!PredsScanned.insert(PredBB))
603      continue;
604
605    // Scan the predecessor to see if the value is available in the pred.
606    BBIt = PredBB->end();
607    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
608    if (!PredAvailable) {
609      OneUnavailablePred = PredBB;
610      continue;
611    }
612
613    // If so, this load is partially redundant.  Remember this info so that we
614    // can create a PHI node.
615    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
616  }
617
618  // If the loaded value isn't available in any predecessor, it isn't partially
619  // redundant.
620  if (AvailablePreds.empty()) return false;
621
622  // Okay, the loaded value is available in at least one (and maybe all!)
623  // predecessors.  If the value is unavailable in more than one unique
624  // predecessor, we want to insert a merge block for those common predecessors.
625  // This ensures that we only have to insert one reload, thus not increasing
626  // code size.
627  BasicBlock *UnavailablePred = 0;
628
629  // If there is exactly one predecessor where the value is unavailable, the
630  // already computed 'OneUnavailablePred' block is it.  If it ends in an
631  // unconditional branch, we know that it isn't a critical edge.
632  if (PredsScanned.size() == AvailablePreds.size()+1 &&
633      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
634    UnavailablePred = OneUnavailablePred;
635  } else if (PredsScanned.size() != AvailablePreds.size()) {
636    // Otherwise, we had multiple unavailable predecessors or we had a critical
637    // edge from the one.
638    SmallVector<BasicBlock*, 8> PredsToSplit;
639    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
640
641    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
642      AvailablePredSet.insert(AvailablePreds[i].first);
643
644    // Add all the unavailable predecessors to the PredsToSplit list.
645    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
646         PI != PE; ++PI)
647      if (!AvailablePredSet.count(*PI))
648        PredsToSplit.push_back(*PI);
649
650    // Split them out to their own block.
651    UnavailablePred =
652      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
653                             "thread-split", this);
654  }
655
656  // If the value isn't available in all predecessors, then there will be
657  // exactly one where it isn't available.  Insert a load on that edge and add
658  // it to the AvailablePreds list.
659  if (UnavailablePred) {
660    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
661           "Can't handle critical edge here!");
662    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
663                                 UnavailablePred->getTerminator());
664    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
665  }
666
667  // Now we know that each predecessor of this block has a value in
668  // AvailablePreds, sort them for efficient access as we're walking the preds.
669  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
670
671  // Create a PHI node at the start of the block for the PRE'd load value.
672  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
673  PN->takeName(LI);
674
675  // Insert new entries into the PHI for each predecessor.  A single block may
676  // have multiple entries here.
677  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
678       ++PI) {
679    AvailablePredsTy::iterator I =
680      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
681                       std::make_pair(*PI, (Value*)0));
682
683    assert(I != AvailablePreds.end() && I->first == *PI &&
684           "Didn't find entry for predecessor!");
685
686    PN->addIncoming(I->second, I->first);
687  }
688
689  //cerr << "PRE: " << *LI << *PN << "\n";
690
691  LI->replaceAllUsesWith(PN);
692  LI->eraseFromParent();
693
694  return true;
695}
696
697
698/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
699/// the current block.  See if there are any simplifications we can do based on
700/// inputs to the phi node.
701///
702bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
703  // See if the phi node has any constant integer or undef values.  If so, we
704  // can determine where the corresponding predecessor will branch.
705  Constant *PredCst = 0;
706  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
707    Value *PredVal = PN->getIncomingValue(i);
708    if (ConstantInt *CI = dyn_cast<ConstantInt>(PredVal)) {
709      PredCst = CI;
710      break;
711    }
712
713    if (UndefValue *UV = dyn_cast<UndefValue>(PredVal)) {
714      PredCst = UV;
715      break;
716    }
717  }
718
719  // If no incoming value has a constant, we don't know the destination of any
720  // predecessors.
721  if (PredCst == 0) {
722    return false;
723  }
724
725  // See if the cost of duplicating this block is low enough.
726  BasicBlock *BB = PN->getParent();
727  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
728  if (JumpThreadCost > Threshold) {
729    DEBUG(errs() << "  Not threading BB '" << BB->getName()
730          << "' - Cost is too high: " << JumpThreadCost << "\n");
731    return false;
732  }
733
734  // If so, we can actually do this threading.  Merge any common predecessors
735  // that will act the same.
736  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
737
738
739  TerminatorInst *BBTerm = BB->getTerminator();
740
741  // Next, figure out which successor we are threading to.
742  BasicBlock *SuccBB;
743  if (isa<UndefValue>(PredCst)) {
744    // If the branch was going off an undef from PredBB, pick an arbitrary dest.
745    SuccBB = BBTerm->getSuccessor(GetBestDestForJumpOnUndef(BB));
746  } else if (BranchInst *BI = dyn_cast<BranchInst>(BBTerm))
747    SuccBB = BI->getSuccessor(cast<ConstantInt>(PredCst)->isZero());
748  else {
749    SwitchInst *SI = cast<SwitchInst>(BBTerm);
750    SuccBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(PredCst)));
751  }
752
753  // Ok, try to thread it!
754  return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
755}
756
757/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
758/// whose condition is an AND/OR where one side is PN.  If PN has constant
759/// operands that permit us to evaluate the condition for some operand, thread
760/// through the block.  For example with:
761///   br (and X, phi(Y, Z, false))
762/// the predecessor corresponding to the 'false' will always jump to the false
763/// destination of the branch.
764///
765bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
766                                           bool isAnd) {
767  // If this is a binary operator tree of the same AND/OR opcode, check the
768  // LHS/RHS.
769  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
770    if ((isAnd && BO->getOpcode() == Instruction::And) ||
771        (!isAnd && BO->getOpcode() == Instruction::Or)) {
772      if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
773        return true;
774      if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
775        return true;
776    }
777
778  // If this isn't a PHI node, we can't handle it.
779  PHINode *PN = dyn_cast<PHINode>(V);
780  if (!PN || PN->getParent() != BB) return false;
781
782  // We can only do the simplification for phi nodes of 'false' with AND or
783  // 'true' with OR.  See if we have any entries in the phi for this.
784  unsigned PredNo = ~0U;
785  ConstantInt *PredCst = ConstantInt::get(Type::getInt1Ty(BB->getContext()),
786                                          !isAnd);
787  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
788    if (PN->getIncomingValue(i) == PredCst) {
789      PredNo = i;
790      break;
791    }
792  }
793
794  // If no match, bail out.
795  if (PredNo == ~0U)
796    return false;
797
798  // See if the cost of duplicating this block is low enough.
799  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
800  if (JumpThreadCost > Threshold) {
801    DEBUG(errs() << "  Not threading BB '" << BB->getName()
802          << "' - Cost is too high: " << JumpThreadCost << "\n");
803    return false;
804  }
805
806  // If so, we can actually do this threading.  Merge any common predecessors
807  // that will act the same.
808  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
809
810  // Next, figure out which successor we are threading to.  If this was an AND,
811  // the constant must be FALSE, and we must be targeting the 'false' block.
812  // If this is an OR, the constant must be TRUE, and we must be targeting the
813  // 'true' block.
814  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
815
816  // Ok, try to thread it!
817  return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
818}
819
820/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
821/// hand sides of the compare instruction, try to determine the result. If the
822/// result can not be determined, a null pointer is returned.
823static Constant *GetResultOfComparison(CmpInst::Predicate pred,
824                                       Value *LHS, Value *RHS,
825                                       LLVMContext &Context) {
826  if (Constant *CLHS = dyn_cast<Constant>(LHS))
827    if (Constant *CRHS = dyn_cast<Constant>(RHS))
828      return ConstantExpr::getCompare(pred, CLHS, CRHS);
829
830  if (LHS == RHS)
831    if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
832      return ICmpInst::isTrueWhenEqual(pred) ?
833                 ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context);
834
835  return 0;
836}
837
838/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
839/// node and a value.  If we can identify when the comparison is true between
840/// the phi inputs and the value, we can fold the compare for that edge and
841/// thread through it.
842bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
843  PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
844  Value *RHS = Cmp->getOperand(1);
845
846  // If the phi isn't in the current block, an incoming edge to this block
847  // doesn't control the destination.
848  if (PN->getParent() != BB)
849    return false;
850
851  // We can do this simplification if any comparisons fold to true or false.
852  // See if any do.
853  Value *PredVal = 0;
854  bool TrueDirection = false;
855  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
856    PredVal = PN->getIncomingValue(i);
857
858    Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
859                                          RHS, Cmp->getContext());
860    if (!Res) {
861      PredVal = 0;
862      continue;
863    }
864
865    // If this folded to a constant expr, we can't do anything.
866    if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
867      TrueDirection = ResC->getZExtValue();
868      break;
869    }
870    // If this folded to undef, just go the false way.
871    if (isa<UndefValue>(Res)) {
872      TrueDirection = false;
873      break;
874    }
875
876    // Otherwise, we can't fold this input.
877    PredVal = 0;
878  }
879
880  // If no match, bail out.
881  if (PredVal == 0)
882    return false;
883
884  // See if the cost of duplicating this block is low enough.
885  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
886  if (JumpThreadCost > Threshold) {
887    DEBUG(errs() << "  Not threading BB '" << BB->getName()
888          << "' - Cost is too high: " << JumpThreadCost << "\n");
889    return false;
890  }
891
892  // If so, we can actually do this threading.  Merge any common predecessors
893  // that will act the same.
894  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
895
896  // Next, get our successor.
897  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
898
899  // Ok, try to thread it!
900  return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
901}
902
903
904/// ThreadEdge - We have decided that it is safe and profitable to thread an
905/// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
906/// change.
907bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
908                               BasicBlock *SuccBB, unsigned JumpThreadCost) {
909
910  // If threading to the same block as we come from, we would infinite loop.
911  if (SuccBB == BB) {
912    DEBUG(errs() << "  Not threading across BB '" << BB->getName()
913          << "' - would thread to self!\n");
914    return false;
915  }
916
917  // If threading this would thread across a loop header, don't thread the edge.
918  // See the comments above FindLoopHeaders for justifications and caveats.
919  if (LoopHeaders.count(BB)) {
920    DEBUG(errs() << "  Not threading from '" << PredBB->getName()
921          << "' across loop header BB '" << BB->getName()
922          << "' to dest BB '" << SuccBB->getName()
923          << "' - it might create an irreducible loop!\n");
924    return false;
925  }
926
927  // And finally, do it!
928  DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
929        << SuccBB->getName() << "' with cost: " << JumpThreadCost
930        << ", across block:\n    "
931        << *BB << "\n");
932
933  // We are going to have to map operands from the original BB block to the new
934  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
935  // account for entry from PredBB.
936  DenseMap<Instruction*, Value*> ValueMapping;
937
938  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
939                                         BB->getName()+".thread",
940                                         BB->getParent(), BB);
941  NewBB->moveAfter(PredBB);
942
943  BasicBlock::iterator BI = BB->begin();
944  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
945    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
946
947  // Clone the non-phi instructions of BB into NewBB, keeping track of the
948  // mapping and using it to remap operands in the cloned instructions.
949  for (; !isa<TerminatorInst>(BI); ++BI) {
950    Instruction *New = BI->clone();
951    New->setName(BI->getName());
952    NewBB->getInstList().push_back(New);
953    ValueMapping[BI] = New;
954
955    // Remap operands to patch up intra-block references.
956    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
957      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
958        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
959        if (I != ValueMapping.end())
960          New->setOperand(i, I->second);
961      }
962  }
963
964  // We didn't copy the terminator from BB over to NewBB, because there is now
965  // an unconditional jump to SuccBB.  Insert the unconditional jump.
966  BranchInst::Create(SuccBB, NewBB);
967
968  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
969  // PHI nodes for NewBB now.
970  for (BasicBlock::iterator PNI = SuccBB->begin();
971       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
972    // Ok, we have a PHI node.  Figure out what the incoming value was for the
973    // DestBlock.
974    Value *IV = PN->getIncomingValueForBlock(BB);
975
976    // Remap the value if necessary.
977    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
978      DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
979      if (I != ValueMapping.end())
980        IV = I->second;
981    }
982    PN->addIncoming(IV, NewBB);
983  }
984
985  // If there were values defined in BB that are used outside the block, then we
986  // now have to update all uses of the value to use either the original value,
987  // the cloned value, or some PHI derived value.  This can require arbitrary
988  // PHI insertion, of which we are prepared to do, clean these up now.
989  SSAUpdater SSAUpdate;
990  SmallVector<Use*, 16> UsesToRename;
991  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
992    // Scan all uses of this instruction to see if it is used outside of its
993    // block, and if so, record them in UsesToRename.
994    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
995         ++UI) {
996      Instruction *User = cast<Instruction>(*UI);
997      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
998        if (UserPN->getIncomingBlock(UI) == BB)
999          continue;
1000      } else if (User->getParent() == BB)
1001        continue;
1002
1003      UsesToRename.push_back(&UI.getUse());
1004    }
1005
1006    // If there are no uses outside the block, we're done with this instruction.
1007    if (UsesToRename.empty())
1008      continue;
1009
1010    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1011
1012    // We found a use of I outside of BB.  Rename all uses of I that are outside
1013    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1014    // with the two values we know.
1015    SSAUpdate.Initialize(I);
1016    SSAUpdate.AddAvailableValue(BB, I);
1017    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1018
1019    while (!UsesToRename.empty())
1020      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1021    DEBUG(errs() << "\n");
1022  }
1023
1024
1025  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1026  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1027  // us to simplify any PHI nodes in BB.
1028  TerminatorInst *PredTerm = PredBB->getTerminator();
1029  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1030    if (PredTerm->getSuccessor(i) == BB) {
1031      BB->removePredecessor(PredBB);
1032      PredTerm->setSuccessor(i, NewBB);
1033    }
1034
1035  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1036  // over the new instructions and zap any that are constants or dead.  This
1037  // frequently happens because of phi translation.
1038  BI = NewBB->begin();
1039  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1040    Instruction *Inst = BI++;
1041    if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
1042      Inst->replaceAllUsesWith(C);
1043      Inst->eraseFromParent();
1044      continue;
1045    }
1046
1047    RecursivelyDeleteTriviallyDeadInstructions(Inst);
1048  }
1049
1050  // Threaded an edge!
1051  ++NumThreads;
1052  return true;
1053}
1054