JumpThreading.cpp revision e34537856a544c83513e390ac9552a8bc3823346
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Transforms/Utils/Local.h"
22#include "llvm/Transforms/Utils/SSAUpdater.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(NumThreads, "Number of jumps threaded");
35STATISTIC(NumFolds,   "Number of terminators folded");
36STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
37
38static cl::opt<unsigned>
39Threshold("jump-threading-threshold",
40          cl::desc("Max block size to duplicate for jump threading"),
41          cl::init(6), cl::Hidden);
42
43namespace {
44  /// This pass performs 'jump threading', which looks at blocks that have
45  /// multiple predecessors and multiple successors.  If one or more of the
46  /// predecessors of the block can be proven to always jump to one of the
47  /// successors, we forward the edge from the predecessor to the successor by
48  /// duplicating the contents of this block.
49  ///
50  /// An example of when this can occur is code like this:
51  ///
52  ///   if () { ...
53  ///     X = 4;
54  ///   }
55  ///   if (X < 3) {
56  ///
57  /// In this case, the unconditional branch at the end of the first if can be
58  /// revectored to the false side of the second if.
59  ///
60  class JumpThreading : public FunctionPass {
61    TargetData *TD;
62#ifdef NDEBUG
63    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64#else
65    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66#endif
67  public:
68    static char ID; // Pass identification
69    JumpThreading() : FunctionPass(&ID) {}
70
71    bool runOnFunction(Function &F);
72    void FindLoopHeaders(Function &F);
73
74    bool ProcessBlock(BasicBlock *BB);
75    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
76                    BasicBlock *SuccBB);
77    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
78                                          BasicBlock *PredBB);
79
80    typedef SmallVectorImpl<std::pair<ConstantInt*,
81                                      BasicBlock*> > PredValueInfo;
82
83    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
84                                         PredValueInfo &Result);
85    bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
86
87
88    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
89    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
90
91    bool ProcessJumpOnPHI(PHINode *PN);
92
93    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
94  };
95}
96
97char JumpThreading::ID = 0;
98static RegisterPass<JumpThreading>
99X("jump-threading", "Jump Threading");
100
101// Public interface to the Jump Threading pass
102FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
103
104/// runOnFunction - Top level algorithm.
105///
106bool JumpThreading::runOnFunction(Function &F) {
107  DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
108  TD = getAnalysisIfAvailable<TargetData>();
109
110  FindLoopHeaders(F);
111
112  bool AnotherIteration = true, EverChanged = false;
113  while (AnotherIteration) {
114    AnotherIteration = false;
115    bool Changed = false;
116    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
117      BasicBlock *BB = I;
118      while (ProcessBlock(BB))
119        Changed = true;
120
121      ++I;
122
123      // If the block is trivially dead, zap it.  This eliminates the successor
124      // edges which simplifies the CFG.
125      if (pred_begin(BB) == pred_end(BB) &&
126          BB != &BB->getParent()->getEntryBlock()) {
127        DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
128              << "' with terminator: " << *BB->getTerminator() << '\n');
129        LoopHeaders.erase(BB);
130        DeleteDeadBlock(BB);
131        Changed = true;
132      }
133    }
134    AnotherIteration = Changed;
135    EverChanged |= Changed;
136  }
137
138  LoopHeaders.clear();
139  return EverChanged;
140}
141
142/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
143/// thread across it.
144static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
145  /// Ignore PHI nodes, these will be flattened when duplication happens.
146  BasicBlock::const_iterator I = BB->getFirstNonPHI();
147
148  // Sum up the cost of each instruction until we get to the terminator.  Don't
149  // include the terminator because the copy won't include it.
150  unsigned Size = 0;
151  for (; !isa<TerminatorInst>(I); ++I) {
152    // Debugger intrinsics don't incur code size.
153    if (isa<DbgInfoIntrinsic>(I)) continue;
154
155    // If this is a pointer->pointer bitcast, it is free.
156    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
157      continue;
158
159    // All other instructions count for at least one unit.
160    ++Size;
161
162    // Calls are more expensive.  If they are non-intrinsic calls, we model them
163    // as having cost of 4.  If they are a non-vector intrinsic, we model them
164    // as having cost of 2 total, and if they are a vector intrinsic, we model
165    // them as having cost 1.
166    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
167      if (!isa<IntrinsicInst>(CI))
168        Size += 3;
169      else if (!isa<VectorType>(CI->getType()))
170        Size += 1;
171    }
172  }
173
174  // Threading through a switch statement is particularly profitable.  If this
175  // block ends in a switch, decrease its cost to make it more likely to happen.
176  if (isa<SwitchInst>(I))
177    Size = Size > 6 ? Size-6 : 0;
178
179  return Size;
180}
181
182
183//===----------------------------------------------------------------------===//
184
185
186/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
187/// method is called when we're about to delete Pred as a predecessor of BB.  If
188/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
189///
190/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
191/// nodes that collapse into identity values.  For example, if we have:
192///   x = phi(1, 0, 0, 0)
193///   y = and x, z
194///
195/// .. and delete the predecessor corresponding to the '1', this will attempt to
196/// recursively fold the and to 0.
197static void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
198                                         TargetData *TD) {
199  // This only adjusts blocks with PHI nodes.
200  if (!isa<PHINode>(BB->begin()))
201    return;
202
203  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
204  // them down.  This will leave us with single entry phi nodes and other phis
205  // that can be removed.
206  BB->removePredecessor(Pred, true);
207
208  WeakVH PhiIt = &BB->front();
209  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
210    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
211
212    Value *PNV = PN->hasConstantValue();
213    if (PNV == 0) continue;
214
215    assert(PNV != PN && "hasConstantValue broken");
216
217    // If we're able to simplify the phi to a constant, simplify it into its
218    // uses.
219    while (!PN->use_empty()) {
220      // Update the instruction to use the new value.
221      Use &U = PN->use_begin().getUse();
222      Instruction *User = cast<Instruction>(U.getUser());
223      U = PNV;
224
225      // See if we can simplify it.
226      if (Value *V = SimplifyInstruction(User, TD)) {
227        User->replaceAllUsesWith(V);
228        User->eraseFromParent();
229      }
230    }
231
232    PN->replaceAllUsesWith(PNV);
233    PN->eraseFromParent();
234
235    // If recursive simplification ended up deleting the next PHI node we would
236    // iterate to, then our iterator is invalid, restart scanning from the top
237    // of the block.
238    if (PhiIt == 0) PhiIt = &BB->front();
239  }
240}
241
242//===----------------------------------------------------------------------===//
243
244
245/// FindLoopHeaders - We do not want jump threading to turn proper loop
246/// structures into irreducible loops.  Doing this breaks up the loop nesting
247/// hierarchy and pessimizes later transformations.  To prevent this from
248/// happening, we first have to find the loop headers.  Here we approximate this
249/// by finding targets of backedges in the CFG.
250///
251/// Note that there definitely are cases when we want to allow threading of
252/// edges across a loop header.  For example, threading a jump from outside the
253/// loop (the preheader) to an exit block of the loop is definitely profitable.
254/// It is also almost always profitable to thread backedges from within the loop
255/// to exit blocks, and is often profitable to thread backedges to other blocks
256/// within the loop (forming a nested loop).  This simple analysis is not rich
257/// enough to track all of these properties and keep it up-to-date as the CFG
258/// mutates, so we don't allow any of these transformations.
259///
260void JumpThreading::FindLoopHeaders(Function &F) {
261  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
262  FindFunctionBackedges(F, Edges);
263
264  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
265    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
266}
267
268/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
269/// if we can infer that the value is a known ConstantInt in any of our
270/// predecessors.  If so, return the known list of value and pred BB in the
271/// result vector.  If a value is known to be undef, it is returned as null.
272///
273/// The BB basic block is known to start with a PHI node.
274///
275/// This returns true if there were any known values.
276///
277///
278/// TODO: Per PR2563, we could infer value range information about a predecessor
279/// based on its terminator.
280bool JumpThreading::
281ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
282  PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
283
284  // If V is a constantint, then it is known in all predecessors.
285  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
286    ConstantInt *CI = dyn_cast<ConstantInt>(V);
287    Result.resize(TheFirstPHI->getNumIncomingValues());
288    for (unsigned i = 0, e = Result.size(); i != e; ++i)
289      Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
290    return true;
291  }
292
293  // If V is a non-instruction value, or an instruction in a different block,
294  // then it can't be derived from a PHI.
295  Instruction *I = dyn_cast<Instruction>(V);
296  if (I == 0 || I->getParent() != BB)
297    return false;
298
299  /// If I is a PHI node, then we know the incoming values for any constants.
300  if (PHINode *PN = dyn_cast<PHINode>(I)) {
301    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
302      Value *InVal = PN->getIncomingValue(i);
303      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
304        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
305        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
306      }
307    }
308    return !Result.empty();
309  }
310
311  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
312
313  // Handle some boolean conditions.
314  if (I->getType()->getPrimitiveSizeInBits() == 1) {
315    // X | true -> true
316    // X & false -> false
317    if (I->getOpcode() == Instruction::Or ||
318        I->getOpcode() == Instruction::And) {
319      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
320      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
321
322      if (LHSVals.empty() && RHSVals.empty())
323        return false;
324
325      ConstantInt *InterestingVal;
326      if (I->getOpcode() == Instruction::Or)
327        InterestingVal = ConstantInt::getTrue(I->getContext());
328      else
329        InterestingVal = ConstantInt::getFalse(I->getContext());
330
331      // Scan for the sentinel.
332      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
333        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
334          Result.push_back(LHSVals[i]);
335      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
336        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
337          Result.push_back(RHSVals[i]);
338      return !Result.empty();
339    }
340
341    // TODO: Should handle the NOT form of XOR.
342
343  }
344
345  // Handle compare with phi operand, where the PHI is defined in this block.
346  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
347    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
348    if (PN && PN->getParent() == BB) {
349      // We can do this simplification if any comparisons fold to true or false.
350      // See if any do.
351      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
352        BasicBlock *PredBB = PN->getIncomingBlock(i);
353        Value *LHS = PN->getIncomingValue(i);
354        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
355
356        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS);
357        if (Res == 0) continue;
358
359        if (isa<UndefValue>(Res))
360          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
361        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
362          Result.push_back(std::make_pair(CI, PredBB));
363      }
364
365      return !Result.empty();
366    }
367
368    // TODO: We could also recurse to see if we can determine constants another
369    // way.
370  }
371  return false;
372}
373
374
375
376/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
377/// in an undefined jump, decide which block is best to revector to.
378///
379/// Since we can pick an arbitrary destination, we pick the successor with the
380/// fewest predecessors.  This should reduce the in-degree of the others.
381///
382static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
383  TerminatorInst *BBTerm = BB->getTerminator();
384  unsigned MinSucc = 0;
385  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
386  // Compute the successor with the minimum number of predecessors.
387  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
388  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
389    TestBB = BBTerm->getSuccessor(i);
390    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
391    if (NumPreds < MinNumPreds)
392      MinSucc = i;
393  }
394
395  return MinSucc;
396}
397
398/// ProcessBlock - If there are any predecessors whose control can be threaded
399/// through to a successor, transform them now.
400bool JumpThreading::ProcessBlock(BasicBlock *BB) {
401  // If this block has a single predecessor, and if that pred has a single
402  // successor, merge the blocks.  This encourages recursive jump threading
403  // because now the condition in this block can be threaded through
404  // predecessors of our predecessor block.
405  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
406    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
407        SinglePred != BB) {
408      // If SinglePred was a loop header, BB becomes one.
409      if (LoopHeaders.erase(SinglePred))
410        LoopHeaders.insert(BB);
411
412      // Remember if SinglePred was the entry block of the function.  If so, we
413      // will need to move BB back to the entry position.
414      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
415      MergeBasicBlockIntoOnlyPred(BB);
416
417      if (isEntry && BB != &BB->getParent()->getEntryBlock())
418        BB->moveBefore(&BB->getParent()->getEntryBlock());
419      return true;
420    }
421  }
422
423  // Look to see if the terminator is a branch of switch, if not we can't thread
424  // it.
425  Value *Condition;
426  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
427    // Can't thread an unconditional jump.
428    if (BI->isUnconditional()) return false;
429    Condition = BI->getCondition();
430  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
431    Condition = SI->getCondition();
432  else
433    return false; // Must be an invoke.
434
435  // If the terminator of this block is branching on a constant, simplify the
436  // terminator to an unconditional branch.  This can occur due to threading in
437  // other blocks.
438  if (isa<ConstantInt>(Condition)) {
439    DEBUG(errs() << "  In block '" << BB->getName()
440          << "' folding terminator: " << *BB->getTerminator() << '\n');
441    ++NumFolds;
442    ConstantFoldTerminator(BB);
443    return true;
444  }
445
446  // If the terminator is branching on an undef, we can pick any of the
447  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
448  if (isa<UndefValue>(Condition)) {
449    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
450
451    // Fold the branch/switch.
452    TerminatorInst *BBTerm = BB->getTerminator();
453    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
454      if (i == BestSucc) continue;
455      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
456    }
457
458    DEBUG(errs() << "  In block '" << BB->getName()
459          << "' folding undef terminator: " << *BBTerm << '\n');
460    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
461    BBTerm->eraseFromParent();
462    return true;
463  }
464
465  Instruction *CondInst = dyn_cast<Instruction>(Condition);
466
467  // If the condition is an instruction defined in another block, see if a
468  // predecessor has the same condition:
469  //     br COND, BBX, BBY
470  //  BBX:
471  //     br COND, BBZ, BBW
472  if (!Condition->hasOneUse() && // Multiple uses.
473      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
474    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
475    if (isa<BranchInst>(BB->getTerminator())) {
476      for (; PI != E; ++PI)
477        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
478          if (PBI->isConditional() && PBI->getCondition() == Condition &&
479              ProcessBranchOnDuplicateCond(*PI, BB))
480            return true;
481    } else {
482      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
483      for (; PI != E; ++PI)
484        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
485          if (PSI->getCondition() == Condition &&
486              ProcessSwitchOnDuplicateCond(*PI, BB))
487            return true;
488    }
489  }
490
491  // All the rest of our checks depend on the condition being an instruction.
492  if (CondInst == 0)
493    return false;
494
495  // See if this is a phi node in the current block.
496  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
497    if (PN->getParent() == BB)
498      return ProcessJumpOnPHI(PN);
499
500  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
501    if (!isa<PHINode>(CondCmp->getOperand(0)) ||
502        cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
503      // If we have a comparison, loop over the predecessors to see if there is
504      // a condition with a lexically identical value.
505      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
506      for (; PI != E; ++PI)
507        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
508          if (PBI->isConditional() && *PI != BB) {
509            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
510              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
511                  CI->getOperand(1) == CondCmp->getOperand(1) &&
512                  CI->getPredicate() == CondCmp->getPredicate()) {
513                // TODO: Could handle things like (x != 4) --> (x == 17)
514                if (ProcessBranchOnDuplicateCond(*PI, BB))
515                  return true;
516              }
517            }
518          }
519    }
520  }
521
522  // Check for some cases that are worth simplifying.  Right now we want to look
523  // for loads that are used by a switch or by the condition for the branch.  If
524  // we see one, check to see if it's partially redundant.  If so, insert a PHI
525  // which can then be used to thread the values.
526  //
527  // This is particularly important because reg2mem inserts loads and stores all
528  // over the place, and this blocks jump threading if we don't zap them.
529  Value *SimplifyValue = CondInst;
530  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
531    if (isa<Constant>(CondCmp->getOperand(1)))
532      SimplifyValue = CondCmp->getOperand(0);
533
534  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
535    if (SimplifyPartiallyRedundantLoad(LI))
536      return true;
537
538
539  // Handle a variety of cases where we are branching on something derived from
540  // a PHI node in the current block.  If we can prove that any predecessors
541  // compute a predictable value based on a PHI node, thread those predecessors.
542  //
543  // We only bother doing this if the current block has a PHI node and if the
544  // conditional instruction lives in the current block.  If either condition
545  // fails, this won't be a computable value anyway.
546  if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
547    if (ProcessThreadableEdges(CondInst, BB))
548      return true;
549
550
551  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
552  // "(X == 4)" thread through this block.
553
554  return false;
555}
556
557/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
558/// block that jump on exactly the same condition.  This means that we almost
559/// always know the direction of the edge in the DESTBB:
560///  PREDBB:
561///     br COND, DESTBB, BBY
562///  DESTBB:
563///     br COND, BBZ, BBW
564///
565/// If DESTBB has multiple predecessors, we can't just constant fold the branch
566/// in DESTBB, we have to thread over it.
567bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
568                                                 BasicBlock *BB) {
569  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
570
571  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
572  // fold the branch to an unconditional one, which allows other recursive
573  // simplifications.
574  bool BranchDir;
575  if (PredBI->getSuccessor(1) != BB)
576    BranchDir = true;
577  else if (PredBI->getSuccessor(0) != BB)
578    BranchDir = false;
579  else {
580    DEBUG(errs() << "  In block '" << PredBB->getName()
581          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
582    ++NumFolds;
583    ConstantFoldTerminator(PredBB);
584    return true;
585  }
586
587  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
588
589  // If the dest block has one predecessor, just fix the branch condition to a
590  // constant and fold it.
591  if (BB->getSinglePredecessor()) {
592    DEBUG(errs() << "  In block '" << BB->getName()
593          << "' folding condition to '" << BranchDir << "': "
594          << *BB->getTerminator() << '\n');
595    ++NumFolds;
596    Value *OldCond = DestBI->getCondition();
597    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
598                                          BranchDir));
599    ConstantFoldTerminator(BB);
600    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
601    return true;
602  }
603
604
605  // Next, figure out which successor we are threading to.
606  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
607
608  SmallVector<BasicBlock*, 2> Preds;
609  Preds.push_back(PredBB);
610
611  // Ok, try to thread it!
612  return ThreadEdge(BB, Preds, SuccBB);
613}
614
615/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
616/// block that switch on exactly the same condition.  This means that we almost
617/// always know the direction of the edge in the DESTBB:
618///  PREDBB:
619///     switch COND [... DESTBB, BBY ... ]
620///  DESTBB:
621///     switch COND [... BBZ, BBW ]
622///
623/// Optimizing switches like this is very important, because simplifycfg builds
624/// switches out of repeated 'if' conditions.
625bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
626                                                 BasicBlock *DestBB) {
627  // Can't thread edge to self.
628  if (PredBB == DestBB)
629    return false;
630
631  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
632  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
633
634  // There are a variety of optimizations that we can potentially do on these
635  // blocks: we order them from most to least preferable.
636
637  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
638  // directly to their destination.  This does not introduce *any* code size
639  // growth.  Skip debug info first.
640  BasicBlock::iterator BBI = DestBB->begin();
641  while (isa<DbgInfoIntrinsic>(BBI))
642    BBI++;
643
644  // FIXME: Thread if it just contains a PHI.
645  if (isa<SwitchInst>(BBI)) {
646    bool MadeChange = false;
647    // Ignore the default edge for now.
648    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
649      ConstantInt *DestVal = DestSI->getCaseValue(i);
650      BasicBlock *DestSucc = DestSI->getSuccessor(i);
651
652      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
653      // PredSI has an explicit case for it.  If so, forward.  If it is covered
654      // by the default case, we can't update PredSI.
655      unsigned PredCase = PredSI->findCaseValue(DestVal);
656      if (PredCase == 0) continue;
657
658      // If PredSI doesn't go to DestBB on this value, then it won't reach the
659      // case on this condition.
660      if (PredSI->getSuccessor(PredCase) != DestBB &&
661          DestSI->getSuccessor(i) != DestBB)
662        continue;
663
664      // Otherwise, we're safe to make the change.  Make sure that the edge from
665      // DestSI to DestSucc is not critical and has no PHI nodes.
666      DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
667      DEBUG(errs() << "THROUGH: " << *DestSI);
668
669      // If the destination has PHI nodes, just split the edge for updating
670      // simplicity.
671      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
672        SplitCriticalEdge(DestSI, i, this);
673        DestSucc = DestSI->getSuccessor(i);
674      }
675      FoldSingleEntryPHINodes(DestSucc);
676      PredSI->setSuccessor(PredCase, DestSucc);
677      MadeChange = true;
678    }
679
680    if (MadeChange)
681      return true;
682  }
683
684  return false;
685}
686
687
688/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
689/// load instruction, eliminate it by replacing it with a PHI node.  This is an
690/// important optimization that encourages jump threading, and needs to be run
691/// interlaced with other jump threading tasks.
692bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
693  // Don't hack volatile loads.
694  if (LI->isVolatile()) return false;
695
696  // If the load is defined in a block with exactly one predecessor, it can't be
697  // partially redundant.
698  BasicBlock *LoadBB = LI->getParent();
699  if (LoadBB->getSinglePredecessor())
700    return false;
701
702  Value *LoadedPtr = LI->getOperand(0);
703
704  // If the loaded operand is defined in the LoadBB, it can't be available.
705  // FIXME: Could do PHI translation, that would be fun :)
706  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
707    if (PtrOp->getParent() == LoadBB)
708      return false;
709
710  // Scan a few instructions up from the load, to see if it is obviously live at
711  // the entry to its block.
712  BasicBlock::iterator BBIt = LI;
713
714  if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
715                                                     BBIt, 6)) {
716    // If the value if the load is locally available within the block, just use
717    // it.  This frequently occurs for reg2mem'd allocas.
718    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
719
720    // If the returned value is the load itself, replace with an undef. This can
721    // only happen in dead loops.
722    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
723    LI->replaceAllUsesWith(AvailableVal);
724    LI->eraseFromParent();
725    return true;
726  }
727
728  // Otherwise, if we scanned the whole block and got to the top of the block,
729  // we know the block is locally transparent to the load.  If not, something
730  // might clobber its value.
731  if (BBIt != LoadBB->begin())
732    return false;
733
734
735  SmallPtrSet<BasicBlock*, 8> PredsScanned;
736  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
737  AvailablePredsTy AvailablePreds;
738  BasicBlock *OneUnavailablePred = 0;
739
740  // If we got here, the loaded value is transparent through to the start of the
741  // block.  Check to see if it is available in any of the predecessor blocks.
742  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
743       PI != PE; ++PI) {
744    BasicBlock *PredBB = *PI;
745
746    // If we already scanned this predecessor, skip it.
747    if (!PredsScanned.insert(PredBB))
748      continue;
749
750    // Scan the predecessor to see if the value is available in the pred.
751    BBIt = PredBB->end();
752    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
753    if (!PredAvailable) {
754      OneUnavailablePred = PredBB;
755      continue;
756    }
757
758    // If so, this load is partially redundant.  Remember this info so that we
759    // can create a PHI node.
760    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
761  }
762
763  // If the loaded value isn't available in any predecessor, it isn't partially
764  // redundant.
765  if (AvailablePreds.empty()) return false;
766
767  // Okay, the loaded value is available in at least one (and maybe all!)
768  // predecessors.  If the value is unavailable in more than one unique
769  // predecessor, we want to insert a merge block for those common predecessors.
770  // This ensures that we only have to insert one reload, thus not increasing
771  // code size.
772  BasicBlock *UnavailablePred = 0;
773
774  // If there is exactly one predecessor where the value is unavailable, the
775  // already computed 'OneUnavailablePred' block is it.  If it ends in an
776  // unconditional branch, we know that it isn't a critical edge.
777  if (PredsScanned.size() == AvailablePreds.size()+1 &&
778      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
779    UnavailablePred = OneUnavailablePred;
780  } else if (PredsScanned.size() != AvailablePreds.size()) {
781    // Otherwise, we had multiple unavailable predecessors or we had a critical
782    // edge from the one.
783    SmallVector<BasicBlock*, 8> PredsToSplit;
784    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
785
786    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
787      AvailablePredSet.insert(AvailablePreds[i].first);
788
789    // Add all the unavailable predecessors to the PredsToSplit list.
790    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
791         PI != PE; ++PI)
792      if (!AvailablePredSet.count(*PI))
793        PredsToSplit.push_back(*PI);
794
795    // Split them out to their own block.
796    UnavailablePred =
797      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
798                             "thread-split", this);
799  }
800
801  // If the value isn't available in all predecessors, then there will be
802  // exactly one where it isn't available.  Insert a load on that edge and add
803  // it to the AvailablePreds list.
804  if (UnavailablePred) {
805    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
806           "Can't handle critical edge here!");
807    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
808                                 UnavailablePred->getTerminator());
809    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
810  }
811
812  // Now we know that each predecessor of this block has a value in
813  // AvailablePreds, sort them for efficient access as we're walking the preds.
814  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
815
816  // Create a PHI node at the start of the block for the PRE'd load value.
817  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
818  PN->takeName(LI);
819
820  // Insert new entries into the PHI for each predecessor.  A single block may
821  // have multiple entries here.
822  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
823       ++PI) {
824    AvailablePredsTy::iterator I =
825      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
826                       std::make_pair(*PI, (Value*)0));
827
828    assert(I != AvailablePreds.end() && I->first == *PI &&
829           "Didn't find entry for predecessor!");
830
831    PN->addIncoming(I->second, I->first);
832  }
833
834  //cerr << "PRE: " << *LI << *PN << "\n";
835
836  LI->replaceAllUsesWith(PN);
837  LI->eraseFromParent();
838
839  return true;
840}
841
842/// FindMostPopularDest - The specified list contains multiple possible
843/// threadable destinations.  Pick the one that occurs the most frequently in
844/// the list.
845static BasicBlock *
846FindMostPopularDest(BasicBlock *BB,
847                    const SmallVectorImpl<std::pair<BasicBlock*,
848                                  BasicBlock*> > &PredToDestList) {
849  assert(!PredToDestList.empty());
850
851  // Determine popularity.  If there are multiple possible destinations, we
852  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
853  // blocks with known and real destinations to threading undef.  We'll handle
854  // them later if interesting.
855  DenseMap<BasicBlock*, unsigned> DestPopularity;
856  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
857    if (PredToDestList[i].second)
858      DestPopularity[PredToDestList[i].second]++;
859
860  // Find the most popular dest.
861  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
862  BasicBlock *MostPopularDest = DPI->first;
863  unsigned Popularity = DPI->second;
864  SmallVector<BasicBlock*, 4> SamePopularity;
865
866  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
867    // If the popularity of this entry isn't higher than the popularity we've
868    // seen so far, ignore it.
869    if (DPI->second < Popularity)
870      ; // ignore.
871    else if (DPI->second == Popularity) {
872      // If it is the same as what we've seen so far, keep track of it.
873      SamePopularity.push_back(DPI->first);
874    } else {
875      // If it is more popular, remember it.
876      SamePopularity.clear();
877      MostPopularDest = DPI->first;
878      Popularity = DPI->second;
879    }
880  }
881
882  // Okay, now we know the most popular destination.  If there is more than
883  // destination, we need to determine one.  This is arbitrary, but we need
884  // to make a deterministic decision.  Pick the first one that appears in the
885  // successor list.
886  if (!SamePopularity.empty()) {
887    SamePopularity.push_back(MostPopularDest);
888    TerminatorInst *TI = BB->getTerminator();
889    for (unsigned i = 0; ; ++i) {
890      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
891
892      if (std::find(SamePopularity.begin(), SamePopularity.end(),
893                    TI->getSuccessor(i)) == SamePopularity.end())
894        continue;
895
896      MostPopularDest = TI->getSuccessor(i);
897      break;
898    }
899  }
900
901  // Okay, we have finally picked the most popular destination.
902  return MostPopularDest;
903}
904
905bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
906                                           BasicBlock *BB) {
907  // If threading this would thread across a loop header, don't even try to
908  // thread the edge.
909  if (LoopHeaders.count(BB))
910    return false;
911
912  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
913  if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
914    return false;
915  assert(!PredValues.empty() &&
916         "ComputeValueKnownInPredecessors returned true with no values");
917
918  DEBUG(errs() << "IN BB: " << *BB;
919        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
920          errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
921          if (PredValues[i].first)
922            errs() << *PredValues[i].first;
923          else
924            errs() << "UNDEF";
925          errs() << " for pred '" << PredValues[i].second->getName()
926          << "'.\n";
927        });
928
929  // Decide what we want to thread through.  Convert our list of known values to
930  // a list of known destinations for each pred.  This also discards duplicate
931  // predecessors and keeps track of the undefined inputs (which are represented
932  // as a null dest in the PredToDestList).
933  SmallPtrSet<BasicBlock*, 16> SeenPreds;
934  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
935
936  BasicBlock *OnlyDest = 0;
937  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
938
939  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
940    BasicBlock *Pred = PredValues[i].second;
941    if (!SeenPreds.insert(Pred))
942      continue;  // Duplicate predecessor entry.
943
944    // If the predecessor ends with an indirect goto, we can't change its
945    // destination.
946    if (isa<IndirectBrInst>(Pred->getTerminator()))
947      continue;
948
949    ConstantInt *Val = PredValues[i].first;
950
951    BasicBlock *DestBB;
952    if (Val == 0)      // Undef.
953      DestBB = 0;
954    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
955      DestBB = BI->getSuccessor(Val->isZero());
956    else {
957      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
958      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
959    }
960
961    // If we have exactly one destination, remember it for efficiency below.
962    if (i == 0)
963      OnlyDest = DestBB;
964    else if (OnlyDest != DestBB)
965      OnlyDest = MultipleDestSentinel;
966
967    PredToDestList.push_back(std::make_pair(Pred, DestBB));
968  }
969
970  // If all edges were unthreadable, we fail.
971  if (PredToDestList.empty())
972    return false;
973
974  // Determine which is the most common successor.  If we have many inputs and
975  // this block is a switch, we want to start by threading the batch that goes
976  // to the most popular destination first.  If we only know about one
977  // threadable destination (the common case) we can avoid this.
978  BasicBlock *MostPopularDest = OnlyDest;
979
980  if (MostPopularDest == MultipleDestSentinel)
981    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
982
983  // Now that we know what the most popular destination is, factor all
984  // predecessors that will jump to it into a single predecessor.
985  SmallVector<BasicBlock*, 16> PredsToFactor;
986  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
987    if (PredToDestList[i].second == MostPopularDest) {
988      BasicBlock *Pred = PredToDestList[i].first;
989
990      // This predecessor may be a switch or something else that has multiple
991      // edges to the block.  Factor each of these edges by listing them
992      // according to # occurrences in PredsToFactor.
993      TerminatorInst *PredTI = Pred->getTerminator();
994      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
995        if (PredTI->getSuccessor(i) == BB)
996          PredsToFactor.push_back(Pred);
997    }
998
999  // If the threadable edges are branching on an undefined value, we get to pick
1000  // the destination that these predecessors should get to.
1001  if (MostPopularDest == 0)
1002    MostPopularDest = BB->getTerminator()->
1003                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1004
1005  // Ok, try to thread it!
1006  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1007}
1008
1009/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
1010/// the current block.  See if there are any simplifications we can do based on
1011/// inputs to the phi node.
1012///
1013bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
1014  BasicBlock *BB = PN->getParent();
1015
1016  // If any of the predecessor blocks end in an unconditional branch, we can
1017  // *duplicate* the jump into that block in order to further encourage jump
1018  // threading and to eliminate cases where we have branch on a phi of an icmp
1019  // (branch on icmp is much better).
1020
1021  // We don't want to do this tranformation for switches, because we don't
1022  // really want to duplicate a switch.
1023  if (isa<SwitchInst>(BB->getTerminator()))
1024    return false;
1025
1026  // Look for unconditional branch predecessors.
1027  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1028    BasicBlock *PredBB = PN->getIncomingBlock(i);
1029    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1030      if (PredBr->isUnconditional() &&
1031          // Try to duplicate BB into PredBB.
1032          DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1033        return true;
1034  }
1035
1036  return false;
1037}
1038
1039
1040/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1041/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1042/// NewPred using the entries from OldPred (suitably mapped).
1043static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1044                                            BasicBlock *OldPred,
1045                                            BasicBlock *NewPred,
1046                                     DenseMap<Instruction*, Value*> &ValueMap) {
1047  for (BasicBlock::iterator PNI = PHIBB->begin();
1048       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1049    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1050    // DestBlock.
1051    Value *IV = PN->getIncomingValueForBlock(OldPred);
1052
1053    // Remap the value if necessary.
1054    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1055      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1056      if (I != ValueMap.end())
1057        IV = I->second;
1058    }
1059
1060    PN->addIncoming(IV, NewPred);
1061  }
1062}
1063
1064/// ThreadEdge - We have decided that it is safe and profitable to factor the
1065/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1066/// across BB.  Transform the IR to reflect this change.
1067bool JumpThreading::ThreadEdge(BasicBlock *BB,
1068                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1069                               BasicBlock *SuccBB) {
1070  // If threading to the same block as we come from, we would infinite loop.
1071  if (SuccBB == BB) {
1072    DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1073          << "' - would thread to self!\n");
1074    return false;
1075  }
1076
1077  // If threading this would thread across a loop header, don't thread the edge.
1078  // See the comments above FindLoopHeaders for justifications and caveats.
1079  if (LoopHeaders.count(BB)) {
1080    DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
1081          << "' to dest BB '" << SuccBB->getName()
1082          << "' - it might create an irreducible loop!\n");
1083    return false;
1084  }
1085
1086  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1087  if (JumpThreadCost > Threshold) {
1088    DEBUG(errs() << "  Not threading BB '" << BB->getName()
1089          << "' - Cost is too high: " << JumpThreadCost << "\n");
1090    return false;
1091  }
1092
1093  // And finally, do it!  Start by factoring the predecessors is needed.
1094  BasicBlock *PredBB;
1095  if (PredBBs.size() == 1)
1096    PredBB = PredBBs[0];
1097  else {
1098    DEBUG(errs() << "  Factoring out " << PredBBs.size()
1099          << " common predecessors.\n");
1100    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1101                                    ".thr_comm", this);
1102  }
1103
1104  // And finally, do it!
1105  DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1106        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1107        << ", across block:\n    "
1108        << *BB << "\n");
1109
1110  // We are going to have to map operands from the original BB block to the new
1111  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1112  // account for entry from PredBB.
1113  DenseMap<Instruction*, Value*> ValueMapping;
1114
1115  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1116                                         BB->getName()+".thread",
1117                                         BB->getParent(), BB);
1118  NewBB->moveAfter(PredBB);
1119
1120  BasicBlock::iterator BI = BB->begin();
1121  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1122    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1123
1124  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1125  // mapping and using it to remap operands in the cloned instructions.
1126  for (; !isa<TerminatorInst>(BI); ++BI) {
1127    Instruction *New = BI->clone();
1128    New->setName(BI->getName());
1129    NewBB->getInstList().push_back(New);
1130    ValueMapping[BI] = New;
1131
1132    // Remap operands to patch up intra-block references.
1133    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1134      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1135        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1136        if (I != ValueMapping.end())
1137          New->setOperand(i, I->second);
1138      }
1139  }
1140
1141  // We didn't copy the terminator from BB over to NewBB, because there is now
1142  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1143  BranchInst::Create(SuccBB, NewBB);
1144
1145  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1146  // PHI nodes for NewBB now.
1147  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1148
1149  // If there were values defined in BB that are used outside the block, then we
1150  // now have to update all uses of the value to use either the original value,
1151  // the cloned value, or some PHI derived value.  This can require arbitrary
1152  // PHI insertion, of which we are prepared to do, clean these up now.
1153  SSAUpdater SSAUpdate;
1154  SmallVector<Use*, 16> UsesToRename;
1155  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1156    // Scan all uses of this instruction to see if it is used outside of its
1157    // block, and if so, record them in UsesToRename.
1158    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1159         ++UI) {
1160      Instruction *User = cast<Instruction>(*UI);
1161      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1162        if (UserPN->getIncomingBlock(UI) == BB)
1163          continue;
1164      } else if (User->getParent() == BB)
1165        continue;
1166
1167      UsesToRename.push_back(&UI.getUse());
1168    }
1169
1170    // If there are no uses outside the block, we're done with this instruction.
1171    if (UsesToRename.empty())
1172      continue;
1173
1174    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1175
1176    // We found a use of I outside of BB.  Rename all uses of I that are outside
1177    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1178    // with the two values we know.
1179    SSAUpdate.Initialize(I);
1180    SSAUpdate.AddAvailableValue(BB, I);
1181    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1182
1183    while (!UsesToRename.empty())
1184      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1185    DEBUG(errs() << "\n");
1186  }
1187
1188
1189  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1190  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1191  // us to simplify any PHI nodes in BB.
1192  TerminatorInst *PredTerm = PredBB->getTerminator();
1193  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1194    if (PredTerm->getSuccessor(i) == BB) {
1195      RemovePredecessorAndSimplify(BB, PredBB, TD);
1196      PredTerm->setSuccessor(i, NewBB);
1197    }
1198
1199  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1200  // over the new instructions and zap any that are constants or dead.  This
1201  // frequently happens because of phi translation.
1202  BI = NewBB->begin();
1203  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1204    Instruction *Inst = BI++;
1205    if (Value *V = SimplifyInstruction(Inst, TD)) {
1206      Inst->replaceAllUsesWith(V);
1207      Inst->eraseFromParent();
1208      continue;
1209    }
1210
1211    RecursivelyDeleteTriviallyDeadInstructions(Inst);
1212  }
1213
1214  // Threaded an edge!
1215  ++NumThreads;
1216  return true;
1217}
1218
1219/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1220/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1221/// If we can duplicate the contents of BB up into PredBB do so now, this
1222/// improves the odds that the branch will be on an analyzable instruction like
1223/// a compare.
1224bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1225                                                     BasicBlock *PredBB) {
1226  // If BB is a loop header, then duplicating this block outside the loop would
1227  // cause us to transform this into an irreducible loop, don't do this.
1228  // See the comments above FindLoopHeaders for justifications and caveats.
1229  if (LoopHeaders.count(BB)) {
1230    DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1231          << "' into predecessor block '" << PredBB->getName()
1232          << "' - it might create an irreducible loop!\n");
1233    return false;
1234  }
1235
1236  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1237  if (DuplicationCost > Threshold) {
1238    DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1239          << "' - Cost is too high: " << DuplicationCost << "\n");
1240    return false;
1241  }
1242
1243  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1244  // of PredBB.
1245  DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1246        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1247        << DuplicationCost << " block is:" << *BB << "\n");
1248
1249  // We are going to have to map operands from the original BB block into the
1250  // PredBB block.  Evaluate PHI nodes in BB.
1251  DenseMap<Instruction*, Value*> ValueMapping;
1252
1253  BasicBlock::iterator BI = BB->begin();
1254  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1255    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1256
1257  BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1258
1259  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1260  // mapping and using it to remap operands in the cloned instructions.
1261  for (; BI != BB->end(); ++BI) {
1262    Instruction *New = BI->clone();
1263    New->setName(BI->getName());
1264    PredBB->getInstList().insert(OldPredBranch, New);
1265    ValueMapping[BI] = New;
1266
1267    // Remap operands to patch up intra-block references.
1268    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1269      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1270        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1271        if (I != ValueMapping.end())
1272          New->setOperand(i, I->second);
1273      }
1274  }
1275
1276  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1277  // add entries to the PHI nodes for branch from PredBB now.
1278  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1279  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1280                                  ValueMapping);
1281  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1282                                  ValueMapping);
1283
1284  // If there were values defined in BB that are used outside the block, then we
1285  // now have to update all uses of the value to use either the original value,
1286  // the cloned value, or some PHI derived value.  This can require arbitrary
1287  // PHI insertion, of which we are prepared to do, clean these up now.
1288  SSAUpdater SSAUpdate;
1289  SmallVector<Use*, 16> UsesToRename;
1290  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1291    // Scan all uses of this instruction to see if it is used outside of its
1292    // block, and if so, record them in UsesToRename.
1293    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1294         ++UI) {
1295      Instruction *User = cast<Instruction>(*UI);
1296      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1297        if (UserPN->getIncomingBlock(UI) == BB)
1298          continue;
1299      } else if (User->getParent() == BB)
1300        continue;
1301
1302      UsesToRename.push_back(&UI.getUse());
1303    }
1304
1305    // If there are no uses outside the block, we're done with this instruction.
1306    if (UsesToRename.empty())
1307      continue;
1308
1309    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1310
1311    // We found a use of I outside of BB.  Rename all uses of I that are outside
1312    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1313    // with the two values we know.
1314    SSAUpdate.Initialize(I);
1315    SSAUpdate.AddAvailableValue(BB, I);
1316    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1317
1318    while (!UsesToRename.empty())
1319      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1320    DEBUG(errs() << "\n");
1321  }
1322
1323  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1324  // that we nuked.
1325  RemovePredecessorAndSimplify(BB, PredBB, TD);
1326
1327  // Remove the unconditional branch at the end of the PredBB block.
1328  OldPredBranch->eraseFromParent();
1329
1330  ++NumDupes;
1331  return true;
1332}
1333
1334
1335