JumpThreading.cpp revision eede65ce6cb29c8f3a701be8606e95c9a213efff
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/Pass.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Transforms/Utils/Local.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25using namespace llvm;
26
27STATISTIC(NumThreads, "Number of jumps threaded");
28STATISTIC(NumFolds,   "Number of terminators folded");
29
30static cl::opt<unsigned>
31Threshold("jump-threading-threshold",
32          cl::desc("Max block size to duplicate for jump threading"),
33          cl::init(6), cl::Hidden);
34
35namespace {
36  /// This pass performs 'jump threading', which looks at blocks that have
37  /// multiple predecessors and multiple successors.  If one or more of the
38  /// predecessors of the block can be proven to always jump to one of the
39  /// successors, we forward the edge from the predecessor to the successor by
40  /// duplicating the contents of this block.
41  ///
42  /// An example of when this can occur is code like this:
43  ///
44  ///   if () { ...
45  ///     X = 4;
46  ///   }
47  ///   if (X < 3) {
48  ///
49  /// In this case, the unconditional branch at the end of the first if can be
50  /// revectored to the false side of the second if.
51  ///
52  class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
53  public:
54    static char ID; // Pass identification
55    JumpThreading() : FunctionPass((intptr_t)&ID) {}
56
57    bool runOnFunction(Function &F);
58    bool ThreadBlock(BasicBlock *BB);
59    void ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
60    BasicBlock *FactorCommonPHIPreds(PHINode *PN, Constant *CstVal);
61
62    bool ProcessJumpOnPHI(PHINode *PN);
63    bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
64    bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
65  };
66  char JumpThreading::ID = 0;
67  RegisterPass<JumpThreading> X("jump-threading", "Jump Threading");
68}
69
70// Public interface to the Jump Threading pass
71FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
72
73/// runOnFunction - Top level algorithm.
74///
75bool JumpThreading::runOnFunction(Function &F) {
76  DOUT << "Jump threading on function '" << F.getNameStart() << "'\n";
77
78  bool AnotherIteration = true, EverChanged = false;
79  while (AnotherIteration) {
80    AnotherIteration = false;
81    bool Changed = false;
82    for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
83      while (ThreadBlock(I))
84        Changed = true;
85    AnotherIteration = Changed;
86    EverChanged |= Changed;
87  }
88  return EverChanged;
89}
90
91/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
92/// value for the PHI, factor them together so we get one block to thread for
93/// the whole group.
94/// This is important for things like "phi i1 [true, true, false, true, x]"
95/// where we only need to clone the block for the true blocks once.
96///
97BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Constant *CstVal) {
98  SmallVector<BasicBlock*, 16> CommonPreds;
99  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
100    if (PN->getIncomingValue(i) == CstVal)
101      CommonPreds.push_back(PN->getIncomingBlock(i));
102
103  if (CommonPreds.size() == 1)
104    return CommonPreds[0];
105
106  DOUT << "  Factoring out " << CommonPreds.size()
107       << " common predecessors.\n";
108  return SplitBlockPredecessors(PN->getParent(),
109                                &CommonPreds[0], CommonPreds.size(),
110                                ".thr_comm", this);
111}
112
113
114/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
115/// thread across it.
116static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
117  BasicBlock::const_iterator I = BB->begin();
118  /// Ignore PHI nodes, these will be flattened when duplication happens.
119  while (isa<PHINode>(*I)) ++I;
120
121  // Sum up the cost of each instruction until we get to the terminator.  Don't
122  // include the terminator because the copy won't include it.
123  unsigned Size = 0;
124  for (; !isa<TerminatorInst>(I); ++I) {
125    // Debugger intrinsics don't incur code size.
126    if (isa<DbgInfoIntrinsic>(I)) continue;
127
128    // If this is a pointer->pointer bitcast, it is free.
129    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
130      continue;
131
132    // All other instructions count for at least one unit.
133    ++Size;
134
135    // Calls are more expensive.  If they are non-intrinsic calls, we model them
136    // as having cost of 4.  If they are a non-vector intrinsic, we model them
137    // as having cost of 2 total, and if they are a vector intrinsic, we model
138    // them as having cost 1.
139    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
140      if (!isa<IntrinsicInst>(CI))
141        Size += 3;
142      else if (isa<VectorType>(CI->getType()))
143        Size += 1;
144    }
145  }
146
147  // Threading through a switch statement is particularly profitable.  If this
148  // block ends in a switch, decrease its cost to make it more likely to happen.
149  if (isa<SwitchInst>(I))
150    Size = Size > 6 ? Size-6 : 0;
151
152  return Size;
153}
154
155
156/// ThreadBlock - If there are any predecessors whose control can be threaded
157/// through to a successor, transform them now.
158bool JumpThreading::ThreadBlock(BasicBlock *BB) {
159  // See if this block ends with a branch of switch.  If so, see if the
160  // condition is a phi node.  If so, and if an entry of the phi node is a
161  // constant, we can thread the block.
162  Value *Condition;
163  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
164    // Can't thread an unconditional jump.
165    if (BI->isUnconditional()) return false;
166    Condition = BI->getCondition();
167  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
168    Condition = SI->getCondition();
169  else
170    return false; // Must be an invoke.
171
172  // If the terminator of this block is branching on a constant, simplify the
173  // terminator to an unconditional branch.  This can occur due to threading in
174  // other blocks.
175  if (isa<ConstantInt>(Condition)) {
176    DOUT << "  In block '" << BB->getNameStart()
177         << "' folding terminator: " << *BB->getTerminator();
178    ++NumFolds;
179    ConstantFoldTerminator(BB);
180    return true;
181  }
182
183  // If there is only a single predecessor of this block, nothing to fold.
184  if (BB->getSinglePredecessor())
185    return false;
186
187  // See if this is a phi node in the current block.
188  PHINode *PN = dyn_cast<PHINode>(Condition);
189  if (PN && PN->getParent() == BB)
190    return ProcessJumpOnPHI(PN);
191
192  // If this is a conditional branch whose condition is and/or of a phi, try to
193  // simplify it.
194  if (BinaryOperator *CondI = dyn_cast<BinaryOperator>(Condition)) {
195    if ((CondI->getOpcode() == Instruction::And ||
196         CondI->getOpcode() == Instruction::Or) &&
197        isa<BranchInst>(BB->getTerminator()) &&
198        ProcessBranchOnLogical(CondI, BB,
199                               CondI->getOpcode() == Instruction::And))
200      return true;
201  }
202
203  // If we have "br (phi != 42)" and the phi node has any constant values as
204  // operands, we can thread through this block.
205  if (CmpInst *CondCmp = dyn_cast<CmpInst>(Condition))
206    if (isa<PHINode>(CondCmp->getOperand(0)) &&
207        isa<Constant>(CondCmp->getOperand(1)) &&
208        ProcessBranchOnCompare(CondCmp, BB))
209      return true;
210
211  return false;
212}
213
214/// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
215/// the current block.  See if there are any simplifications we can do based on
216/// inputs to the phi node.
217///
218bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
219  // See if the phi node has any constant values.  If so, we can determine where
220  // the corresponding predecessor will branch.
221  ConstantInt *PredCst = 0;
222  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
223    if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
224      break;
225
226  // If no incoming value has a constant, we don't know the destination of any
227  // predecessors.
228  if (PredCst == 0)
229    return false;
230
231  // See if the cost of duplicating this block is low enough.
232  BasicBlock *BB = PN->getParent();
233  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
234  if (JumpThreadCost > Threshold) {
235    DOUT << "  Not threading BB '" << BB->getNameStart()
236         << "' - Cost is too high: " << JumpThreadCost << "\n";
237    return false;
238  }
239
240  // If so, we can actually do this threading.  Merge any common predecessors
241  // that will act the same.
242  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
243
244  // Next, figure out which successor we are threading to.
245  BasicBlock *SuccBB;
246  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
247    SuccBB = BI->getSuccessor(PredCst == ConstantInt::getFalse());
248  else {
249    SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
250    SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
251  }
252
253  // If threading to the same block as we come from, we would infinite loop.
254  if (SuccBB == BB) {
255    DOUT << "  Not threading BB '" << BB->getNameStart()
256         << "' - would thread to self!\n";
257    return false;
258  }
259
260  // And finally, do it!
261  DOUT << "  Threading edge from '" << PredBB->getNameStart() << "' to '"
262       << SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
263       << ", across block:\n    "
264       << *BB << "\n";
265
266  ThreadEdge(BB, PredBB, SuccBB);
267  ++NumThreads;
268  return true;
269}
270
271/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
272/// whose condition is an AND/OR where one side is PN.  If PN has constant
273/// operands that permit us to evaluate the condition for some operand, thread
274/// through the block.  For example with:
275///   br (and X, phi(Y, Z, false))
276/// the predecessor corresponding to the 'false' will always jump to the false
277/// destination of the branch.
278///
279bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
280                                           bool isAnd) {
281  // If this is a binary operator tree of the same AND/OR opcode, check the
282  // LHS/RHS.
283  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
284    if (isAnd && BO->getOpcode() == Instruction::And ||
285        !isAnd && BO->getOpcode() == Instruction::Or) {
286      if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
287        return true;
288      if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
289        return true;
290    }
291
292  // If this isn't a PHI node, we can't handle it.
293  PHINode *PN = dyn_cast<PHINode>(V);
294  if (!PN || PN->getParent() != BB) return false;
295
296  // We can only do the simplification for phi nodes of 'false' with AND or
297  // 'true' with OR.  See if we have any entries in the phi for this.
298  unsigned PredNo = ~0U;
299  ConstantInt *PredCst = ConstantInt::get(Type::Int1Ty, !isAnd);
300  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
301    if (PN->getIncomingValue(i) == PredCst) {
302      PredNo = i;
303      break;
304    }
305  }
306
307  // If no match, bail out.
308  if (PredNo == ~0U)
309    return false;
310
311  // See if the cost of duplicating this block is low enough.
312  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
313  if (JumpThreadCost > Threshold) {
314    DOUT << "  Not threading BB '" << BB->getNameStart()
315         << "' - Cost is too high: " << JumpThreadCost << "\n";
316    return false;
317  }
318
319  // If so, we can actually do this threading.  Merge any common predecessors
320  // that will act the same.
321  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
322
323  // Next, figure out which successor we are threading to.  If this was an AND,
324  // the constant must be FALSE, and we must be targeting the 'false' block.
325  // If this is an OR, the constant must be TRUE, and we must be targeting the
326  // 'true' block.
327  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
328
329  // If threading to the same block as we come from, we would infinite loop.
330  if (SuccBB == BB) {
331    DOUT << "  Not threading BB '" << BB->getNameStart()
332    << "' - would thread to self!\n";
333    return false;
334  }
335
336  // And finally, do it!
337  DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
338       << "' to '" << SuccBB->getNameStart() << "' with cost: "
339       << JumpThreadCost << ", across block:\n    "
340       << *BB << "\n";
341
342  ThreadEdge(BB, PredBB, SuccBB);
343  ++NumThreads;
344  return true;
345}
346
347/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
348/// node and a constant.  If the PHI node contains any constants as inputs, we
349/// can fold the compare for that edge and thread through it.
350bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
351  PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
352  Constant *RHS = cast<Constant>(Cmp->getOperand(1));
353
354  // If the phi isn't in the current block, an incoming edge to this block
355  // doesn't control the destination.
356  if (PN->getParent() != BB)
357    return false;
358
359  // We can do this simplification if any comparisons fold to true or false.
360  // See if any do.
361  Constant *PredCst = 0;
362  bool TrueDirection = false;
363  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
364    PredCst = dyn_cast<Constant>(PN->getIncomingValue(i));
365    if (PredCst == 0) continue;
366
367    Constant *Res;
368    if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cmp))
369      Res = ConstantExpr::getICmp(ICI->getPredicate(), PredCst, RHS);
370    else
371      Res = ConstantExpr::getFCmp(cast<FCmpInst>(Cmp)->getPredicate(),
372                                  PredCst, RHS);
373    // If this folded to a constant expr, we can't do anything.
374    if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
375      TrueDirection = ResC->getZExtValue();
376      break;
377    }
378    // If this folded to undef, just go the false way.
379    if (isa<UndefValue>(Res)) {
380      TrueDirection = false;
381      break;
382    }
383
384    // Otherwise, we can't fold this input.
385    PredCst = 0;
386  }
387
388  // If no match, bail out.
389  if (PredCst == 0)
390    return false;
391
392  // See if the cost of duplicating this block is low enough.
393  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
394  if (JumpThreadCost > Threshold) {
395    DOUT << "  Not threading BB '" << BB->getNameStart()
396         << "' - Cost is too high: " << JumpThreadCost << "\n";
397    return false;
398  }
399
400  // If so, we can actually do this threading.  Merge any common predecessors
401  // that will act the same.
402  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
403
404  // Next, get our successor.
405  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
406
407  // If threading to the same block as we come from, we would infinite loop.
408  if (SuccBB == BB) {
409    DOUT << "  Not threading BB '" << BB->getNameStart()
410    << "' - would thread to self!\n";
411    return false;
412  }
413
414
415  // And finally, do it!
416  DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
417       << "' to '" << SuccBB->getNameStart() << "' with cost: "
418       << JumpThreadCost << ", across block:\n    "
419       << *BB << "\n";
420
421  ThreadEdge(BB, PredBB, SuccBB);
422  ++NumThreads;
423  return true;
424}
425
426
427/// ThreadEdge - We have decided that it is safe and profitable to thread an
428/// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
429/// change.
430void JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
431                               BasicBlock *SuccBB) {
432
433  // Jump Threading can not update SSA properties correctly if the values
434  // defined in the duplicated block are used outside of the block itself.  For
435  // this reason, we spill all values that are used outside of BB to the stack.
436  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
437    if (I->isUsedOutsideOfBlock(BB)) {
438      // We found a use of I outside of BB.  Create a new stack slot to
439      // break this inter-block usage pattern.
440      DemoteRegToStack(*I);
441    }
442
443  // We are going to have to map operands from the original BB block to the new
444  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
445  // account for entry from PredBB.
446  DenseMap<Instruction*, Value*> ValueMapping;
447
448  BasicBlock *NewBB =
449    BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB);
450  NewBB->moveAfter(PredBB);
451
452  BasicBlock::iterator BI = BB->begin();
453  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
454    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
455
456  // Clone the non-phi instructions of BB into NewBB, keeping track of the
457  // mapping and using it to remap operands in the cloned instructions.
458  for (; !isa<TerminatorInst>(BI); ++BI) {
459    Instruction *New = BI->clone();
460    New->setName(BI->getNameStart());
461    NewBB->getInstList().push_back(New);
462    ValueMapping[BI] = New;
463
464    // Remap operands to patch up intra-block references.
465    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
466      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i)))
467        if (Value *Remapped = ValueMapping[Inst])
468          New->setOperand(i, Remapped);
469  }
470
471  // We didn't copy the terminator from BB over to NewBB, because there is now
472  // an unconditional jump to SuccBB.  Insert the unconditional jump.
473  BranchInst::Create(SuccBB, NewBB);
474
475  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
476  // PHI nodes for NewBB now.
477  for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
478    PHINode *PN = cast<PHINode>(PNI);
479    // Ok, we have a PHI node.  Figure out what the incoming value was for the
480    // DestBlock.
481    Value *IV = PN->getIncomingValueForBlock(BB);
482
483    // Remap the value if necessary.
484    if (Instruction *Inst = dyn_cast<Instruction>(IV))
485      if (Value *MappedIV = ValueMapping[Inst])
486        IV = MappedIV;
487    PN->addIncoming(IV, NewBB);
488  }
489
490  // Finally, NewBB is good to go.  Update the terminator of PredBB to jump to
491  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
492  // us to simplify any PHI nodes in BB.
493  TerminatorInst *PredTerm = PredBB->getTerminator();
494  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
495    if (PredTerm->getSuccessor(i) == BB) {
496      BB->removePredecessor(PredBB);
497      PredTerm->setSuccessor(i, NewBB);
498    }
499}
500