JumpThreading.cpp revision f6832bbda08b6975caa264de183bf3ee1d472aca
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Analysis/LazyValueInfo.h"
22#include "llvm/Analysis/Loads.h"
23#include "llvm/Transforms/Utils/BasicBlockUtils.h"
24#include "llvm/Transforms/Utils/Local.h"
25#include "llvm/Transforms/Utils/SSAUpdater.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/DenseSet.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ValueHandle.h"
36#include "llvm/Support/raw_ostream.h"
37using namespace llvm;
38
39STATISTIC(NumThreads, "Number of jumps threaded");
40STATISTIC(NumFolds,   "Number of terminators folded");
41STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
42
43static cl::opt<unsigned>
44Threshold("jump-threading-threshold",
45          cl::desc("Max block size to duplicate for jump threading"),
46          cl::init(6), cl::Hidden);
47
48namespace {
49  // These are at global scope so static functions can use them too.
50  typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
51  typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
52
53  // This is used to keep track of what kind of constant we're currently hoping
54  // to find.
55  enum ConstantPreference {
56    WantInteger,
57    WantBlockAddress
58  };
59
60  /// This pass performs 'jump threading', which looks at blocks that have
61  /// multiple predecessors and multiple successors.  If one or more of the
62  /// predecessors of the block can be proven to always jump to one of the
63  /// successors, we forward the edge from the predecessor to the successor by
64  /// duplicating the contents of this block.
65  ///
66  /// An example of when this can occur is code like this:
67  ///
68  ///   if () { ...
69  ///     X = 4;
70  ///   }
71  ///   if (X < 3) {
72  ///
73  /// In this case, the unconditional branch at the end of the first if can be
74  /// revectored to the false side of the second if.
75  ///
76  class JumpThreading : public FunctionPass {
77    TargetData *TD;
78    LazyValueInfo *LVI;
79#ifdef NDEBUG
80    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
81#else
82    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
83#endif
84    DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
85
86    // RAII helper for updating the recursion stack.
87    struct RecursionSetRemover {
88      DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
89      std::pair<Value*, BasicBlock*> ThePair;
90
91      RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
92                          std::pair<Value*, BasicBlock*> P)
93        : TheSet(S), ThePair(P) { }
94
95      ~RecursionSetRemover() {
96        TheSet.erase(ThePair);
97      }
98    };
99  public:
100    static char ID; // Pass identification
101    JumpThreading() : FunctionPass(ID) {
102      initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
103    }
104
105    bool runOnFunction(Function &F);
106
107    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
108      AU.addRequired<LazyValueInfo>();
109      AU.addPreserved<LazyValueInfo>();
110    }
111
112    void FindLoopHeaders(Function &F);
113    bool ProcessBlock(BasicBlock *BB);
114    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
115                    BasicBlock *SuccBB);
116    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
117                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
118
119    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
120                                         PredValueInfo &Result,
121                                         ConstantPreference Preference);
122    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
123                                ConstantPreference Preference);
124
125    bool ProcessBranchOnPHI(PHINode *PN);
126    bool ProcessBranchOnXOR(BinaryOperator *BO);
127
128    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
129  };
130}
131
132char JumpThreading::ID = 0;
133INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
134                "Jump Threading", false, false)
135INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
136INITIALIZE_PASS_END(JumpThreading, "jump-threading",
137                "Jump Threading", false, false)
138
139// Public interface to the Jump Threading pass
140FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
141
142/// runOnFunction - Top level algorithm.
143///
144bool JumpThreading::runOnFunction(Function &F) {
145  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
146  TD = getAnalysisIfAvailable<TargetData>();
147  LVI = &getAnalysis<LazyValueInfo>();
148
149  FindLoopHeaders(F);
150
151  bool Changed, EverChanged = false;
152  do {
153    Changed = false;
154    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
155      BasicBlock *BB = I;
156      // Thread all of the branches we can over this block.
157      while (ProcessBlock(BB))
158        Changed = true;
159
160      ++I;
161
162      // If the block is trivially dead, zap it.  This eliminates the successor
163      // edges which simplifies the CFG.
164      if (pred_begin(BB) == pred_end(BB) &&
165          BB != &BB->getParent()->getEntryBlock()) {
166        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
167              << "' with terminator: " << *BB->getTerminator() << '\n');
168        LoopHeaders.erase(BB);
169        LVI->eraseBlock(BB);
170        DeleteDeadBlock(BB);
171        Changed = true;
172        continue;
173      }
174
175      BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
176
177      // Can't thread an unconditional jump, but if the block is "almost
178      // empty", we can replace uses of it with uses of the successor and make
179      // this dead.
180      if (BI && BI->isUnconditional() &&
181          BB != &BB->getParent()->getEntryBlock() &&
182          // If the terminator is the only non-phi instruction, try to nuke it.
183          BB->getFirstNonPHIOrDbg()->isTerminator()) {
184        // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
185        // block, we have to make sure it isn't in the LoopHeaders set.  We
186        // reinsert afterward if needed.
187        bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
188        BasicBlock *Succ = BI->getSuccessor(0);
189
190        // FIXME: It is always conservatively correct to drop the info
191        // for a block even if it doesn't get erased.  This isn't totally
192        // awesome, but it allows us to use AssertingVH to prevent nasty
193        // dangling pointer issues within LazyValueInfo.
194        LVI->eraseBlock(BB);
195        if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
196          Changed = true;
197          // If we deleted BB and BB was the header of a loop, then the
198          // successor is now the header of the loop.
199          BB = Succ;
200        }
201
202        if (ErasedFromLoopHeaders)
203          LoopHeaders.insert(BB);
204      }
205    }
206    EverChanged |= Changed;
207  } while (Changed);
208
209  LoopHeaders.clear();
210  return EverChanged;
211}
212
213/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
214/// thread across it.
215static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
216  /// Ignore PHI nodes, these will be flattened when duplication happens.
217  BasicBlock::const_iterator I = BB->getFirstNonPHI();
218
219  // FIXME: THREADING will delete values that are just used to compute the
220  // branch, so they shouldn't count against the duplication cost.
221
222
223  // Sum up the cost of each instruction until we get to the terminator.  Don't
224  // include the terminator because the copy won't include it.
225  unsigned Size = 0;
226  for (; !isa<TerminatorInst>(I); ++I) {
227    // Debugger intrinsics don't incur code size.
228    if (isa<DbgInfoIntrinsic>(I)) continue;
229
230    // If this is a pointer->pointer bitcast, it is free.
231    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
232      continue;
233
234    // All other instructions count for at least one unit.
235    ++Size;
236
237    // Calls are more expensive.  If they are non-intrinsic calls, we model them
238    // as having cost of 4.  If they are a non-vector intrinsic, we model them
239    // as having cost of 2 total, and if they are a vector intrinsic, we model
240    // them as having cost 1.
241    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
242      if (!isa<IntrinsicInst>(CI))
243        Size += 3;
244      else if (!CI->getType()->isVectorTy())
245        Size += 1;
246    }
247  }
248
249  // Threading through a switch statement is particularly profitable.  If this
250  // block ends in a switch, decrease its cost to make it more likely to happen.
251  if (isa<SwitchInst>(I))
252    Size = Size > 6 ? Size-6 : 0;
253
254  // The same holds for indirect branches, but slightly more so.
255  if (isa<IndirectBrInst>(I))
256    Size = Size > 8 ? Size-8 : 0;
257
258  return Size;
259}
260
261/// FindLoopHeaders - We do not want jump threading to turn proper loop
262/// structures into irreducible loops.  Doing this breaks up the loop nesting
263/// hierarchy and pessimizes later transformations.  To prevent this from
264/// happening, we first have to find the loop headers.  Here we approximate this
265/// by finding targets of backedges in the CFG.
266///
267/// Note that there definitely are cases when we want to allow threading of
268/// edges across a loop header.  For example, threading a jump from outside the
269/// loop (the preheader) to an exit block of the loop is definitely profitable.
270/// It is also almost always profitable to thread backedges from within the loop
271/// to exit blocks, and is often profitable to thread backedges to other blocks
272/// within the loop (forming a nested loop).  This simple analysis is not rich
273/// enough to track all of these properties and keep it up-to-date as the CFG
274/// mutates, so we don't allow any of these transformations.
275///
276void JumpThreading::FindLoopHeaders(Function &F) {
277  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
278  FindFunctionBackedges(F, Edges);
279
280  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
281    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
282}
283
284/// getKnownConstant - Helper method to determine if we can thread over a
285/// terminator with the given value as its condition, and if so what value to
286/// use for that. What kind of value this is depends on whether we want an
287/// integer or a block address, but an undef is always accepted.
288/// Returns null if Val is null or not an appropriate constant.
289static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
290  if (!Val)
291    return 0;
292
293  // Undef is "known" enough.
294  if (UndefValue *U = dyn_cast<UndefValue>(Val))
295    return U;
296
297  if (Preference == WantBlockAddress)
298    return dyn_cast<BlockAddress>(Val->stripPointerCasts());
299
300  return dyn_cast<ConstantInt>(Val);
301}
302
303/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
304/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
305/// in any of our predecessors.  If so, return the known list of value and pred
306/// BB in the result vector.
307///
308/// This returns true if there were any known values.
309///
310bool JumpThreading::
311ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
312                                ConstantPreference Preference) {
313  // This method walks up use-def chains recursively.  Because of this, we could
314  // get into an infinite loop going around loops in the use-def chain.  To
315  // prevent this, keep track of what (value, block) pairs we've already visited
316  // and terminate the search if we loop back to them
317  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
318    return false;
319
320  // An RAII help to remove this pair from the recursion set once the recursion
321  // stack pops back out again.
322  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
323
324  // If V is a constant, then it is known in all predecessors.
325  if (Constant *KC = getKnownConstant(V, Preference)) {
326    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
327      Result.push_back(std::make_pair(KC, *PI));
328
329    return true;
330  }
331
332  // If V is a non-instruction value, or an instruction in a different block,
333  // then it can't be derived from a PHI.
334  Instruction *I = dyn_cast<Instruction>(V);
335  if (I == 0 || I->getParent() != BB) {
336
337    // Okay, if this is a live-in value, see if it has a known value at the end
338    // of any of our predecessors.
339    //
340    // FIXME: This should be an edge property, not a block end property.
341    /// TODO: Per PR2563, we could infer value range information about a
342    /// predecessor based on its terminator.
343    //
344    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
345    // "I" is a non-local compare-with-a-constant instruction.  This would be
346    // able to handle value inequalities better, for example if the compare is
347    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
348    // Perhaps getConstantOnEdge should be smart enough to do this?
349
350    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
351      BasicBlock *P = *PI;
352      // If the value is known by LazyValueInfo to be a constant in a
353      // predecessor, use that information to try to thread this block.
354      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
355      if (Constant *KC = getKnownConstant(PredCst, Preference))
356        Result.push_back(std::make_pair(KC, P));
357    }
358
359    return !Result.empty();
360  }
361
362  /// If I is a PHI node, then we know the incoming values for any constants.
363  if (PHINode *PN = dyn_cast<PHINode>(I)) {
364    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
365      Value *InVal = PN->getIncomingValue(i);
366      if (Constant *KC = getKnownConstant(InVal, Preference)) {
367        Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
368      } else {
369        Constant *CI = LVI->getConstantOnEdge(InVal,
370                                              PN->getIncomingBlock(i), BB);
371        if (Constant *KC = getKnownConstant(CI, Preference))
372          Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
373      }
374    }
375
376    return !Result.empty();
377  }
378
379  PredValueInfoTy LHSVals, RHSVals;
380
381  // Handle some boolean conditions.
382  if (I->getType()->getPrimitiveSizeInBits() == 1) {
383    assert(Preference == WantInteger && "One-bit non-integer type?");
384    // X | true -> true
385    // X & false -> false
386    if (I->getOpcode() == Instruction::Or ||
387        I->getOpcode() == Instruction::And) {
388      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
389                                      WantInteger);
390      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
391                                      WantInteger);
392
393      if (LHSVals.empty() && RHSVals.empty())
394        return false;
395
396      ConstantInt *InterestingVal;
397      if (I->getOpcode() == Instruction::Or)
398        InterestingVal = ConstantInt::getTrue(I->getContext());
399      else
400        InterestingVal = ConstantInt::getFalse(I->getContext());
401
402      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
403
404      // Scan for the sentinel.  If we find an undef, force it to the
405      // interesting value: x|undef -> true and x&undef -> false.
406      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
407        if (LHSVals[i].first == InterestingVal ||
408            isa<UndefValue>(LHSVals[i].first)) {
409          Result.push_back(LHSVals[i]);
410          Result.back().first = InterestingVal;
411          LHSKnownBBs.insert(LHSVals[i].second);
412        }
413      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
414        if (RHSVals[i].first == InterestingVal ||
415            isa<UndefValue>(RHSVals[i].first)) {
416          // If we already inferred a value for this block on the LHS, don't
417          // re-add it.
418          if (!LHSKnownBBs.count(RHSVals[i].second)) {
419            Result.push_back(RHSVals[i]);
420            Result.back().first = InterestingVal;
421          }
422        }
423
424      return !Result.empty();
425    }
426
427    // Handle the NOT form of XOR.
428    if (I->getOpcode() == Instruction::Xor &&
429        isa<ConstantInt>(I->getOperand(1)) &&
430        cast<ConstantInt>(I->getOperand(1))->isOne()) {
431      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
432                                      WantInteger);
433      if (Result.empty())
434        return false;
435
436      // Invert the known values.
437      for (unsigned i = 0, e = Result.size(); i != e; ++i)
438        Result[i].first = ConstantExpr::getNot(Result[i].first);
439
440      return true;
441    }
442
443  // Try to simplify some other binary operator values.
444  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
445    assert(Preference != WantBlockAddress
446            && "A binary operator creating a block address?");
447    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
448      PredValueInfoTy LHSVals;
449      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
450                                      WantInteger);
451
452      // Try to use constant folding to simplify the binary operator.
453      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
454        Constant *V = LHSVals[i].first;
455        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
456
457        if (Constant *KC = getKnownConstant(Folded, WantInteger))
458          Result.push_back(std::make_pair(KC, LHSVals[i].second));
459      }
460    }
461
462    return !Result.empty();
463  }
464
465  // Handle compare with phi operand, where the PHI is defined in this block.
466  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
467    assert(Preference == WantInteger && "Compares only produce integers");
468    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
469    if (PN && PN->getParent() == BB) {
470      // We can do this simplification if any comparisons fold to true or false.
471      // See if any do.
472      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
473        BasicBlock *PredBB = PN->getIncomingBlock(i);
474        Value *LHS = PN->getIncomingValue(i);
475        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
476
477        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
478        if (Res == 0) {
479          if (!isa<Constant>(RHS))
480            continue;
481
482          LazyValueInfo::Tristate
483            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
484                                           cast<Constant>(RHS), PredBB, BB);
485          if (ResT == LazyValueInfo::Unknown)
486            continue;
487          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
488        }
489
490        if (Constant *KC = getKnownConstant(Res, WantInteger))
491          Result.push_back(std::make_pair(KC, PredBB));
492      }
493
494      return !Result.empty();
495    }
496
497
498    // If comparing a live-in value against a constant, see if we know the
499    // live-in value on any predecessors.
500    if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
501      if (!isa<Instruction>(Cmp->getOperand(0)) ||
502          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
503        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
504
505        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
506          BasicBlock *P = *PI;
507          // If the value is known by LazyValueInfo to be a constant in a
508          // predecessor, use that information to try to thread this block.
509          LazyValueInfo::Tristate Res =
510            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
511                                    RHSCst, P, BB);
512          if (Res == LazyValueInfo::Unknown)
513            continue;
514
515          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
516          Result.push_back(std::make_pair(ResC, P));
517        }
518
519        return !Result.empty();
520      }
521
522      // Try to find a constant value for the LHS of a comparison,
523      // and evaluate it statically if we can.
524      if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
525        PredValueInfoTy LHSVals;
526        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
527                                        WantInteger);
528
529        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
530          Constant *V = LHSVals[i].first;
531          Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
532                                                      V, CmpConst);
533          if (Constant *KC = getKnownConstant(Folded, WantInteger))
534            Result.push_back(std::make_pair(KC, LHSVals[i].second));
535        }
536
537        return !Result.empty();
538      }
539    }
540  }
541
542  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
543    // Handle select instructions where at least one operand is a known constant
544    // and we can figure out the condition value for any predecessor block.
545    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
546    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
547    PredValueInfoTy Conds;
548    if ((TrueVal || FalseVal) &&
549        ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
550                                        WantInteger)) {
551      for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
552        Constant *Cond = Conds[i].first;
553
554        // Figure out what value to use for the condition.
555        bool KnownCond;
556        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
557          // A known boolean.
558          KnownCond = CI->isOne();
559        } else {
560          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
561          // Either operand will do, so be sure to pick the one that's a known
562          // constant.
563          // FIXME: Do this more cleverly if both values are known constants?
564          KnownCond = (TrueVal != 0);
565        }
566
567        // See if the select has a known constant value for this predecessor.
568        if (Constant *Val = KnownCond ? TrueVal : FalseVal)
569          Result.push_back(std::make_pair(Val, Conds[i].second));
570      }
571
572      return !Result.empty();
573    }
574  }
575
576  // If all else fails, see if LVI can figure out a constant value for us.
577  Constant *CI = LVI->getConstant(V, BB);
578  if (Constant *KC = getKnownConstant(CI, Preference)) {
579    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
580      Result.push_back(std::make_pair(KC, *PI));
581  }
582
583  return !Result.empty();
584}
585
586
587
588/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
589/// in an undefined jump, decide which block is best to revector to.
590///
591/// Since we can pick an arbitrary destination, we pick the successor with the
592/// fewest predecessors.  This should reduce the in-degree of the others.
593///
594static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
595  TerminatorInst *BBTerm = BB->getTerminator();
596  unsigned MinSucc = 0;
597  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
598  // Compute the successor with the minimum number of predecessors.
599  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
600  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
601    TestBB = BBTerm->getSuccessor(i);
602    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
603    if (NumPreds < MinNumPreds)
604      MinSucc = i;
605  }
606
607  return MinSucc;
608}
609
610static bool hasAddressTakenAndUsed(BasicBlock *BB) {
611  if (!BB->hasAddressTaken()) return false;
612
613  // If the block has its address taken, it may be a tree of dead constants
614  // hanging off of it.  These shouldn't keep the block alive.
615  BlockAddress *BA = BlockAddress::get(BB);
616  BA->removeDeadConstantUsers();
617  return !BA->use_empty();
618}
619
620/// ProcessBlock - If there are any predecessors whose control can be threaded
621/// through to a successor, transform them now.
622bool JumpThreading::ProcessBlock(BasicBlock *BB) {
623  // If the block is trivially dead, just return and let the caller nuke it.
624  // This simplifies other transformations.
625  if (pred_begin(BB) == pred_end(BB) &&
626      BB != &BB->getParent()->getEntryBlock())
627    return false;
628
629  // If this block has a single predecessor, and if that pred has a single
630  // successor, merge the blocks.  This encourages recursive jump threading
631  // because now the condition in this block can be threaded through
632  // predecessors of our predecessor block.
633  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
634    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
635        SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
636      // If SinglePred was a loop header, BB becomes one.
637      if (LoopHeaders.erase(SinglePred))
638        LoopHeaders.insert(BB);
639
640      // Remember if SinglePred was the entry block of the function.  If so, we
641      // will need to move BB back to the entry position.
642      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
643      LVI->eraseBlock(SinglePred);
644      MergeBasicBlockIntoOnlyPred(BB);
645
646      if (isEntry && BB != &BB->getParent()->getEntryBlock())
647        BB->moveBefore(&BB->getParent()->getEntryBlock());
648      return true;
649    }
650  }
651
652  // What kind of constant we're looking for.
653  ConstantPreference Preference = WantInteger;
654
655  // Look to see if the terminator is a conditional branch, switch or indirect
656  // branch, if not we can't thread it.
657  Value *Condition;
658  Instruction *Terminator = BB->getTerminator();
659  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
660    // Can't thread an unconditional jump.
661    if (BI->isUnconditional()) return false;
662    Condition = BI->getCondition();
663  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
664    Condition = SI->getCondition();
665  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
666    Condition = IB->getAddress()->stripPointerCasts();
667    Preference = WantBlockAddress;
668  } else {
669    return false; // Must be an invoke.
670  }
671
672  // Run constant folding to see if we can reduce the condition to a simple
673  // constant.
674  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
675    Value *SimpleVal = ConstantFoldInstruction(I, TD);
676    if (SimpleVal) {
677      I->replaceAllUsesWith(SimpleVal);
678      I->eraseFromParent();
679      Condition = SimpleVal;
680    }
681  }
682
683  // If the terminator is branching on an undef, we can pick any of the
684  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
685  if (isa<UndefValue>(Condition)) {
686    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
687
688    // Fold the branch/switch.
689    TerminatorInst *BBTerm = BB->getTerminator();
690    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
691      if (i == BestSucc) continue;
692      BBTerm->getSuccessor(i)->removePredecessor(BB, true);
693    }
694
695    DEBUG(dbgs() << "  In block '" << BB->getName()
696          << "' folding undef terminator: " << *BBTerm << '\n');
697    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
698    BBTerm->eraseFromParent();
699    return true;
700  }
701
702  // If the terminator of this block is branching on a constant, simplify the
703  // terminator to an unconditional branch.  This can occur due to threading in
704  // other blocks.
705  if (getKnownConstant(Condition, Preference)) {
706    DEBUG(dbgs() << "  In block '" << BB->getName()
707          << "' folding terminator: " << *BB->getTerminator() << '\n');
708    ++NumFolds;
709    ConstantFoldTerminator(BB);
710    return true;
711  }
712
713  Instruction *CondInst = dyn_cast<Instruction>(Condition);
714
715  // All the rest of our checks depend on the condition being an instruction.
716  if (CondInst == 0) {
717    // FIXME: Unify this with code below.
718    if (ProcessThreadableEdges(Condition, BB, Preference))
719      return true;
720    return false;
721  }
722
723
724  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
725    // For a comparison where the LHS is outside this block, it's possible
726    // that we've branched on it before.  Used LVI to see if we can simplify
727    // the branch based on that.
728    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
729    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
730    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
731    if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
732        (!isa<Instruction>(CondCmp->getOperand(0)) ||
733         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
734      // For predecessor edge, determine if the comparison is true or false
735      // on that edge.  If they're all true or all false, we can simplify the
736      // branch.
737      // FIXME: We could handle mixed true/false by duplicating code.
738      LazyValueInfo::Tristate Baseline =
739        LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
740                                CondConst, *PI, BB);
741      if (Baseline != LazyValueInfo::Unknown) {
742        // Check that all remaining incoming values match the first one.
743        while (++PI != PE) {
744          LazyValueInfo::Tristate Ret =
745            LVI->getPredicateOnEdge(CondCmp->getPredicate(),
746                                    CondCmp->getOperand(0), CondConst, *PI, BB);
747          if (Ret != Baseline) break;
748        }
749
750        // If we terminated early, then one of the values didn't match.
751        if (PI == PE) {
752          unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
753          unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
754          CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
755          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
756          CondBr->eraseFromParent();
757          return true;
758        }
759      }
760    }
761  }
762
763  // Check for some cases that are worth simplifying.  Right now we want to look
764  // for loads that are used by a switch or by the condition for the branch.  If
765  // we see one, check to see if it's partially redundant.  If so, insert a PHI
766  // which can then be used to thread the values.
767  //
768  Value *SimplifyValue = CondInst;
769  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
770    if (isa<Constant>(CondCmp->getOperand(1)))
771      SimplifyValue = CondCmp->getOperand(0);
772
773  // TODO: There are other places where load PRE would be profitable, such as
774  // more complex comparisons.
775  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
776    if (SimplifyPartiallyRedundantLoad(LI))
777      return true;
778
779
780  // Handle a variety of cases where we are branching on something derived from
781  // a PHI node in the current block.  If we can prove that any predecessors
782  // compute a predictable value based on a PHI node, thread those predecessors.
783  //
784  if (ProcessThreadableEdges(CondInst, BB, Preference))
785    return true;
786
787  // If this is an otherwise-unfoldable branch on a phi node in the current
788  // block, see if we can simplify.
789  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
790    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
791      return ProcessBranchOnPHI(PN);
792
793
794  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
795  if (CondInst->getOpcode() == Instruction::Xor &&
796      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
797    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
798
799
800  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
801  // "(X == 4)", thread through this block.
802
803  return false;
804}
805
806
807/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
808/// load instruction, eliminate it by replacing it with a PHI node.  This is an
809/// important optimization that encourages jump threading, and needs to be run
810/// interlaced with other jump threading tasks.
811bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
812  // Don't hack volatile loads.
813  if (LI->isVolatile()) return false;
814
815  // If the load is defined in a block with exactly one predecessor, it can't be
816  // partially redundant.
817  BasicBlock *LoadBB = LI->getParent();
818  if (LoadBB->getSinglePredecessor())
819    return false;
820
821  Value *LoadedPtr = LI->getOperand(0);
822
823  // If the loaded operand is defined in the LoadBB, it can't be available.
824  // TODO: Could do simple PHI translation, that would be fun :)
825  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
826    if (PtrOp->getParent() == LoadBB)
827      return false;
828
829  // Scan a few instructions up from the load, to see if it is obviously live at
830  // the entry to its block.
831  BasicBlock::iterator BBIt = LI;
832
833  if (Value *AvailableVal =
834        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
835    // If the value if the load is locally available within the block, just use
836    // it.  This frequently occurs for reg2mem'd allocas.
837    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
838
839    // If the returned value is the load itself, replace with an undef. This can
840    // only happen in dead loops.
841    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
842    LI->replaceAllUsesWith(AvailableVal);
843    LI->eraseFromParent();
844    return true;
845  }
846
847  // Otherwise, if we scanned the whole block and got to the top of the block,
848  // we know the block is locally transparent to the load.  If not, something
849  // might clobber its value.
850  if (BBIt != LoadBB->begin())
851    return false;
852
853
854  SmallPtrSet<BasicBlock*, 8> PredsScanned;
855  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
856  AvailablePredsTy AvailablePreds;
857  BasicBlock *OneUnavailablePred = 0;
858
859  // If we got here, the loaded value is transparent through to the start of the
860  // block.  Check to see if it is available in any of the predecessor blocks.
861  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
862       PI != PE; ++PI) {
863    BasicBlock *PredBB = *PI;
864
865    // If we already scanned this predecessor, skip it.
866    if (!PredsScanned.insert(PredBB))
867      continue;
868
869    // Scan the predecessor to see if the value is available in the pred.
870    BBIt = PredBB->end();
871    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
872    if (!PredAvailable) {
873      OneUnavailablePred = PredBB;
874      continue;
875    }
876
877    // If so, this load is partially redundant.  Remember this info so that we
878    // can create a PHI node.
879    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
880  }
881
882  // If the loaded value isn't available in any predecessor, it isn't partially
883  // redundant.
884  if (AvailablePreds.empty()) return false;
885
886  // Okay, the loaded value is available in at least one (and maybe all!)
887  // predecessors.  If the value is unavailable in more than one unique
888  // predecessor, we want to insert a merge block for those common predecessors.
889  // This ensures that we only have to insert one reload, thus not increasing
890  // code size.
891  BasicBlock *UnavailablePred = 0;
892
893  // If there is exactly one predecessor where the value is unavailable, the
894  // already computed 'OneUnavailablePred' block is it.  If it ends in an
895  // unconditional branch, we know that it isn't a critical edge.
896  if (PredsScanned.size() == AvailablePreds.size()+1 &&
897      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
898    UnavailablePred = OneUnavailablePred;
899  } else if (PredsScanned.size() != AvailablePreds.size()) {
900    // Otherwise, we had multiple unavailable predecessors or we had a critical
901    // edge from the one.
902    SmallVector<BasicBlock*, 8> PredsToSplit;
903    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
904
905    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
906      AvailablePredSet.insert(AvailablePreds[i].first);
907
908    // Add all the unavailable predecessors to the PredsToSplit list.
909    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
910         PI != PE; ++PI) {
911      BasicBlock *P = *PI;
912      // If the predecessor is an indirect goto, we can't split the edge.
913      if (isa<IndirectBrInst>(P->getTerminator()))
914        return false;
915
916      if (!AvailablePredSet.count(P))
917        PredsToSplit.push_back(P);
918    }
919
920    // Split them out to their own block.
921    UnavailablePred =
922      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
923                             "thread-pre-split", this);
924  }
925
926  // If the value isn't available in all predecessors, then there will be
927  // exactly one where it isn't available.  Insert a load on that edge and add
928  // it to the AvailablePreds list.
929  if (UnavailablePred) {
930    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
931           "Can't handle critical edge here!");
932    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
933                                 LI->getAlignment(),
934                                 UnavailablePred->getTerminator());
935    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
936  }
937
938  // Now we know that each predecessor of this block has a value in
939  // AvailablePreds, sort them for efficient access as we're walking the preds.
940  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
941
942  // Create a PHI node at the start of the block for the PRE'd load value.
943  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
944  PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
945                                LoadBB->begin());
946  PN->takeName(LI);
947
948  // Insert new entries into the PHI for each predecessor.  A single block may
949  // have multiple entries here.
950  for (pred_iterator PI = PB; PI != PE; ++PI) {
951    BasicBlock *P = *PI;
952    AvailablePredsTy::iterator I =
953      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
954                       std::make_pair(P, (Value*)0));
955
956    assert(I != AvailablePreds.end() && I->first == P &&
957           "Didn't find entry for predecessor!");
958
959    PN->addIncoming(I->second, I->first);
960  }
961
962  //cerr << "PRE: " << *LI << *PN << "\n";
963
964  LI->replaceAllUsesWith(PN);
965  LI->eraseFromParent();
966
967  return true;
968}
969
970/// FindMostPopularDest - The specified list contains multiple possible
971/// threadable destinations.  Pick the one that occurs the most frequently in
972/// the list.
973static BasicBlock *
974FindMostPopularDest(BasicBlock *BB,
975                    const SmallVectorImpl<std::pair<BasicBlock*,
976                                  BasicBlock*> > &PredToDestList) {
977  assert(!PredToDestList.empty());
978
979  // Determine popularity.  If there are multiple possible destinations, we
980  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
981  // blocks with known and real destinations to threading undef.  We'll handle
982  // them later if interesting.
983  DenseMap<BasicBlock*, unsigned> DestPopularity;
984  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
985    if (PredToDestList[i].second)
986      DestPopularity[PredToDestList[i].second]++;
987
988  // Find the most popular dest.
989  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
990  BasicBlock *MostPopularDest = DPI->first;
991  unsigned Popularity = DPI->second;
992  SmallVector<BasicBlock*, 4> SamePopularity;
993
994  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
995    // If the popularity of this entry isn't higher than the popularity we've
996    // seen so far, ignore it.
997    if (DPI->second < Popularity)
998      ; // ignore.
999    else if (DPI->second == Popularity) {
1000      // If it is the same as what we've seen so far, keep track of it.
1001      SamePopularity.push_back(DPI->first);
1002    } else {
1003      // If it is more popular, remember it.
1004      SamePopularity.clear();
1005      MostPopularDest = DPI->first;
1006      Popularity = DPI->second;
1007    }
1008  }
1009
1010  // Okay, now we know the most popular destination.  If there is more than one
1011  // destination, we need to determine one.  This is arbitrary, but we need
1012  // to make a deterministic decision.  Pick the first one that appears in the
1013  // successor list.
1014  if (!SamePopularity.empty()) {
1015    SamePopularity.push_back(MostPopularDest);
1016    TerminatorInst *TI = BB->getTerminator();
1017    for (unsigned i = 0; ; ++i) {
1018      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1019
1020      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1021                    TI->getSuccessor(i)) == SamePopularity.end())
1022        continue;
1023
1024      MostPopularDest = TI->getSuccessor(i);
1025      break;
1026    }
1027  }
1028
1029  // Okay, we have finally picked the most popular destination.
1030  return MostPopularDest;
1031}
1032
1033bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1034                                           ConstantPreference Preference) {
1035  // If threading this would thread across a loop header, don't even try to
1036  // thread the edge.
1037  if (LoopHeaders.count(BB))
1038    return false;
1039
1040  PredValueInfoTy PredValues;
1041  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
1042    return false;
1043
1044  assert(!PredValues.empty() &&
1045         "ComputeValueKnownInPredecessors returned true with no values");
1046
1047  DEBUG(dbgs() << "IN BB: " << *BB;
1048        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1049          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1050            << *PredValues[i].first
1051            << " for pred '" << PredValues[i].second->getName() << "'.\n";
1052        });
1053
1054  // Decide what we want to thread through.  Convert our list of known values to
1055  // a list of known destinations for each pred.  This also discards duplicate
1056  // predecessors and keeps track of the undefined inputs (which are represented
1057  // as a null dest in the PredToDestList).
1058  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1059  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1060
1061  BasicBlock *OnlyDest = 0;
1062  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1063
1064  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1065    BasicBlock *Pred = PredValues[i].second;
1066    if (!SeenPreds.insert(Pred))
1067      continue;  // Duplicate predecessor entry.
1068
1069    // If the predecessor ends with an indirect goto, we can't change its
1070    // destination.
1071    if (isa<IndirectBrInst>(Pred->getTerminator()))
1072      continue;
1073
1074    Constant *Val = PredValues[i].first;
1075
1076    BasicBlock *DestBB;
1077    if (isa<UndefValue>(Val))
1078      DestBB = 0;
1079    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1080      DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1081    else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1082      DestBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(Val)));
1083    else {
1084      assert(isa<IndirectBrInst>(BB->getTerminator())
1085              && "Unexpected terminator");
1086      DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1087    }
1088
1089    // If we have exactly one destination, remember it for efficiency below.
1090    if (PredToDestList.empty())
1091      OnlyDest = DestBB;
1092    else if (OnlyDest != DestBB)
1093      OnlyDest = MultipleDestSentinel;
1094
1095    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1096  }
1097
1098  // If all edges were unthreadable, we fail.
1099  if (PredToDestList.empty())
1100    return false;
1101
1102  // Determine which is the most common successor.  If we have many inputs and
1103  // this block is a switch, we want to start by threading the batch that goes
1104  // to the most popular destination first.  If we only know about one
1105  // threadable destination (the common case) we can avoid this.
1106  BasicBlock *MostPopularDest = OnlyDest;
1107
1108  if (MostPopularDest == MultipleDestSentinel)
1109    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1110
1111  // Now that we know what the most popular destination is, factor all
1112  // predecessors that will jump to it into a single predecessor.
1113  SmallVector<BasicBlock*, 16> PredsToFactor;
1114  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1115    if (PredToDestList[i].second == MostPopularDest) {
1116      BasicBlock *Pred = PredToDestList[i].first;
1117
1118      // This predecessor may be a switch or something else that has multiple
1119      // edges to the block.  Factor each of these edges by listing them
1120      // according to # occurrences in PredsToFactor.
1121      TerminatorInst *PredTI = Pred->getTerminator();
1122      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1123        if (PredTI->getSuccessor(i) == BB)
1124          PredsToFactor.push_back(Pred);
1125    }
1126
1127  // If the threadable edges are branching on an undefined value, we get to pick
1128  // the destination that these predecessors should get to.
1129  if (MostPopularDest == 0)
1130    MostPopularDest = BB->getTerminator()->
1131                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1132
1133  // Ok, try to thread it!
1134  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1135}
1136
1137/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1138/// a PHI node in the current block.  See if there are any simplifications we
1139/// can do based on inputs to the phi node.
1140///
1141bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1142  BasicBlock *BB = PN->getParent();
1143
1144  // TODO: We could make use of this to do it once for blocks with common PHI
1145  // values.
1146  SmallVector<BasicBlock*, 1> PredBBs;
1147  PredBBs.resize(1);
1148
1149  // If any of the predecessor blocks end in an unconditional branch, we can
1150  // *duplicate* the conditional branch into that block in order to further
1151  // encourage jump threading and to eliminate cases where we have branch on a
1152  // phi of an icmp (branch on icmp is much better).
1153  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1154    BasicBlock *PredBB = PN->getIncomingBlock(i);
1155    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1156      if (PredBr->isUnconditional()) {
1157        PredBBs[0] = PredBB;
1158        // Try to duplicate BB into PredBB.
1159        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1160          return true;
1161      }
1162  }
1163
1164  return false;
1165}
1166
1167/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1168/// a xor instruction in the current block.  See if there are any
1169/// simplifications we can do based on inputs to the xor.
1170///
1171bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1172  BasicBlock *BB = BO->getParent();
1173
1174  // If either the LHS or RHS of the xor is a constant, don't do this
1175  // optimization.
1176  if (isa<ConstantInt>(BO->getOperand(0)) ||
1177      isa<ConstantInt>(BO->getOperand(1)))
1178    return false;
1179
1180  // If the first instruction in BB isn't a phi, we won't be able to infer
1181  // anything special about any particular predecessor.
1182  if (!isa<PHINode>(BB->front()))
1183    return false;
1184
1185  // If we have a xor as the branch input to this block, and we know that the
1186  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1187  // the condition into the predecessor and fix that value to true, saving some
1188  // logical ops on that path and encouraging other paths to simplify.
1189  //
1190  // This copies something like this:
1191  //
1192  //  BB:
1193  //    %X = phi i1 [1],  [%X']
1194  //    %Y = icmp eq i32 %A, %B
1195  //    %Z = xor i1 %X, %Y
1196  //    br i1 %Z, ...
1197  //
1198  // Into:
1199  //  BB':
1200  //    %Y = icmp ne i32 %A, %B
1201  //    br i1 %Z, ...
1202
1203  PredValueInfoTy XorOpValues;
1204  bool isLHS = true;
1205  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1206                                       WantInteger)) {
1207    assert(XorOpValues.empty());
1208    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1209                                         WantInteger))
1210      return false;
1211    isLHS = false;
1212  }
1213
1214  assert(!XorOpValues.empty() &&
1215         "ComputeValueKnownInPredecessors returned true with no values");
1216
1217  // Scan the information to see which is most popular: true or false.  The
1218  // predecessors can be of the set true, false, or undef.
1219  unsigned NumTrue = 0, NumFalse = 0;
1220  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1221    if (isa<UndefValue>(XorOpValues[i].first))
1222      // Ignore undefs for the count.
1223      continue;
1224    if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
1225      ++NumFalse;
1226    else
1227      ++NumTrue;
1228  }
1229
1230  // Determine which value to split on, true, false, or undef if neither.
1231  ConstantInt *SplitVal = 0;
1232  if (NumTrue > NumFalse)
1233    SplitVal = ConstantInt::getTrue(BB->getContext());
1234  else if (NumTrue != 0 || NumFalse != 0)
1235    SplitVal = ConstantInt::getFalse(BB->getContext());
1236
1237  // Collect all of the blocks that this can be folded into so that we can
1238  // factor this once and clone it once.
1239  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1240  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1241    if (XorOpValues[i].first != SplitVal &&
1242        !isa<UndefValue>(XorOpValues[i].first))
1243      continue;
1244
1245    BlocksToFoldInto.push_back(XorOpValues[i].second);
1246  }
1247
1248  // If we inferred a value for all of the predecessors, then duplication won't
1249  // help us.  However, we can just replace the LHS or RHS with the constant.
1250  if (BlocksToFoldInto.size() ==
1251      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1252    if (SplitVal == 0) {
1253      // If all preds provide undef, just nuke the xor, because it is undef too.
1254      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1255      BO->eraseFromParent();
1256    } else if (SplitVal->isZero()) {
1257      // If all preds provide 0, replace the xor with the other input.
1258      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1259      BO->eraseFromParent();
1260    } else {
1261      // If all preds provide 1, set the computed value to 1.
1262      BO->setOperand(!isLHS, SplitVal);
1263    }
1264
1265    return true;
1266  }
1267
1268  // Try to duplicate BB into PredBB.
1269  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1270}
1271
1272
1273/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1274/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1275/// NewPred using the entries from OldPred (suitably mapped).
1276static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1277                                            BasicBlock *OldPred,
1278                                            BasicBlock *NewPred,
1279                                     DenseMap<Instruction*, Value*> &ValueMap) {
1280  for (BasicBlock::iterator PNI = PHIBB->begin();
1281       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1282    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1283    // DestBlock.
1284    Value *IV = PN->getIncomingValueForBlock(OldPred);
1285
1286    // Remap the value if necessary.
1287    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1288      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1289      if (I != ValueMap.end())
1290        IV = I->second;
1291    }
1292
1293    PN->addIncoming(IV, NewPred);
1294  }
1295}
1296
1297/// ThreadEdge - We have decided that it is safe and profitable to factor the
1298/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1299/// across BB.  Transform the IR to reflect this change.
1300bool JumpThreading::ThreadEdge(BasicBlock *BB,
1301                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1302                               BasicBlock *SuccBB) {
1303  // If threading to the same block as we come from, we would infinite loop.
1304  if (SuccBB == BB) {
1305    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1306          << "' - would thread to self!\n");
1307    return false;
1308  }
1309
1310  // If threading this would thread across a loop header, don't thread the edge.
1311  // See the comments above FindLoopHeaders for justifications and caveats.
1312  if (LoopHeaders.count(BB)) {
1313    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1314          << "' to dest BB '" << SuccBB->getName()
1315          << "' - it might create an irreducible loop!\n");
1316    return false;
1317  }
1318
1319  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1320  if (JumpThreadCost > Threshold) {
1321    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1322          << "' - Cost is too high: " << JumpThreadCost << "\n");
1323    return false;
1324  }
1325
1326  // And finally, do it!  Start by factoring the predecessors is needed.
1327  BasicBlock *PredBB;
1328  if (PredBBs.size() == 1)
1329    PredBB = PredBBs[0];
1330  else {
1331    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1332          << " common predecessors.\n");
1333    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1334                                    ".thr_comm", this);
1335  }
1336
1337  // And finally, do it!
1338  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1339        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1340        << ", across block:\n    "
1341        << *BB << "\n");
1342
1343  LVI->threadEdge(PredBB, BB, SuccBB);
1344
1345  // We are going to have to map operands from the original BB block to the new
1346  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1347  // account for entry from PredBB.
1348  DenseMap<Instruction*, Value*> ValueMapping;
1349
1350  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1351                                         BB->getName()+".thread",
1352                                         BB->getParent(), BB);
1353  NewBB->moveAfter(PredBB);
1354
1355  BasicBlock::iterator BI = BB->begin();
1356  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1357    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1358
1359  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1360  // mapping and using it to remap operands in the cloned instructions.
1361  for (; !isa<TerminatorInst>(BI); ++BI) {
1362    Instruction *New = BI->clone();
1363    New->setName(BI->getName());
1364    NewBB->getInstList().push_back(New);
1365    ValueMapping[BI] = New;
1366
1367    // Remap operands to patch up intra-block references.
1368    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1369      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1370        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1371        if (I != ValueMapping.end())
1372          New->setOperand(i, I->second);
1373      }
1374  }
1375
1376  // We didn't copy the terminator from BB over to NewBB, because there is now
1377  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1378  BranchInst::Create(SuccBB, NewBB);
1379
1380  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1381  // PHI nodes for NewBB now.
1382  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1383
1384  // If there were values defined in BB that are used outside the block, then we
1385  // now have to update all uses of the value to use either the original value,
1386  // the cloned value, or some PHI derived value.  This can require arbitrary
1387  // PHI insertion, of which we are prepared to do, clean these up now.
1388  SSAUpdater SSAUpdate;
1389  SmallVector<Use*, 16> UsesToRename;
1390  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1391    // Scan all uses of this instruction to see if it is used outside of its
1392    // block, and if so, record them in UsesToRename.
1393    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1394         ++UI) {
1395      Instruction *User = cast<Instruction>(*UI);
1396      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1397        if (UserPN->getIncomingBlock(UI) == BB)
1398          continue;
1399      } else if (User->getParent() == BB)
1400        continue;
1401
1402      UsesToRename.push_back(&UI.getUse());
1403    }
1404
1405    // If there are no uses outside the block, we're done with this instruction.
1406    if (UsesToRename.empty())
1407      continue;
1408
1409    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1410
1411    // We found a use of I outside of BB.  Rename all uses of I that are outside
1412    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1413    // with the two values we know.
1414    SSAUpdate.Initialize(I->getType(), I->getName());
1415    SSAUpdate.AddAvailableValue(BB, I);
1416    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1417
1418    while (!UsesToRename.empty())
1419      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1420    DEBUG(dbgs() << "\n");
1421  }
1422
1423
1424  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1425  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1426  // us to simplify any PHI nodes in BB.
1427  TerminatorInst *PredTerm = PredBB->getTerminator();
1428  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1429    if (PredTerm->getSuccessor(i) == BB) {
1430      BB->removePredecessor(PredBB, true);
1431      PredTerm->setSuccessor(i, NewBB);
1432    }
1433
1434  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1435  // over the new instructions and zap any that are constants or dead.  This
1436  // frequently happens because of phi translation.
1437  SimplifyInstructionsInBlock(NewBB, TD);
1438
1439  // Threaded an edge!
1440  ++NumThreads;
1441  return true;
1442}
1443
1444/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1445/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1446/// If we can duplicate the contents of BB up into PredBB do so now, this
1447/// improves the odds that the branch will be on an analyzable instruction like
1448/// a compare.
1449bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1450                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1451  assert(!PredBBs.empty() && "Can't handle an empty set");
1452
1453  // If BB is a loop header, then duplicating this block outside the loop would
1454  // cause us to transform this into an irreducible loop, don't do this.
1455  // See the comments above FindLoopHeaders for justifications and caveats.
1456  if (LoopHeaders.count(BB)) {
1457    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1458          << "' into predecessor block '" << PredBBs[0]->getName()
1459          << "' - it might create an irreducible loop!\n");
1460    return false;
1461  }
1462
1463  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1464  if (DuplicationCost > Threshold) {
1465    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1466          << "' - Cost is too high: " << DuplicationCost << "\n");
1467    return false;
1468  }
1469
1470  // And finally, do it!  Start by factoring the predecessors is needed.
1471  BasicBlock *PredBB;
1472  if (PredBBs.size() == 1)
1473    PredBB = PredBBs[0];
1474  else {
1475    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1476          << " common predecessors.\n");
1477    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1478                                    ".thr_comm", this);
1479  }
1480
1481  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1482  // of PredBB.
1483  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1484        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1485        << DuplicationCost << " block is:" << *BB << "\n");
1486
1487  // Unless PredBB ends with an unconditional branch, split the edge so that we
1488  // can just clone the bits from BB into the end of the new PredBB.
1489  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1490
1491  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1492    PredBB = SplitEdge(PredBB, BB, this);
1493    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1494  }
1495
1496  // We are going to have to map operands from the original BB block into the
1497  // PredBB block.  Evaluate PHI nodes in BB.
1498  DenseMap<Instruction*, Value*> ValueMapping;
1499
1500  BasicBlock::iterator BI = BB->begin();
1501  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1502    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1503
1504  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1505  // mapping and using it to remap operands in the cloned instructions.
1506  for (; BI != BB->end(); ++BI) {
1507    Instruction *New = BI->clone();
1508
1509    // Remap operands to patch up intra-block references.
1510    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1511      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1512        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1513        if (I != ValueMapping.end())
1514          New->setOperand(i, I->second);
1515      }
1516
1517    // If this instruction can be simplified after the operands are updated,
1518    // just use the simplified value instead.  This frequently happens due to
1519    // phi translation.
1520    if (Value *IV = SimplifyInstruction(New, TD)) {
1521      delete New;
1522      ValueMapping[BI] = IV;
1523    } else {
1524      // Otherwise, insert the new instruction into the block.
1525      New->setName(BI->getName());
1526      PredBB->getInstList().insert(OldPredBranch, New);
1527      ValueMapping[BI] = New;
1528    }
1529  }
1530
1531  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1532  // add entries to the PHI nodes for branch from PredBB now.
1533  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1534  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1535                                  ValueMapping);
1536  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1537                                  ValueMapping);
1538
1539  // If there were values defined in BB that are used outside the block, then we
1540  // now have to update all uses of the value to use either the original value,
1541  // the cloned value, or some PHI derived value.  This can require arbitrary
1542  // PHI insertion, of which we are prepared to do, clean these up now.
1543  SSAUpdater SSAUpdate;
1544  SmallVector<Use*, 16> UsesToRename;
1545  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1546    // Scan all uses of this instruction to see if it is used outside of its
1547    // block, and if so, record them in UsesToRename.
1548    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1549         ++UI) {
1550      Instruction *User = cast<Instruction>(*UI);
1551      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1552        if (UserPN->getIncomingBlock(UI) == BB)
1553          continue;
1554      } else if (User->getParent() == BB)
1555        continue;
1556
1557      UsesToRename.push_back(&UI.getUse());
1558    }
1559
1560    // If there are no uses outside the block, we're done with this instruction.
1561    if (UsesToRename.empty())
1562      continue;
1563
1564    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1565
1566    // We found a use of I outside of BB.  Rename all uses of I that are outside
1567    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1568    // with the two values we know.
1569    SSAUpdate.Initialize(I->getType(), I->getName());
1570    SSAUpdate.AddAvailableValue(BB, I);
1571    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1572
1573    while (!UsesToRename.empty())
1574      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1575    DEBUG(dbgs() << "\n");
1576  }
1577
1578  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1579  // that we nuked.
1580  BB->removePredecessor(PredBB, true);
1581
1582  // Remove the unconditional branch at the end of the PredBB block.
1583  OldPredBranch->eraseFromParent();
1584
1585  ++NumDupes;
1586  return true;
1587}
1588
1589
1590