SCCP.cpp revision 54a525d7ae4ce36780d840cfec075d4080f0764a
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
30#include "llvm/Pass.h"
31#include "llvm/Support/InstVisitor.h"
32#include "llvm/Transforms/Utils/Local.h"
33#include "llvm/Support/CallSite.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/ADT/hash_map"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/ADT/STLExtras.h"
38#include <algorithm>
39#include <set>
40using namespace llvm;
41
42STATISTIC(NumInstRemoved, "Number of instructions removed");
43STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
44
45STATISTIC(IPNumInstRemoved, "Number ofinstructions removed by IPSCCP");
46STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
47STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
48STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
49
50namespace {
51/// LatticeVal class - This class represents the different lattice values that
52/// an LLVM value may occupy.  It is a simple class with value semantics.
53///
54class LatticeVal {
55  enum {
56    /// undefined - This LLVM Value has no known value yet.
57    undefined,
58
59    /// constant - This LLVM Value has a specific constant value.
60    constant,
61
62    /// forcedconstant - This LLVM Value was thought to be undef until
63    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
64    /// with another (different) constant, it goes to overdefined, instead of
65    /// asserting.
66    forcedconstant,
67
68    /// overdefined - This instruction is not known to be constant, and we know
69    /// it has a value.
70    overdefined
71  } LatticeValue;    // The current lattice position
72
73  Constant *ConstantVal; // If Constant value, the current value
74public:
75  inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
76
77  // markOverdefined - Return true if this is a new status to be in...
78  inline bool markOverdefined() {
79    if (LatticeValue != overdefined) {
80      LatticeValue = overdefined;
81      return true;
82    }
83    return false;
84  }
85
86  // markConstant - Return true if this is a new status for us.
87  inline bool markConstant(Constant *V) {
88    if (LatticeValue != constant) {
89      if (LatticeValue == undefined) {
90        LatticeValue = constant;
91        assert(V && "Marking constant with NULL");
92        ConstantVal = V;
93      } else {
94        assert(LatticeValue == forcedconstant &&
95               "Cannot move from overdefined to constant!");
96        // Stay at forcedconstant if the constant is the same.
97        if (V == ConstantVal) return false;
98
99        // Otherwise, we go to overdefined.  Assumptions made based on the
100        // forced value are possibly wrong.  Assuming this is another constant
101        // could expose a contradiction.
102        LatticeValue = overdefined;
103      }
104      return true;
105    } else {
106      assert(ConstantVal == V && "Marking constant with different value");
107    }
108    return false;
109  }
110
111  inline void markForcedConstant(Constant *V) {
112    assert(LatticeValue == undefined && "Can't force a defined value!");
113    LatticeValue = forcedconstant;
114    ConstantVal = V;
115  }
116
117  inline bool isUndefined() const { return LatticeValue == undefined; }
118  inline bool isConstant() const {
119    return LatticeValue == constant || LatticeValue == forcedconstant;
120  }
121  inline bool isOverdefined() const { return LatticeValue == overdefined; }
122
123  inline Constant *getConstant() const {
124    assert(isConstant() && "Cannot get the constant of a non-constant!");
125    return ConstantVal;
126  }
127};
128
129} // end anonymous namespace
130
131
132//===----------------------------------------------------------------------===//
133//
134/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
135/// Constant Propagation.
136///
137class SCCPSolver : public InstVisitor<SCCPSolver> {
138  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
139  hash_map<Value*, LatticeVal> ValueState;  // The state each value is in...
140
141  /// GlobalValue - If we are tracking any values for the contents of a global
142  /// variable, we keep a mapping from the constant accessor to the element of
143  /// the global, to the currently known value.  If the value becomes
144  /// overdefined, it's entry is simply removed from this map.
145  hash_map<GlobalVariable*, LatticeVal> TrackedGlobals;
146
147  /// TrackedFunctionRetVals - If we are tracking arguments into and the return
148  /// value out of a function, it will have an entry in this map, indicating
149  /// what the known return value for the function is.
150  hash_map<Function*, LatticeVal> TrackedFunctionRetVals;
151
152  // The reason for two worklists is that overdefined is the lowest state
153  // on the lattice, and moving things to overdefined as fast as possible
154  // makes SCCP converge much faster.
155  // By having a separate worklist, we accomplish this because everything
156  // possibly overdefined will become overdefined at the soonest possible
157  // point.
158  std::vector<Value*> OverdefinedInstWorkList;
159  std::vector<Value*> InstWorkList;
160
161
162  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
163
164  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
165  /// overdefined, despite the fact that the PHI node is overdefined.
166  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
167
168  /// KnownFeasibleEdges - Entries in this set are edges which have already had
169  /// PHI nodes retriggered.
170  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
171  std::set<Edge> KnownFeasibleEdges;
172public:
173
174  /// MarkBlockExecutable - This method can be used by clients to mark all of
175  /// the blocks that are known to be intrinsically live in the processed unit.
176  void MarkBlockExecutable(BasicBlock *BB) {
177    DOUT << "Marking Block Executable: " << BB->getName() << "\n";
178    BBExecutable.insert(BB);   // Basic block is executable!
179    BBWorkList.push_back(BB);  // Add the block to the work list!
180  }
181
182  /// TrackValueOfGlobalVariable - Clients can use this method to
183  /// inform the SCCPSolver that it should track loads and stores to the
184  /// specified global variable if it can.  This is only legal to call if
185  /// performing Interprocedural SCCP.
186  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
187    const Type *ElTy = GV->getType()->getElementType();
188    if (ElTy->isFirstClassType()) {
189      LatticeVal &IV = TrackedGlobals[GV];
190      if (!isa<UndefValue>(GV->getInitializer()))
191        IV.markConstant(GV->getInitializer());
192    }
193  }
194
195  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
196  /// and out of the specified function (which cannot have its address taken),
197  /// this method must be called.
198  void AddTrackedFunction(Function *F) {
199    assert(F->hasInternalLinkage() && "Can only track internal functions!");
200    // Add an entry, F -> undef.
201    TrackedFunctionRetVals[F];
202  }
203
204  /// Solve - Solve for constants and executable blocks.
205  ///
206  void Solve();
207
208  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
209  /// that branches on undef values cannot reach any of their successors.
210  /// However, this is not a safe assumption.  After we solve dataflow, this
211  /// method should be use to handle this.  If this returns true, the solver
212  /// should be rerun.
213  bool ResolvedUndefsIn(Function &F);
214
215  /// getExecutableBlocks - Once we have solved for constants, return the set of
216  /// blocks that is known to be executable.
217  std::set<BasicBlock*> &getExecutableBlocks() {
218    return BBExecutable;
219  }
220
221  /// getValueMapping - Once we have solved for constants, return the mapping of
222  /// LLVM values to LatticeVals.
223  hash_map<Value*, LatticeVal> &getValueMapping() {
224    return ValueState;
225  }
226
227  /// getTrackedFunctionRetVals - Get the inferred return value map.
228  ///
229  const hash_map<Function*, LatticeVal> &getTrackedFunctionRetVals() {
230    return TrackedFunctionRetVals;
231  }
232
233  /// getTrackedGlobals - Get and return the set of inferred initializers for
234  /// global variables.
235  const hash_map<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
236    return TrackedGlobals;
237  }
238
239
240private:
241  // markConstant - Make a value be marked as "constant".  If the value
242  // is not already a constant, add it to the instruction work list so that
243  // the users of the instruction are updated later.
244  //
245  inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
246    if (IV.markConstant(C)) {
247      DOUT << "markConstant: " << *C << ": " << *V;
248      InstWorkList.push_back(V);
249    }
250  }
251
252  inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
253    IV.markForcedConstant(C);
254    DOUT << "markForcedConstant: " << *C << ": " << *V;
255    InstWorkList.push_back(V);
256  }
257
258  inline void markConstant(Value *V, Constant *C) {
259    markConstant(ValueState[V], V, C);
260  }
261
262  // markOverdefined - Make a value be marked as "overdefined". If the
263  // value is not already overdefined, add it to the overdefined instruction
264  // work list so that the users of the instruction are updated later.
265
266  inline void markOverdefined(LatticeVal &IV, Value *V) {
267    if (IV.markOverdefined()) {
268      DEBUG(DOUT << "markOverdefined: ";
269            if (Function *F = dyn_cast<Function>(V))
270              DOUT << "Function '" << F->getName() << "'\n";
271            else
272              DOUT << *V);
273      // Only instructions go on the work list
274      OverdefinedInstWorkList.push_back(V);
275    }
276  }
277  inline void markOverdefined(Value *V) {
278    markOverdefined(ValueState[V], V);
279  }
280
281  inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
282    if (IV.isOverdefined() || MergeWithV.isUndefined())
283      return;  // Noop.
284    if (MergeWithV.isOverdefined())
285      markOverdefined(IV, V);
286    else if (IV.isUndefined())
287      markConstant(IV, V, MergeWithV.getConstant());
288    else if (IV.getConstant() != MergeWithV.getConstant())
289      markOverdefined(IV, V);
290  }
291
292  inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
293    return mergeInValue(ValueState[V], V, MergeWithV);
294  }
295
296
297  // getValueState - Return the LatticeVal object that corresponds to the value.
298  // This function is necessary because not all values should start out in the
299  // underdefined state... Argument's should be overdefined, and
300  // constants should be marked as constants.  If a value is not known to be an
301  // Instruction object, then use this accessor to get its value from the map.
302  //
303  inline LatticeVal &getValueState(Value *V) {
304    hash_map<Value*, LatticeVal>::iterator I = ValueState.find(V);
305    if (I != ValueState.end()) return I->second;  // Common case, in the map
306
307    if (Constant *C = dyn_cast<Constant>(V)) {
308      if (isa<UndefValue>(V)) {
309        // Nothing to do, remain undefined.
310      } else {
311        ValueState[C].markConstant(C);          // Constants are constant
312      }
313    }
314    // All others are underdefined by default...
315    return ValueState[V];
316  }
317
318  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
319  // work list if it is not already executable...
320  //
321  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
322    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
323      return;  // This edge is already known to be executable!
324
325    if (BBExecutable.count(Dest)) {
326      DOUT << "Marking Edge Executable: " << Source->getName()
327           << " -> " << Dest->getName() << "\n";
328
329      // The destination is already executable, but we just made an edge
330      // feasible that wasn't before.  Revisit the PHI nodes in the block
331      // because they have potentially new operands.
332      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
333        visitPHINode(*cast<PHINode>(I));
334
335    } else {
336      MarkBlockExecutable(Dest);
337    }
338  }
339
340  // getFeasibleSuccessors - Return a vector of booleans to indicate which
341  // successors are reachable from a given terminator instruction.
342  //
343  void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs);
344
345  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
346  // block to the 'To' basic block is currently feasible...
347  //
348  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
349
350  // OperandChangedState - This method is invoked on all of the users of an
351  // instruction that was just changed state somehow....  Based on this
352  // information, we need to update the specified user of this instruction.
353  //
354  void OperandChangedState(User *U) {
355    // Only instructions use other variable values!
356    Instruction &I = cast<Instruction>(*U);
357    if (BBExecutable.count(I.getParent()))   // Inst is executable?
358      visit(I);
359  }
360
361private:
362  friend class InstVisitor<SCCPSolver>;
363
364  // visit implementations - Something changed in this instruction... Either an
365  // operand made a transition, or the instruction is newly executable.  Change
366  // the value type of I to reflect these changes if appropriate.
367  //
368  void visitPHINode(PHINode &I);
369
370  // Terminators
371  void visitReturnInst(ReturnInst &I);
372  void visitTerminatorInst(TerminatorInst &TI);
373
374  void visitCastInst(CastInst &I);
375  void visitSelectInst(SelectInst &I);
376  void visitBinaryOperator(Instruction &I);
377  void visitCmpInst(CmpInst &I);
378  void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
379  void visitExtractElementInst(ExtractElementInst &I);
380  void visitInsertElementInst(InsertElementInst &I);
381  void visitShuffleVectorInst(ShuffleVectorInst &I);
382
383  // Instructions that cannot be folded away...
384  void visitStoreInst     (Instruction &I);
385  void visitLoadInst      (LoadInst &I);
386  void visitGetElementPtrInst(GetElementPtrInst &I);
387  void visitCallInst      (CallInst &I) { visitCallSite(CallSite::get(&I)); }
388  void visitInvokeInst    (InvokeInst &II) {
389    visitCallSite(CallSite::get(&II));
390    visitTerminatorInst(II);
391  }
392  void visitCallSite      (CallSite CS);
393  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
394  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
395  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
396  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
397  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
398  void visitFreeInst      (Instruction &I) { /*returns void*/ }
399
400  void visitInstruction(Instruction &I) {
401    // If a new instruction is added to LLVM that we don't handle...
402    cerr << "SCCP: Don't know how to handle: " << I;
403    markOverdefined(&I);   // Just in case
404  }
405};
406
407// getFeasibleSuccessors - Return a vector of booleans to indicate which
408// successors are reachable from a given terminator instruction.
409//
410void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
411                                       std::vector<bool> &Succs) {
412  Succs.resize(TI.getNumSuccessors());
413  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
414    if (BI->isUnconditional()) {
415      Succs[0] = true;
416    } else {
417      LatticeVal &BCValue = getValueState(BI->getCondition());
418      if (BCValue.isOverdefined() ||
419          (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
420        // Overdefined condition variables, and branches on unfoldable constant
421        // conditions, mean the branch could go either way.
422        Succs[0] = Succs[1] = true;
423      } else if (BCValue.isConstant()) {
424        // Constant condition variables mean the branch can only go a single way
425        Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true;
426      }
427    }
428  } else if (isa<InvokeInst>(&TI)) {
429    // Invoke instructions successors are always executable.
430    Succs[0] = Succs[1] = true;
431  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
432    LatticeVal &SCValue = getValueState(SI->getCondition());
433    if (SCValue.isOverdefined() ||   // Overdefined condition?
434        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
435      // All destinations are executable!
436      Succs.assign(TI.getNumSuccessors(), true);
437    } else if (SCValue.isConstant()) {
438      Constant *CPV = SCValue.getConstant();
439      // Make sure to skip the "default value" which isn't a value
440      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
441        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
442          Succs[i] = true;
443          return;
444        }
445      }
446
447      // Constant value not equal to any of the branches... must execute
448      // default branch then...
449      Succs[0] = true;
450    }
451  } else {
452    cerr << "SCCP: Don't know how to handle: " << TI;
453    Succs.assign(TI.getNumSuccessors(), true);
454  }
455}
456
457
458// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
459// block to the 'To' basic block is currently feasible...
460//
461bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
462  assert(BBExecutable.count(To) && "Dest should always be alive!");
463
464  // Make sure the source basic block is executable!!
465  if (!BBExecutable.count(From)) return false;
466
467  // Check to make sure this edge itself is actually feasible now...
468  TerminatorInst *TI = From->getTerminator();
469  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
470    if (BI->isUnconditional())
471      return true;
472    else {
473      LatticeVal &BCValue = getValueState(BI->getCondition());
474      if (BCValue.isOverdefined()) {
475        // Overdefined condition variables mean the branch could go either way.
476        return true;
477      } else if (BCValue.isConstant()) {
478        // Not branching on an evaluatable constant?
479        if (!isa<ConstantInt>(BCValue.getConstant())) return true;
480
481        // Constant condition variables mean the branch can only go a single way
482        return BI->getSuccessor(BCValue.getConstant() ==
483                                       ConstantInt::getFalse()) == To;
484      }
485      return false;
486    }
487  } else if (isa<InvokeInst>(TI)) {
488    // Invoke instructions successors are always executable.
489    return true;
490  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
491    LatticeVal &SCValue = getValueState(SI->getCondition());
492    if (SCValue.isOverdefined()) {  // Overdefined condition?
493      // All destinations are executable!
494      return true;
495    } else if (SCValue.isConstant()) {
496      Constant *CPV = SCValue.getConstant();
497      if (!isa<ConstantInt>(CPV))
498        return true;  // not a foldable constant?
499
500      // Make sure to skip the "default value" which isn't a value
501      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
502        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
503          return SI->getSuccessor(i) == To;
504
505      // Constant value not equal to any of the branches... must execute
506      // default branch then...
507      return SI->getDefaultDest() == To;
508    }
509    return false;
510  } else {
511    cerr << "Unknown terminator instruction: " << *TI;
512    abort();
513  }
514}
515
516// visit Implementations - Something changed in this instruction... Either an
517// operand made a transition, or the instruction is newly executable.  Change
518// the value type of I to reflect these changes if appropriate.  This method
519// makes sure to do the following actions:
520//
521// 1. If a phi node merges two constants in, and has conflicting value coming
522//    from different branches, or if the PHI node merges in an overdefined
523//    value, then the PHI node becomes overdefined.
524// 2. If a phi node merges only constants in, and they all agree on value, the
525//    PHI node becomes a constant value equal to that.
526// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
527// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
528// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
529// 6. If a conditional branch has a value that is constant, make the selected
530//    destination executable
531// 7. If a conditional branch has a value that is overdefined, make all
532//    successors executable.
533//
534void SCCPSolver::visitPHINode(PHINode &PN) {
535  LatticeVal &PNIV = getValueState(&PN);
536  if (PNIV.isOverdefined()) {
537    // There may be instructions using this PHI node that are not overdefined
538    // themselves.  If so, make sure that they know that the PHI node operand
539    // changed.
540    std::multimap<PHINode*, Instruction*>::iterator I, E;
541    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
542    if (I != E) {
543      std::vector<Instruction*> Users;
544      Users.reserve(std::distance(I, E));
545      for (; I != E; ++I) Users.push_back(I->second);
546      while (!Users.empty()) {
547        visit(Users.back());
548        Users.pop_back();
549      }
550    }
551    return;  // Quick exit
552  }
553
554  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
555  // and slow us down a lot.  Just mark them overdefined.
556  if (PN.getNumIncomingValues() > 64) {
557    markOverdefined(PNIV, &PN);
558    return;
559  }
560
561  // Look at all of the executable operands of the PHI node.  If any of them
562  // are overdefined, the PHI becomes overdefined as well.  If they are all
563  // constant, and they agree with each other, the PHI becomes the identical
564  // constant.  If they are constant and don't agree, the PHI is overdefined.
565  // If there are no executable operands, the PHI remains undefined.
566  //
567  Constant *OperandVal = 0;
568  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
569    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
570    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
571
572    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
573      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
574        markOverdefined(PNIV, &PN);
575        return;
576      }
577
578      if (OperandVal == 0) {   // Grab the first value...
579        OperandVal = IV.getConstant();
580      } else {                // Another value is being merged in!
581        // There is already a reachable operand.  If we conflict with it,
582        // then the PHI node becomes overdefined.  If we agree with it, we
583        // can continue on.
584
585        // Check to see if there are two different constants merging...
586        if (IV.getConstant() != OperandVal) {
587          // Yes there is.  This means the PHI node is not constant.
588          // You must be overdefined poor PHI.
589          //
590          markOverdefined(PNIV, &PN);    // The PHI node now becomes overdefined
591          return;    // I'm done analyzing you
592        }
593      }
594    }
595  }
596
597  // If we exited the loop, this means that the PHI node only has constant
598  // arguments that agree with each other(and OperandVal is the constant) or
599  // OperandVal is null because there are no defined incoming arguments.  If
600  // this is the case, the PHI remains undefined.
601  //
602  if (OperandVal)
603    markConstant(PNIV, &PN, OperandVal);      // Acquire operand value
604}
605
606void SCCPSolver::visitReturnInst(ReturnInst &I) {
607  if (I.getNumOperands() == 0) return;  // Ret void
608
609  // If we are tracking the return value of this function, merge it in.
610  Function *F = I.getParent()->getParent();
611  if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) {
612    hash_map<Function*, LatticeVal>::iterator TFRVI =
613      TrackedFunctionRetVals.find(F);
614    if (TFRVI != TrackedFunctionRetVals.end() &&
615        !TFRVI->second.isOverdefined()) {
616      LatticeVal &IV = getValueState(I.getOperand(0));
617      mergeInValue(TFRVI->second, F, IV);
618    }
619  }
620}
621
622
623void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
624  std::vector<bool> SuccFeasible;
625  getFeasibleSuccessors(TI, SuccFeasible);
626
627  BasicBlock *BB = TI.getParent();
628
629  // Mark all feasible successors executable...
630  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
631    if (SuccFeasible[i])
632      markEdgeExecutable(BB, TI.getSuccessor(i));
633}
634
635void SCCPSolver::visitCastInst(CastInst &I) {
636  Value *V = I.getOperand(0);
637  LatticeVal &VState = getValueState(V);
638  if (VState.isOverdefined())          // Inherit overdefinedness of operand
639    markOverdefined(&I);
640  else if (VState.isConstant())        // Propagate constant value
641    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
642                                           VState.getConstant(), I.getType()));
643}
644
645void SCCPSolver::visitSelectInst(SelectInst &I) {
646  LatticeVal &CondValue = getValueState(I.getCondition());
647  if (CondValue.isUndefined())
648    return;
649  if (CondValue.isConstant()) {
650    if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
651      mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
652                                                          : I.getFalseValue()));
653      return;
654    }
655  }
656
657  // Otherwise, the condition is overdefined or a constant we can't evaluate.
658  // See if we can produce something better than overdefined based on the T/F
659  // value.
660  LatticeVal &TVal = getValueState(I.getTrueValue());
661  LatticeVal &FVal = getValueState(I.getFalseValue());
662
663  // select ?, C, C -> C.
664  if (TVal.isConstant() && FVal.isConstant() &&
665      TVal.getConstant() == FVal.getConstant()) {
666    markConstant(&I, FVal.getConstant());
667    return;
668  }
669
670  if (TVal.isUndefined()) {  // select ?, undef, X -> X.
671    mergeInValue(&I, FVal);
672  } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
673    mergeInValue(&I, TVal);
674  } else {
675    markOverdefined(&I);
676  }
677}
678
679// Handle BinaryOperators and Shift Instructions...
680void SCCPSolver::visitBinaryOperator(Instruction &I) {
681  LatticeVal &IV = ValueState[&I];
682  if (IV.isOverdefined()) return;
683
684  LatticeVal &V1State = getValueState(I.getOperand(0));
685  LatticeVal &V2State = getValueState(I.getOperand(1));
686
687  if (V1State.isOverdefined() || V2State.isOverdefined()) {
688    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
689    // operand is overdefined.
690    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
691      LatticeVal *NonOverdefVal = 0;
692      if (!V1State.isOverdefined()) {
693        NonOverdefVal = &V1State;
694      } else if (!V2State.isOverdefined()) {
695        NonOverdefVal = &V2State;
696      }
697
698      if (NonOverdefVal) {
699        if (NonOverdefVal->isUndefined()) {
700          // Could annihilate value.
701          if (I.getOpcode() == Instruction::And)
702            markConstant(IV, &I, Constant::getNullValue(I.getType()));
703          else if (const PackedType *PT = dyn_cast<PackedType>(I.getType()))
704            markConstant(IV, &I, ConstantPacked::getAllOnesValue(PT));
705          else
706            markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
707          return;
708        } else {
709          if (I.getOpcode() == Instruction::And) {
710            if (NonOverdefVal->getConstant()->isNullValue()) {
711              markConstant(IV, &I, NonOverdefVal->getConstant());
712              return;      // X and 0 = 0
713            }
714          } else {
715            if (ConstantInt *CI =
716                     dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
717              if (CI->isAllOnesValue()) {
718                markConstant(IV, &I, NonOverdefVal->getConstant());
719                return;    // X or -1 = -1
720              }
721          }
722        }
723      }
724    }
725
726
727    // If both operands are PHI nodes, it is possible that this instruction has
728    // a constant value, despite the fact that the PHI node doesn't.  Check for
729    // this condition now.
730    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
731      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
732        if (PN1->getParent() == PN2->getParent()) {
733          // Since the two PHI nodes are in the same basic block, they must have
734          // entries for the same predecessors.  Walk the predecessor list, and
735          // if all of the incoming values are constants, and the result of
736          // evaluating this expression with all incoming value pairs is the
737          // same, then this expression is a constant even though the PHI node
738          // is not a constant!
739          LatticeVal Result;
740          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
741            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
742            BasicBlock *InBlock = PN1->getIncomingBlock(i);
743            LatticeVal &In2 =
744              getValueState(PN2->getIncomingValueForBlock(InBlock));
745
746            if (In1.isOverdefined() || In2.isOverdefined()) {
747              Result.markOverdefined();
748              break;  // Cannot fold this operation over the PHI nodes!
749            } else if (In1.isConstant() && In2.isConstant()) {
750              Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
751                                              In2.getConstant());
752              if (Result.isUndefined())
753                Result.markConstant(V);
754              else if (Result.isConstant() && Result.getConstant() != V) {
755                Result.markOverdefined();
756                break;
757              }
758            }
759          }
760
761          // If we found a constant value here, then we know the instruction is
762          // constant despite the fact that the PHI nodes are overdefined.
763          if (Result.isConstant()) {
764            markConstant(IV, &I, Result.getConstant());
765            // Remember that this instruction is virtually using the PHI node
766            // operands.
767            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
768            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
769            return;
770          } else if (Result.isUndefined()) {
771            return;
772          }
773
774          // Okay, this really is overdefined now.  Since we might have
775          // speculatively thought that this was not overdefined before, and
776          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
777          // make sure to clean out any entries that we put there, for
778          // efficiency.
779          std::multimap<PHINode*, Instruction*>::iterator It, E;
780          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
781          while (It != E) {
782            if (It->second == &I) {
783              UsersOfOverdefinedPHIs.erase(It++);
784            } else
785              ++It;
786          }
787          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
788          while (It != E) {
789            if (It->second == &I) {
790              UsersOfOverdefinedPHIs.erase(It++);
791            } else
792              ++It;
793          }
794        }
795
796    markOverdefined(IV, &I);
797  } else if (V1State.isConstant() && V2State.isConstant()) {
798    markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
799                                           V2State.getConstant()));
800  }
801}
802
803// Handle ICmpInst instruction...
804void SCCPSolver::visitCmpInst(CmpInst &I) {
805  LatticeVal &IV = ValueState[&I];
806  if (IV.isOverdefined()) return;
807
808  LatticeVal &V1State = getValueState(I.getOperand(0));
809  LatticeVal &V2State = getValueState(I.getOperand(1));
810
811  if (V1State.isOverdefined() || V2State.isOverdefined()) {
812    // If both operands are PHI nodes, it is possible that this instruction has
813    // a constant value, despite the fact that the PHI node doesn't.  Check for
814    // this condition now.
815    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
816      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
817        if (PN1->getParent() == PN2->getParent()) {
818          // Since the two PHI nodes are in the same basic block, they must have
819          // entries for the same predecessors.  Walk the predecessor list, and
820          // if all of the incoming values are constants, and the result of
821          // evaluating this expression with all incoming value pairs is the
822          // same, then this expression is a constant even though the PHI node
823          // is not a constant!
824          LatticeVal Result;
825          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
826            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
827            BasicBlock *InBlock = PN1->getIncomingBlock(i);
828            LatticeVal &In2 =
829              getValueState(PN2->getIncomingValueForBlock(InBlock));
830
831            if (In1.isOverdefined() || In2.isOverdefined()) {
832              Result.markOverdefined();
833              break;  // Cannot fold this operation over the PHI nodes!
834            } else if (In1.isConstant() && In2.isConstant()) {
835              Constant *V = ConstantExpr::getCompare(I.getPredicate(),
836                                                     In1.getConstant(),
837                                                     In2.getConstant());
838              if (Result.isUndefined())
839                Result.markConstant(V);
840              else if (Result.isConstant() && Result.getConstant() != V) {
841                Result.markOverdefined();
842                break;
843              }
844            }
845          }
846
847          // If we found a constant value here, then we know the instruction is
848          // constant despite the fact that the PHI nodes are overdefined.
849          if (Result.isConstant()) {
850            markConstant(IV, &I, Result.getConstant());
851            // Remember that this instruction is virtually using the PHI node
852            // operands.
853            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
854            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
855            return;
856          } else if (Result.isUndefined()) {
857            return;
858          }
859
860          // Okay, this really is overdefined now.  Since we might have
861          // speculatively thought that this was not overdefined before, and
862          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
863          // make sure to clean out any entries that we put there, for
864          // efficiency.
865          std::multimap<PHINode*, Instruction*>::iterator It, E;
866          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
867          while (It != E) {
868            if (It->second == &I) {
869              UsersOfOverdefinedPHIs.erase(It++);
870            } else
871              ++It;
872          }
873          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
874          while (It != E) {
875            if (It->second == &I) {
876              UsersOfOverdefinedPHIs.erase(It++);
877            } else
878              ++It;
879          }
880        }
881
882    markOverdefined(IV, &I);
883  } else if (V1State.isConstant() && V2State.isConstant()) {
884    markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
885                                                  V1State.getConstant(),
886                                                  V2State.getConstant()));
887  }
888}
889
890void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
891  // FIXME : SCCP does not handle vectors properly.
892  markOverdefined(&I);
893  return;
894
895#if 0
896  LatticeVal &ValState = getValueState(I.getOperand(0));
897  LatticeVal &IdxState = getValueState(I.getOperand(1));
898
899  if (ValState.isOverdefined() || IdxState.isOverdefined())
900    markOverdefined(&I);
901  else if(ValState.isConstant() && IdxState.isConstant())
902    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
903                                                     IdxState.getConstant()));
904#endif
905}
906
907void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
908  // FIXME : SCCP does not handle vectors properly.
909  markOverdefined(&I);
910  return;
911#if 0
912  LatticeVal &ValState = getValueState(I.getOperand(0));
913  LatticeVal &EltState = getValueState(I.getOperand(1));
914  LatticeVal &IdxState = getValueState(I.getOperand(2));
915
916  if (ValState.isOverdefined() || EltState.isOverdefined() ||
917      IdxState.isOverdefined())
918    markOverdefined(&I);
919  else if(ValState.isConstant() && EltState.isConstant() &&
920          IdxState.isConstant())
921    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
922                                                    EltState.getConstant(),
923                                                    IdxState.getConstant()));
924  else if (ValState.isUndefined() && EltState.isConstant() &&
925           IdxState.isConstant())
926    markConstant(&I, ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
927                                                    EltState.getConstant(),
928                                                    IdxState.getConstant()));
929#endif
930}
931
932void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
933  // FIXME : SCCP does not handle vectors properly.
934  markOverdefined(&I);
935  return;
936#if 0
937  LatticeVal &V1State   = getValueState(I.getOperand(0));
938  LatticeVal &V2State   = getValueState(I.getOperand(1));
939  LatticeVal &MaskState = getValueState(I.getOperand(2));
940
941  if (MaskState.isUndefined() ||
942      (V1State.isUndefined() && V2State.isUndefined()))
943    return;  // Undefined output if mask or both inputs undefined.
944
945  if (V1State.isOverdefined() || V2State.isOverdefined() ||
946      MaskState.isOverdefined()) {
947    markOverdefined(&I);
948  } else {
949    // A mix of constant/undef inputs.
950    Constant *V1 = V1State.isConstant() ?
951        V1State.getConstant() : UndefValue::get(I.getType());
952    Constant *V2 = V2State.isConstant() ?
953        V2State.getConstant() : UndefValue::get(I.getType());
954    Constant *Mask = MaskState.isConstant() ?
955      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
956    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
957  }
958#endif
959}
960
961// Handle getelementptr instructions... if all operands are constants then we
962// can turn this into a getelementptr ConstantExpr.
963//
964void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
965  LatticeVal &IV = ValueState[&I];
966  if (IV.isOverdefined()) return;
967
968  std::vector<Constant*> Operands;
969  Operands.reserve(I.getNumOperands());
970
971  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
972    LatticeVal &State = getValueState(I.getOperand(i));
973    if (State.isUndefined())
974      return;  // Operands are not resolved yet...
975    else if (State.isOverdefined()) {
976      markOverdefined(IV, &I);
977      return;
978    }
979    assert(State.isConstant() && "Unknown state!");
980    Operands.push_back(State.getConstant());
981  }
982
983  Constant *Ptr = Operands[0];
984  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
985
986  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands));
987}
988
989void SCCPSolver::visitStoreInst(Instruction &SI) {
990  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
991    return;
992  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
993  hash_map<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
994  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
995
996  // Get the value we are storing into the global.
997  LatticeVal &PtrVal = getValueState(SI.getOperand(0));
998
999  mergeInValue(I->second, GV, PtrVal);
1000  if (I->second.isOverdefined())
1001    TrackedGlobals.erase(I);      // No need to keep tracking this!
1002}
1003
1004
1005// Handle load instructions.  If the operand is a constant pointer to a constant
1006// global, we can replace the load with the loaded constant value!
1007void SCCPSolver::visitLoadInst(LoadInst &I) {
1008  LatticeVal &IV = ValueState[&I];
1009  if (IV.isOverdefined()) return;
1010
1011  LatticeVal &PtrVal = getValueState(I.getOperand(0));
1012  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1013  if (PtrVal.isConstant() && !I.isVolatile()) {
1014    Value *Ptr = PtrVal.getConstant();
1015    if (isa<ConstantPointerNull>(Ptr)) {
1016      // load null -> null
1017      markConstant(IV, &I, Constant::getNullValue(I.getType()));
1018      return;
1019    }
1020
1021    // Transform load (constant global) into the value loaded.
1022    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1023      if (GV->isConstant()) {
1024        if (!GV->isExternal()) {
1025          markConstant(IV, &I, GV->getInitializer());
1026          return;
1027        }
1028      } else if (!TrackedGlobals.empty()) {
1029        // If we are tracking this global, merge in the known value for it.
1030        hash_map<GlobalVariable*, LatticeVal>::iterator It =
1031          TrackedGlobals.find(GV);
1032        if (It != TrackedGlobals.end()) {
1033          mergeInValue(IV, &I, It->second);
1034          return;
1035        }
1036      }
1037    }
1038
1039    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1040    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1041      if (CE->getOpcode() == Instruction::GetElementPtr)
1042    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1043      if (GV->isConstant() && !GV->isExternal())
1044        if (Constant *V =
1045             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
1046          markConstant(IV, &I, V);
1047          return;
1048        }
1049  }
1050
1051  // Otherwise we cannot say for certain what value this load will produce.
1052  // Bail out.
1053  markOverdefined(IV, &I);
1054}
1055
1056void SCCPSolver::visitCallSite(CallSite CS) {
1057  Function *F = CS.getCalledFunction();
1058
1059  // If we are tracking this function, we must make sure to bind arguments as
1060  // appropriate.
1061  hash_map<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end();
1062  if (F && F->hasInternalLinkage())
1063    TFRVI = TrackedFunctionRetVals.find(F);
1064
1065  if (TFRVI != TrackedFunctionRetVals.end()) {
1066    // If this is the first call to the function hit, mark its entry block
1067    // executable.
1068    if (!BBExecutable.count(F->begin()))
1069      MarkBlockExecutable(F->begin());
1070
1071    CallSite::arg_iterator CAI = CS.arg_begin();
1072    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1073         AI != E; ++AI, ++CAI) {
1074      LatticeVal &IV = ValueState[AI];
1075      if (!IV.isOverdefined())
1076        mergeInValue(IV, AI, getValueState(*CAI));
1077    }
1078  }
1079  Instruction *I = CS.getInstruction();
1080  if (I->getType() == Type::VoidTy) return;
1081
1082  LatticeVal &IV = ValueState[I];
1083  if (IV.isOverdefined()) return;
1084
1085  // Propagate the return value of the function to the value of the instruction.
1086  if (TFRVI != TrackedFunctionRetVals.end()) {
1087    mergeInValue(IV, I, TFRVI->second);
1088    return;
1089  }
1090
1091  if (F == 0 || !F->isExternal() || !canConstantFoldCallTo(F)) {
1092    markOverdefined(IV, I);
1093    return;
1094  }
1095
1096  std::vector<Constant*> Operands;
1097  Operands.reserve(I->getNumOperands()-1);
1098
1099  for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1100       AI != E; ++AI) {
1101    LatticeVal &State = getValueState(*AI);
1102    if (State.isUndefined())
1103      return;  // Operands are not resolved yet...
1104    else if (State.isOverdefined()) {
1105      markOverdefined(IV, I);
1106      return;
1107    }
1108    assert(State.isConstant() && "Unknown state!");
1109    Operands.push_back(State.getConstant());
1110  }
1111
1112  if (Constant *C = ConstantFoldCall(F, Operands))
1113    markConstant(IV, I, C);
1114  else
1115    markOverdefined(IV, I);
1116}
1117
1118
1119void SCCPSolver::Solve() {
1120  // Process the work lists until they are empty!
1121  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1122         !OverdefinedInstWorkList.empty()) {
1123    // Process the instruction work list...
1124    while (!OverdefinedInstWorkList.empty()) {
1125      Value *I = OverdefinedInstWorkList.back();
1126      OverdefinedInstWorkList.pop_back();
1127
1128      DOUT << "\nPopped off OI-WL: " << *I;
1129
1130      // "I" got into the work list because it either made the transition from
1131      // bottom to constant
1132      //
1133      // Anything on this worklist that is overdefined need not be visited
1134      // since all of its users will have already been marked as overdefined
1135      // Update all of the users of this instruction's value...
1136      //
1137      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1138           UI != E; ++UI)
1139        OperandChangedState(*UI);
1140    }
1141    // Process the instruction work list...
1142    while (!InstWorkList.empty()) {
1143      Value *I = InstWorkList.back();
1144      InstWorkList.pop_back();
1145
1146      DOUT << "\nPopped off I-WL: " << *I;
1147
1148      // "I" got into the work list because it either made the transition from
1149      // bottom to constant
1150      //
1151      // Anything on this worklist that is overdefined need not be visited
1152      // since all of its users will have already been marked as overdefined.
1153      // Update all of the users of this instruction's value...
1154      //
1155      if (!getValueState(I).isOverdefined())
1156        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1157             UI != E; ++UI)
1158          OperandChangedState(*UI);
1159    }
1160
1161    // Process the basic block work list...
1162    while (!BBWorkList.empty()) {
1163      BasicBlock *BB = BBWorkList.back();
1164      BBWorkList.pop_back();
1165
1166      DOUT << "\nPopped off BBWL: " << *BB;
1167
1168      // Notify all instructions in this basic block that they are newly
1169      // executable.
1170      visit(BB);
1171    }
1172  }
1173}
1174
1175/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1176/// that branches on undef values cannot reach any of their successors.
1177/// However, this is not a safe assumption.  After we solve dataflow, this
1178/// method should be use to handle this.  If this returns true, the solver
1179/// should be rerun.
1180///
1181/// This method handles this by finding an unresolved branch and marking it one
1182/// of the edges from the block as being feasible, even though the condition
1183/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1184/// CFG and only slightly pessimizes the analysis results (by marking one,
1185/// potentially infeasible, edge feasible).  This cannot usefully modify the
1186/// constraints on the condition of the branch, as that would impact other users
1187/// of the value.
1188///
1189/// This scan also checks for values that use undefs, whose results are actually
1190/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1191/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1192/// even if X isn't defined.
1193bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1194  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1195    if (!BBExecutable.count(BB))
1196      continue;
1197
1198    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1199      // Look for instructions which produce undef values.
1200      if (I->getType() == Type::VoidTy) continue;
1201
1202      LatticeVal &LV = getValueState(I);
1203      if (!LV.isUndefined()) continue;
1204
1205      // Get the lattice values of the first two operands for use below.
1206      LatticeVal &Op0LV = getValueState(I->getOperand(0));
1207      LatticeVal Op1LV;
1208      if (I->getNumOperands() == 2) {
1209        // If this is a two-operand instruction, and if both operands are
1210        // undefs, the result stays undef.
1211        Op1LV = getValueState(I->getOperand(1));
1212        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1213          continue;
1214      }
1215
1216      // If this is an instructions whose result is defined even if the input is
1217      // not fully defined, propagate the information.
1218      const Type *ITy = I->getType();
1219      switch (I->getOpcode()) {
1220      default: break;          // Leave the instruction as an undef.
1221      case Instruction::ZExt:
1222        // After a zero extend, we know the top part is zero.  SExt doesn't have
1223        // to be handled here, because we don't know whether the top part is 1's
1224        // or 0's.
1225        assert(Op0LV.isUndefined());
1226        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1227        return true;
1228      case Instruction::Mul:
1229      case Instruction::And:
1230        // undef * X -> 0.   X could be zero.
1231        // undef & X -> 0.   X could be zero.
1232        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1233        return true;
1234
1235      case Instruction::Or:
1236        // undef | X -> -1.   X could be -1.
1237        if (const PackedType *PTy = dyn_cast<PackedType>(ITy))
1238          markForcedConstant(LV, I, ConstantPacked::getAllOnesValue(PTy));
1239        else
1240          markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy));
1241        return true;
1242
1243      case Instruction::SDiv:
1244      case Instruction::UDiv:
1245      case Instruction::SRem:
1246      case Instruction::URem:
1247        // X / undef -> undef.  No change.
1248        // X % undef -> undef.  No change.
1249        if (Op1LV.isUndefined()) break;
1250
1251        // undef / X -> 0.   X could be maxint.
1252        // undef % X -> 0.   X could be 1.
1253        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1254        return true;
1255
1256      case Instruction::AShr:
1257        // undef >>s X -> undef.  No change.
1258        if (Op0LV.isUndefined()) break;
1259
1260        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1261        if (Op0LV.isConstant())
1262          markForcedConstant(LV, I, Op0LV.getConstant());
1263        else
1264          markOverdefined(LV, I);
1265        return true;
1266      case Instruction::LShr:
1267      case Instruction::Shl:
1268        // undef >> X -> undef.  No change.
1269        // undef << X -> undef.  No change.
1270        if (Op0LV.isUndefined()) break;
1271
1272        // X >> undef -> 0.  X could be 0.
1273        // X << undef -> 0.  X could be 0.
1274        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1275        return true;
1276      case Instruction::Select:
1277        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1278        if (Op0LV.isUndefined()) {
1279          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1280            Op1LV = getValueState(I->getOperand(2));
1281        } else if (Op1LV.isUndefined()) {
1282          // c ? undef : undef -> undef.  No change.
1283          Op1LV = getValueState(I->getOperand(2));
1284          if (Op1LV.isUndefined())
1285            break;
1286          // Otherwise, c ? undef : x -> x.
1287        } else {
1288          // Leave Op1LV as Operand(1)'s LatticeValue.
1289        }
1290
1291        if (Op1LV.isConstant())
1292          markForcedConstant(LV, I, Op1LV.getConstant());
1293        else
1294          markOverdefined(LV, I);
1295        return true;
1296      }
1297    }
1298
1299    TerminatorInst *TI = BB->getTerminator();
1300    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1301      if (!BI->isConditional()) continue;
1302      if (!getValueState(BI->getCondition()).isUndefined())
1303        continue;
1304    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1305      if (!getValueState(SI->getCondition()).isUndefined())
1306        continue;
1307    } else {
1308      continue;
1309    }
1310
1311    // If the edge to the first successor isn't thought to be feasible yet, mark
1312    // it so now.
1313    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(0))))
1314      continue;
1315
1316    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
1317    // and return.  This will make other blocks reachable, which will allow new
1318    // values to be discovered and existing ones to be moved in the lattice.
1319    markEdgeExecutable(BB, TI->getSuccessor(0));
1320    return true;
1321  }
1322
1323  return false;
1324}
1325
1326
1327namespace {
1328  //===--------------------------------------------------------------------===//
1329  //
1330  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1331  /// Sparse Conditional Constant Propagator.
1332  ///
1333  struct SCCP : public FunctionPass {
1334    // runOnFunction - Run the Sparse Conditional Constant Propagation
1335    // algorithm, and return true if the function was modified.
1336    //
1337    bool runOnFunction(Function &F);
1338
1339    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1340      AU.setPreservesCFG();
1341    }
1342  };
1343
1344  RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
1345} // end anonymous namespace
1346
1347
1348// createSCCPPass - This is the public interface to this file...
1349FunctionPass *llvm::createSCCPPass() {
1350  return new SCCP();
1351}
1352
1353
1354// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1355// and return true if the function was modified.
1356//
1357bool SCCP::runOnFunction(Function &F) {
1358  DOUT << "SCCP on function '" << F.getName() << "'\n";
1359  SCCPSolver Solver;
1360
1361  // Mark the first block of the function as being executable.
1362  Solver.MarkBlockExecutable(F.begin());
1363
1364  // Mark all arguments to the function as being overdefined.
1365  hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1366  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI)
1367    Values[AI].markOverdefined();
1368
1369  // Solve for constants.
1370  bool ResolvedUndefs = true;
1371  while (ResolvedUndefs) {
1372    Solver.Solve();
1373    DOUT << "RESOLVING UNDEFs\n";
1374    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1375  }
1376
1377  bool MadeChanges = false;
1378
1379  // If we decided that there are basic blocks that are dead in this function,
1380  // delete their contents now.  Note that we cannot actually delete the blocks,
1381  // as we cannot modify the CFG of the function.
1382  //
1383  std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks();
1384  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1385    if (!ExecutableBBs.count(BB)) {
1386      DOUT << "  BasicBlock Dead:" << *BB;
1387      ++NumDeadBlocks;
1388
1389      // Delete the instructions backwards, as it has a reduced likelihood of
1390      // having to update as many def-use and use-def chains.
1391      std::vector<Instruction*> Insts;
1392      for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1393           I != E; ++I)
1394        Insts.push_back(I);
1395      while (!Insts.empty()) {
1396        Instruction *I = Insts.back();
1397        Insts.pop_back();
1398        if (!I->use_empty())
1399          I->replaceAllUsesWith(UndefValue::get(I->getType()));
1400        BB->getInstList().erase(I);
1401        MadeChanges = true;
1402        ++NumInstRemoved;
1403      }
1404    } else {
1405      // Iterate over all of the instructions in a function, replacing them with
1406      // constants if we have found them to be of constant values.
1407      //
1408      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1409        Instruction *Inst = BI++;
1410        if (Inst->getType() != Type::VoidTy) {
1411          LatticeVal &IV = Values[Inst];
1412          if (IV.isConstant() || IV.isUndefined() &&
1413              !isa<TerminatorInst>(Inst)) {
1414            Constant *Const = IV.isConstant()
1415              ? IV.getConstant() : UndefValue::get(Inst->getType());
1416            DOUT << "  Constant: " << *Const << " = " << *Inst;
1417
1418            // Replaces all of the uses of a variable with uses of the constant.
1419            Inst->replaceAllUsesWith(Const);
1420
1421            // Delete the instruction.
1422            BB->getInstList().erase(Inst);
1423
1424            // Hey, we just changed something!
1425            MadeChanges = true;
1426            ++NumInstRemoved;
1427          }
1428        }
1429      }
1430    }
1431
1432  return MadeChanges;
1433}
1434
1435namespace {
1436  //===--------------------------------------------------------------------===//
1437  //
1438  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1439  /// Constant Propagation.
1440  ///
1441  struct IPSCCP : public ModulePass {
1442    bool runOnModule(Module &M);
1443  };
1444
1445  RegisterPass<IPSCCP>
1446  Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1447} // end anonymous namespace
1448
1449// createIPSCCPPass - This is the public interface to this file...
1450ModulePass *llvm::createIPSCCPPass() {
1451  return new IPSCCP();
1452}
1453
1454
1455static bool AddressIsTaken(GlobalValue *GV) {
1456  // Delete any dead constantexpr klingons.
1457  GV->removeDeadConstantUsers();
1458
1459  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1460       UI != E; ++UI)
1461    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1462      if (SI->getOperand(0) == GV || SI->isVolatile())
1463        return true;  // Storing addr of GV.
1464    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1465      // Make sure we are calling the function, not passing the address.
1466      CallSite CS = CallSite::get(cast<Instruction>(*UI));
1467      for (CallSite::arg_iterator AI = CS.arg_begin(),
1468             E = CS.arg_end(); AI != E; ++AI)
1469        if (*AI == GV)
1470          return true;
1471    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1472      if (LI->isVolatile())
1473        return true;
1474    } else {
1475      return true;
1476    }
1477  return false;
1478}
1479
1480bool IPSCCP::runOnModule(Module &M) {
1481  SCCPSolver Solver;
1482
1483  // Loop over all functions, marking arguments to those with their addresses
1484  // taken or that are external as overdefined.
1485  //
1486  hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1487  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1488    if (!F->hasInternalLinkage() || AddressIsTaken(F)) {
1489      if (!F->isExternal())
1490        Solver.MarkBlockExecutable(F->begin());
1491      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1492           AI != E; ++AI)
1493        Values[AI].markOverdefined();
1494    } else {
1495      Solver.AddTrackedFunction(F);
1496    }
1497
1498  // Loop over global variables.  We inform the solver about any internal global
1499  // variables that do not have their 'addresses taken'.  If they don't have
1500  // their addresses taken, we can propagate constants through them.
1501  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1502       G != E; ++G)
1503    if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G))
1504      Solver.TrackValueOfGlobalVariable(G);
1505
1506  // Solve for constants.
1507  bool ResolvedUndefs = true;
1508  while (ResolvedUndefs) {
1509    Solver.Solve();
1510
1511    DOUT << "RESOLVING UNDEFS\n";
1512    ResolvedUndefs = false;
1513    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1514      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1515  }
1516
1517  bool MadeChanges = false;
1518
1519  // Iterate over all of the instructions in the module, replacing them with
1520  // constants if we have found them to be of constant values.
1521  //
1522  std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks();
1523  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1524    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1525         AI != E; ++AI)
1526      if (!AI->use_empty()) {
1527        LatticeVal &IV = Values[AI];
1528        if (IV.isConstant() || IV.isUndefined()) {
1529          Constant *CST = IV.isConstant() ?
1530            IV.getConstant() : UndefValue::get(AI->getType());
1531          DOUT << "***  Arg " << *AI << " = " << *CST <<"\n";
1532
1533          // Replaces all of the uses of a variable with uses of the
1534          // constant.
1535          AI->replaceAllUsesWith(CST);
1536          ++IPNumArgsElimed;
1537        }
1538      }
1539
1540    std::vector<BasicBlock*> BlocksToErase;
1541    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1542      if (!ExecutableBBs.count(BB)) {
1543        DOUT << "  BasicBlock Dead:" << *BB;
1544        ++IPNumDeadBlocks;
1545
1546        // Delete the instructions backwards, as it has a reduced likelihood of
1547        // having to update as many def-use and use-def chains.
1548        std::vector<Instruction*> Insts;
1549        TerminatorInst *TI = BB->getTerminator();
1550        for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1551          Insts.push_back(I);
1552
1553        while (!Insts.empty()) {
1554          Instruction *I = Insts.back();
1555          Insts.pop_back();
1556          if (!I->use_empty())
1557            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1558          BB->getInstList().erase(I);
1559          MadeChanges = true;
1560          ++IPNumInstRemoved;
1561        }
1562
1563        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1564          BasicBlock *Succ = TI->getSuccessor(i);
1565          if (Succ->begin() != Succ->end() && isa<PHINode>(Succ->begin()))
1566            TI->getSuccessor(i)->removePredecessor(BB);
1567        }
1568        if (!TI->use_empty())
1569          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1570        BB->getInstList().erase(TI);
1571
1572        if (&*BB != &F->front())
1573          BlocksToErase.push_back(BB);
1574        else
1575          new UnreachableInst(BB);
1576
1577      } else {
1578        for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1579          Instruction *Inst = BI++;
1580          if (Inst->getType() != Type::VoidTy) {
1581            LatticeVal &IV = Values[Inst];
1582            if (IV.isConstant() || IV.isUndefined() &&
1583                !isa<TerminatorInst>(Inst)) {
1584              Constant *Const = IV.isConstant()
1585                ? IV.getConstant() : UndefValue::get(Inst->getType());
1586              DOUT << "  Constant: " << *Const << " = " << *Inst;
1587
1588              // Replaces all of the uses of a variable with uses of the
1589              // constant.
1590              Inst->replaceAllUsesWith(Const);
1591
1592              // Delete the instruction.
1593              if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst))
1594                BB->getInstList().erase(Inst);
1595
1596              // Hey, we just changed something!
1597              MadeChanges = true;
1598              ++IPNumInstRemoved;
1599            }
1600          }
1601        }
1602      }
1603
1604    // Now that all instructions in the function are constant folded, erase dead
1605    // blocks, because we can now use ConstantFoldTerminator to get rid of
1606    // in-edges.
1607    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1608      // If there are any PHI nodes in this successor, drop entries for BB now.
1609      BasicBlock *DeadBB = BlocksToErase[i];
1610      while (!DeadBB->use_empty()) {
1611        Instruction *I = cast<Instruction>(DeadBB->use_back());
1612        bool Folded = ConstantFoldTerminator(I->getParent());
1613        if (!Folded) {
1614          // The constant folder may not have been able to fold the terminator
1615          // if this is a branch or switch on undef.  Fold it manually as a
1616          // branch to the first successor.
1617          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1618            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1619                   "Branch should be foldable!");
1620          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1621            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1622          } else {
1623            assert(0 && "Didn't fold away reference to block!");
1624          }
1625
1626          // Make this an uncond branch to the first successor.
1627          TerminatorInst *TI = I->getParent()->getTerminator();
1628          new BranchInst(TI->getSuccessor(0), TI);
1629
1630          // Remove entries in successor phi nodes to remove edges.
1631          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1632            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1633
1634          // Remove the old terminator.
1635          TI->eraseFromParent();
1636        }
1637      }
1638
1639      // Finally, delete the basic block.
1640      F->getBasicBlockList().erase(DeadBB);
1641    }
1642  }
1643
1644  // If we inferred constant or undef return values for a function, we replaced
1645  // all call uses with the inferred value.  This means we don't need to bother
1646  // actually returning anything from the function.  Replace all return
1647  // instructions with return undef.
1648  const hash_map<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals();
1649  for (hash_map<Function*, LatticeVal>::const_iterator I = RV.begin(),
1650         E = RV.end(); I != E; ++I)
1651    if (!I->second.isOverdefined() &&
1652        I->first->getReturnType() != Type::VoidTy) {
1653      Function *F = I->first;
1654      for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1655        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1656          if (!isa<UndefValue>(RI->getOperand(0)))
1657            RI->setOperand(0, UndefValue::get(F->getReturnType()));
1658    }
1659
1660  // If we infered constant or undef values for globals variables, we can delete
1661  // the global and any stores that remain to it.
1662  const hash_map<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1663  for (hash_map<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1664         E = TG.end(); I != E; ++I) {
1665    GlobalVariable *GV = I->first;
1666    assert(!I->second.isOverdefined() &&
1667           "Overdefined values should have been taken out of the map!");
1668    DOUT << "Found that GV '" << GV->getName()<< "' is constant!\n";
1669    while (!GV->use_empty()) {
1670      StoreInst *SI = cast<StoreInst>(GV->use_back());
1671      SI->eraseFromParent();
1672    }
1673    M.getGlobalList().erase(GV);
1674    ++IPNumGlobalConst;
1675  }
1676
1677  return MadeChanges;
1678}
1679