SCCP.cpp revision 54cfe7e027ee56799f3d597fd5095394f66e0ff0
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "sccp"
21#include "llvm/Transforms/Scalar.h"
22#include "llvm/Transforms/IPO.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/Pass.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/Transforms/Utils/Local.h"
30#include "llvm/Target/TargetData.h"
31#include "llvm/Support/CallSite.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/InstVisitor.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/DenseSet.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/STLExtras.h"
43#include <algorithm>
44#include <map>
45using namespace llvm;
46
47STATISTIC(NumInstRemoved, "Number of instructions removed");
48STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
49
50STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
51STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
52STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
53
54namespace {
55/// LatticeVal class - This class represents the different lattice values that
56/// an LLVM value may occupy.  It is a simple class with value semantics.
57///
58class LatticeVal {
59  enum LatticeValueTy {
60    /// undefined - This LLVM Value has no known value yet.
61    undefined,
62
63    /// constant - This LLVM Value has a specific constant value.
64    constant,
65
66    /// forcedconstant - This LLVM Value was thought to be undef until
67    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
68    /// with another (different) constant, it goes to overdefined, instead of
69    /// asserting.
70    forcedconstant,
71
72    /// overdefined - This instruction is not known to be constant, and we know
73    /// it has a value.
74    overdefined
75  };
76
77  /// Val: This stores the current lattice value along with the Constant* for
78  /// the constant if this is a 'constant' or 'forcedconstant' value.
79  PointerIntPair<Constant *, 2, LatticeValueTy> Val;
80
81  LatticeValueTy getLatticeValue() const {
82    return Val.getInt();
83  }
84
85public:
86  LatticeVal() : Val(0, undefined) {}
87
88  bool isUndefined() const { return getLatticeValue() == undefined; }
89  bool isConstant() const {
90    return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
91  }
92  bool isOverdefined() const { return getLatticeValue() == overdefined; }
93
94  Constant *getConstant() const {
95    assert(isConstant() && "Cannot get the constant of a non-constant!");
96    return Val.getPointer();
97  }
98
99  /// markOverdefined - Return true if this is a change in status.
100  bool markOverdefined() {
101    if (isOverdefined())
102      return false;
103
104    Val.setInt(overdefined);
105    return true;
106  }
107
108  /// markConstant - Return true if this is a change in status.
109  bool markConstant(Constant *V) {
110    if (getLatticeValue() == constant) { // Constant but not forcedconstant.
111      assert(getConstant() == V && "Marking constant with different value");
112      return false;
113    }
114
115    if (isUndefined()) {
116      Val.setInt(constant);
117      assert(V && "Marking constant with NULL");
118      Val.setPointer(V);
119    } else {
120      assert(getLatticeValue() == forcedconstant &&
121             "Cannot move from overdefined to constant!");
122      // Stay at forcedconstant if the constant is the same.
123      if (V == getConstant()) return false;
124
125      // Otherwise, we go to overdefined.  Assumptions made based on the
126      // forced value are possibly wrong.  Assuming this is another constant
127      // could expose a contradiction.
128      Val.setInt(overdefined);
129    }
130    return true;
131  }
132
133  /// getConstantInt - If this is a constant with a ConstantInt value, return it
134  /// otherwise return null.
135  ConstantInt *getConstantInt() const {
136    if (isConstant())
137      return dyn_cast<ConstantInt>(getConstant());
138    return 0;
139  }
140
141  void markForcedConstant(Constant *V) {
142    assert(isUndefined() && "Can't force a defined value!");
143    Val.setInt(forcedconstant);
144    Val.setPointer(V);
145  }
146};
147} // end anonymous namespace.
148
149
150namespace {
151
152//===----------------------------------------------------------------------===//
153//
154/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
155/// Constant Propagation.
156///
157class SCCPSolver : public InstVisitor<SCCPSolver> {
158  const TargetData *TD;
159  SmallPtrSet<BasicBlock*, 8> BBExecutable;// The BBs that are executable.
160  DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
161
162  /// StructValueState - This maintains ValueState for values that have
163  /// StructType, for example for formal arguments, calls, insertelement, etc.
164  ///
165  DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
166
167  /// GlobalValue - If we are tracking any values for the contents of a global
168  /// variable, we keep a mapping from the constant accessor to the element of
169  /// the global, to the currently known value.  If the value becomes
170  /// overdefined, it's entry is simply removed from this map.
171  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
172
173  /// TrackedRetVals - If we are tracking arguments into and the return
174  /// value out of a function, it will have an entry in this map, indicating
175  /// what the known return value for the function is.
176  DenseMap<Function*, LatticeVal> TrackedRetVals;
177
178  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
179  /// that return multiple values.
180  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
181
182  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
183  /// represented here for efficient lookup.
184  SmallPtrSet<Function*, 16> MRVFunctionsTracked;
185
186  /// TrackingIncomingArguments - This is the set of functions for whose
187  /// arguments we make optimistic assumptions about and try to prove as
188  /// constants.
189  SmallPtrSet<Function*, 16> TrackingIncomingArguments;
190
191  /// The reason for two worklists is that overdefined is the lowest state
192  /// on the lattice, and moving things to overdefined as fast as possible
193  /// makes SCCP converge much faster.
194  ///
195  /// By having a separate worklist, we accomplish this because everything
196  /// possibly overdefined will become overdefined at the soonest possible
197  /// point.
198  SmallVector<Value*, 64> OverdefinedInstWorkList;
199  SmallVector<Value*, 64> InstWorkList;
200
201
202  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
203
204  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
205  /// overdefined, despite the fact that the PHI node is overdefined.
206  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
207
208  /// KnownFeasibleEdges - Entries in this set are edges which have already had
209  /// PHI nodes retriggered.
210  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
211  DenseSet<Edge> KnownFeasibleEdges;
212public:
213  SCCPSolver(const TargetData *td) : TD(td) {}
214
215  /// MarkBlockExecutable - This method can be used by clients to mark all of
216  /// the blocks that are known to be intrinsically live in the processed unit.
217  ///
218  /// This returns true if the block was not considered live before.
219  bool MarkBlockExecutable(BasicBlock *BB) {
220    if (!BBExecutable.insert(BB)) return false;
221    DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
222    BBWorkList.push_back(BB);  // Add the block to the work list!
223    return true;
224  }
225
226  /// TrackValueOfGlobalVariable - Clients can use this method to
227  /// inform the SCCPSolver that it should track loads and stores to the
228  /// specified global variable if it can.  This is only legal to call if
229  /// performing Interprocedural SCCP.
230  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
231    // We only track the contents of scalar globals.
232    if (GV->getType()->getElementType()->isSingleValueType()) {
233      LatticeVal &IV = TrackedGlobals[GV];
234      if (!isa<UndefValue>(GV->getInitializer()))
235        IV.markConstant(GV->getInitializer());
236    }
237  }
238
239  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
240  /// and out of the specified function (which cannot have its address taken),
241  /// this method must be called.
242  void AddTrackedFunction(Function *F) {
243    // Add an entry, F -> undef.
244    if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
245      MRVFunctionsTracked.insert(F);
246      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
247        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
248                                                     LatticeVal()));
249    } else
250      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
251  }
252
253  void AddArgumentTrackedFunction(Function *F) {
254    TrackingIncomingArguments.insert(F);
255  }
256
257  /// Solve - Solve for constants and executable blocks.
258  ///
259  void Solve();
260
261  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
262  /// that branches on undef values cannot reach any of their successors.
263  /// However, this is not a safe assumption.  After we solve dataflow, this
264  /// method should be use to handle this.  If this returns true, the solver
265  /// should be rerun.
266  bool ResolvedUndefsIn(Function &F);
267
268  bool isBlockExecutable(BasicBlock *BB) const {
269    return BBExecutable.count(BB);
270  }
271
272  LatticeVal getLatticeValueFor(Value *V) const {
273    DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
274    assert(I != ValueState.end() && "V is not in valuemap!");
275    return I->second;
276  }
277
278  /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const {
279    DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I =
280      StructValueState.find(std::make_pair(V, i));
281    assert(I != StructValueState.end() && "V is not in valuemap!");
282    return I->second;
283  }*/
284
285  /// getTrackedRetVals - Get the inferred return value map.
286  ///
287  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
288    return TrackedRetVals;
289  }
290
291  /// getTrackedGlobals - Get and return the set of inferred initializers for
292  /// global variables.
293  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
294    return TrackedGlobals;
295  }
296
297  void markOverdefined(Value *V) {
298    assert(!V->getType()->isStructTy() && "Should use other method");
299    markOverdefined(ValueState[V], V);
300  }
301
302  /// markAnythingOverdefined - Mark the specified value overdefined.  This
303  /// works with both scalars and structs.
304  void markAnythingOverdefined(Value *V) {
305    if (const StructType *STy = dyn_cast<StructType>(V->getType()))
306      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
307        markOverdefined(getStructValueState(V, i), V);
308    else
309      markOverdefined(V);
310  }
311
312private:
313  // markConstant - Make a value be marked as "constant".  If the value
314  // is not already a constant, add it to the instruction work list so that
315  // the users of the instruction are updated later.
316  //
317  void markConstant(LatticeVal &IV, Value *V, Constant *C) {
318    if (!IV.markConstant(C)) return;
319    DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
320    if (IV.isOverdefined())
321      OverdefinedInstWorkList.push_back(V);
322    else
323      InstWorkList.push_back(V);
324  }
325
326  void markConstant(Value *V, Constant *C) {
327    assert(!V->getType()->isStructTy() && "Should use other method");
328    markConstant(ValueState[V], V, C);
329  }
330
331  void markForcedConstant(Value *V, Constant *C) {
332    assert(!V->getType()->isStructTy() && "Should use other method");
333    LatticeVal &IV = ValueState[V];
334    IV.markForcedConstant(C);
335    DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
336    if (IV.isOverdefined())
337      OverdefinedInstWorkList.push_back(V);
338    else
339      InstWorkList.push_back(V);
340  }
341
342
343  // markOverdefined - Make a value be marked as "overdefined". If the
344  // value is not already overdefined, add it to the overdefined instruction
345  // work list so that the users of the instruction are updated later.
346  void markOverdefined(LatticeVal &IV, Value *V) {
347    if (!IV.markOverdefined()) return;
348
349    DEBUG(dbgs() << "markOverdefined: ";
350          if (Function *F = dyn_cast<Function>(V))
351            dbgs() << "Function '" << F->getName() << "'\n";
352          else
353            dbgs() << *V << '\n');
354    // Only instructions go on the work list
355    OverdefinedInstWorkList.push_back(V);
356  }
357
358  void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
359    if (IV.isOverdefined() || MergeWithV.isUndefined())
360      return;  // Noop.
361    if (MergeWithV.isOverdefined())
362      markOverdefined(IV, V);
363    else if (IV.isUndefined())
364      markConstant(IV, V, MergeWithV.getConstant());
365    else if (IV.getConstant() != MergeWithV.getConstant())
366      markOverdefined(IV, V);
367  }
368
369  void mergeInValue(Value *V, LatticeVal MergeWithV) {
370    assert(!V->getType()->isStructTy() && "Should use other method");
371    mergeInValue(ValueState[V], V, MergeWithV);
372  }
373
374
375  /// getValueState - Return the LatticeVal object that corresponds to the
376  /// value.  This function handles the case when the value hasn't been seen yet
377  /// by properly seeding constants etc.
378  LatticeVal &getValueState(Value *V) {
379    assert(!V->getType()->isStructTy() && "Should use getStructValueState");
380
381    std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
382      ValueState.insert(std::make_pair(V, LatticeVal()));
383    LatticeVal &LV = I.first->second;
384
385    if (!I.second)
386      return LV;  // Common case, already in the map.
387
388    if (Constant *C = dyn_cast<Constant>(V)) {
389      // Undef values remain undefined.
390      if (!isa<UndefValue>(V))
391        LV.markConstant(C);          // Constants are constant
392    }
393
394    // All others are underdefined by default.
395    return LV;
396  }
397
398  /// getStructValueState - Return the LatticeVal object that corresponds to the
399  /// value/field pair.  This function handles the case when the value hasn't
400  /// been seen yet by properly seeding constants etc.
401  LatticeVal &getStructValueState(Value *V, unsigned i) {
402    assert(V->getType()->isStructTy() && "Should use getValueState");
403    assert(i < cast<StructType>(V->getType())->getNumElements() &&
404           "Invalid element #");
405
406    std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
407              bool> I = StructValueState.insert(
408                        std::make_pair(std::make_pair(V, i), LatticeVal()));
409    LatticeVal &LV = I.first->second;
410
411    if (!I.second)
412      return LV;  // Common case, already in the map.
413
414    if (Constant *C = dyn_cast<Constant>(V)) {
415      if (isa<UndefValue>(C))
416        ; // Undef values remain undefined.
417      else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C))
418        LV.markConstant(CS->getOperand(i));      // Constants are constant.
419      else if (isa<ConstantAggregateZero>(C)) {
420        const Type *FieldTy = cast<StructType>(V->getType())->getElementType(i);
421        LV.markConstant(Constant::getNullValue(FieldTy));
422      } else
423        LV.markOverdefined();      // Unknown sort of constant.
424    }
425
426    // All others are underdefined by default.
427    return LV;
428  }
429
430
431  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
432  /// work list if it is not already executable.
433  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
434    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
435      return;  // This edge is already known to be executable!
436
437    if (!MarkBlockExecutable(Dest)) {
438      // If the destination is already executable, we just made an *edge*
439      // feasible that wasn't before.  Revisit the PHI nodes in the block
440      // because they have potentially new operands.
441      DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
442            << " -> " << Dest->getName() << "\n");
443
444      PHINode *PN;
445      for (BasicBlock::iterator I = Dest->begin();
446           (PN = dyn_cast<PHINode>(I)); ++I)
447        visitPHINode(*PN);
448    }
449  }
450
451  // getFeasibleSuccessors - Return a vector of booleans to indicate which
452  // successors are reachable from a given terminator instruction.
453  //
454  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
455
456  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
457  // block to the 'To' basic block is currently feasible.
458  //
459  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
460
461  // OperandChangedState - This method is invoked on all of the users of an
462  // instruction that was just changed state somehow.  Based on this
463  // information, we need to update the specified user of this instruction.
464  //
465  void OperandChangedState(Instruction *I) {
466    if (BBExecutable.count(I->getParent()))   // Inst is executable?
467      visit(*I);
468  }
469
470  /// RemoveFromOverdefinedPHIs - If I has any entries in the
471  /// UsersOfOverdefinedPHIs map for PN, remove them now.
472  void RemoveFromOverdefinedPHIs(Instruction *I, PHINode *PN) {
473    if (UsersOfOverdefinedPHIs.empty()) return;
474    std::multimap<PHINode*, Instruction*>::iterator It, E;
475    tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN);
476    while (It != E) {
477      if (It->second == I)
478        UsersOfOverdefinedPHIs.erase(It++);
479      else
480        ++It;
481    }
482  }
483
484  /// InsertInOverdefinedPHIs - Insert an entry in the UsersOfOverdefinedPHIS
485  /// map for I and PN, but if one is there already, do not create another.
486  /// (Duplicate entries do not break anything directly, but can lead to
487  /// exponential growth of the table in rare cases.)
488  void InsertInOverdefinedPHIs(Instruction *I, PHINode *PN) {
489    std::multimap<PHINode*, Instruction*>::iterator J, E;
490    tie(J, E) = UsersOfOverdefinedPHIs.equal_range(PN);
491    for (; J != E; ++J)
492      if (J->second == I)
493        return;
494    UsersOfOverdefinedPHIs.insert(std::make_pair(PN, I));
495  }
496
497private:
498  friend class InstVisitor<SCCPSolver>;
499
500  // visit implementations - Something changed in this instruction.  Either an
501  // operand made a transition, or the instruction is newly executable.  Change
502  // the value type of I to reflect these changes if appropriate.
503  void visitPHINode(PHINode &I);
504
505  // Terminators
506  void visitReturnInst(ReturnInst &I);
507  void visitTerminatorInst(TerminatorInst &TI);
508
509  void visitCastInst(CastInst &I);
510  void visitSelectInst(SelectInst &I);
511  void visitBinaryOperator(Instruction &I);
512  void visitCmpInst(CmpInst &I);
513  void visitExtractElementInst(ExtractElementInst &I);
514  void visitInsertElementInst(InsertElementInst &I);
515  void visitShuffleVectorInst(ShuffleVectorInst &I);
516  void visitExtractValueInst(ExtractValueInst &EVI);
517  void visitInsertValueInst(InsertValueInst &IVI);
518
519  // Instructions that cannot be folded away.
520  void visitStoreInst     (StoreInst &I);
521  void visitLoadInst      (LoadInst &I);
522  void visitGetElementPtrInst(GetElementPtrInst &I);
523  void visitCallInst      (CallInst &I) {
524    visitCallSite(&I);
525  }
526  void visitInvokeInst    (InvokeInst &II) {
527    visitCallSite(&II);
528    visitTerminatorInst(II);
529  }
530  void visitCallSite      (CallSite CS);
531  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
532  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
533  void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
534  void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
535
536  void visitInstruction(Instruction &I) {
537    // If a new instruction is added to LLVM that we don't handle.
538    dbgs() << "SCCP: Don't know how to handle: " << I;
539    markAnythingOverdefined(&I);   // Just in case
540  }
541};
542
543} // end anonymous namespace
544
545
546// getFeasibleSuccessors - Return a vector of booleans to indicate which
547// successors are reachable from a given terminator instruction.
548//
549void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
550                                       SmallVector<bool, 16> &Succs) {
551  Succs.resize(TI.getNumSuccessors());
552  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
553    if (BI->isUnconditional()) {
554      Succs[0] = true;
555      return;
556    }
557
558    LatticeVal BCValue = getValueState(BI->getCondition());
559    ConstantInt *CI = BCValue.getConstantInt();
560    if (CI == 0) {
561      // Overdefined condition variables, and branches on unfoldable constant
562      // conditions, mean the branch could go either way.
563      if (!BCValue.isUndefined())
564        Succs[0] = Succs[1] = true;
565      return;
566    }
567
568    // Constant condition variables mean the branch can only go a single way.
569    Succs[CI->isZero()] = true;
570    return;
571  }
572
573  if (isa<InvokeInst>(TI)) {
574    // Invoke instructions successors are always executable.
575    Succs[0] = Succs[1] = true;
576    return;
577  }
578
579  if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
580    LatticeVal SCValue = getValueState(SI->getCondition());
581    ConstantInt *CI = SCValue.getConstantInt();
582
583    if (CI == 0) {   // Overdefined or undefined condition?
584      // All destinations are executable!
585      if (!SCValue.isUndefined())
586        Succs.assign(TI.getNumSuccessors(), true);
587      return;
588    }
589
590    Succs[SI->findCaseValue(CI)] = true;
591    return;
592  }
593
594  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
595  if (isa<IndirectBrInst>(&TI)) {
596    // Just mark all destinations executable!
597    Succs.assign(TI.getNumSuccessors(), true);
598    return;
599  }
600
601#ifndef NDEBUG
602  dbgs() << "Unknown terminator instruction: " << TI << '\n';
603#endif
604  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
605}
606
607
608// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
609// block to the 'To' basic block is currently feasible.
610//
611bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
612  assert(BBExecutable.count(To) && "Dest should always be alive!");
613
614  // Make sure the source basic block is executable!!
615  if (!BBExecutable.count(From)) return false;
616
617  // Check to make sure this edge itself is actually feasible now.
618  TerminatorInst *TI = From->getTerminator();
619  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
620    if (BI->isUnconditional())
621      return true;
622
623    LatticeVal BCValue = getValueState(BI->getCondition());
624
625    // Overdefined condition variables mean the branch could go either way,
626    // undef conditions mean that neither edge is feasible yet.
627    ConstantInt *CI = BCValue.getConstantInt();
628    if (CI == 0)
629      return !BCValue.isUndefined();
630
631    // Constant condition variables mean the branch can only go a single way.
632    return BI->getSuccessor(CI->isZero()) == To;
633  }
634
635  // Invoke instructions successors are always executable.
636  if (isa<InvokeInst>(TI))
637    return true;
638
639  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
640    LatticeVal SCValue = getValueState(SI->getCondition());
641    ConstantInt *CI = SCValue.getConstantInt();
642
643    if (CI == 0)
644      return !SCValue.isUndefined();
645
646    // Make sure to skip the "default value" which isn't a value
647    for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
648      if (SI->getSuccessorValue(i) == CI) // Found the taken branch.
649        return SI->getSuccessor(i) == To;
650
651    // If the constant value is not equal to any of the branches, we must
652    // execute default branch.
653    return SI->getDefaultDest() == To;
654  }
655
656  // Just mark all destinations executable!
657  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
658  if (isa<IndirectBrInst>(&TI))
659    return true;
660
661#ifndef NDEBUG
662  dbgs() << "Unknown terminator instruction: " << *TI << '\n';
663#endif
664  llvm_unreachable(0);
665}
666
667// visit Implementations - Something changed in this instruction, either an
668// operand made a transition, or the instruction is newly executable.  Change
669// the value type of I to reflect these changes if appropriate.  This method
670// makes sure to do the following actions:
671//
672// 1. If a phi node merges two constants in, and has conflicting value coming
673//    from different branches, or if the PHI node merges in an overdefined
674//    value, then the PHI node becomes overdefined.
675// 2. If a phi node merges only constants in, and they all agree on value, the
676//    PHI node becomes a constant value equal to that.
677// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
678// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
679// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
680// 6. If a conditional branch has a value that is constant, make the selected
681//    destination executable
682// 7. If a conditional branch has a value that is overdefined, make all
683//    successors executable.
684//
685void SCCPSolver::visitPHINode(PHINode &PN) {
686  // If this PN returns a struct, just mark the result overdefined.
687  // TODO: We could do a lot better than this if code actually uses this.
688  if (PN.getType()->isStructTy())
689    return markAnythingOverdefined(&PN);
690
691  if (getValueState(&PN).isOverdefined()) {
692    // There may be instructions using this PHI node that are not overdefined
693    // themselves.  If so, make sure that they know that the PHI node operand
694    // changed.
695    std::multimap<PHINode*, Instruction*>::iterator I, E;
696    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
697    if (I == E)
698      return;
699
700    SmallVector<Instruction*, 16> Users;
701    for (; I != E; ++I)
702      Users.push_back(I->second);
703    while (!Users.empty())
704      visit(Users.pop_back_val());
705    return;  // Quick exit
706  }
707
708  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
709  // and slow us down a lot.  Just mark them overdefined.
710  if (PN.getNumIncomingValues() > 64)
711    return markOverdefined(&PN);
712
713  // Look at all of the executable operands of the PHI node.  If any of them
714  // are overdefined, the PHI becomes overdefined as well.  If they are all
715  // constant, and they agree with each other, the PHI becomes the identical
716  // constant.  If they are constant and don't agree, the PHI is overdefined.
717  // If there are no executable operands, the PHI remains undefined.
718  //
719  Constant *OperandVal = 0;
720  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
721    LatticeVal IV = getValueState(PN.getIncomingValue(i));
722    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
723
724    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
725      continue;
726
727    if (IV.isOverdefined())    // PHI node becomes overdefined!
728      return markOverdefined(&PN);
729
730    if (OperandVal == 0) {   // Grab the first value.
731      OperandVal = IV.getConstant();
732      continue;
733    }
734
735    // There is already a reachable operand.  If we conflict with it,
736    // then the PHI node becomes overdefined.  If we agree with it, we
737    // can continue on.
738
739    // Check to see if there are two different constants merging, if so, the PHI
740    // node is overdefined.
741    if (IV.getConstant() != OperandVal)
742      return markOverdefined(&PN);
743  }
744
745  // If we exited the loop, this means that the PHI node only has constant
746  // arguments that agree with each other(and OperandVal is the constant) or
747  // OperandVal is null because there are no defined incoming arguments.  If
748  // this is the case, the PHI remains undefined.
749  //
750  if (OperandVal)
751    markConstant(&PN, OperandVal);      // Acquire operand value
752}
753
754
755
756
757void SCCPSolver::visitReturnInst(ReturnInst &I) {
758  if (I.getNumOperands() == 0) return;  // ret void
759
760  Function *F = I.getParent()->getParent();
761  Value *ResultOp = I.getOperand(0);
762
763  // If we are tracking the return value of this function, merge it in.
764  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
765    DenseMap<Function*, LatticeVal>::iterator TFRVI =
766      TrackedRetVals.find(F);
767    if (TFRVI != TrackedRetVals.end()) {
768      mergeInValue(TFRVI->second, F, getValueState(ResultOp));
769      return;
770    }
771  }
772
773  // Handle functions that return multiple values.
774  if (!TrackedMultipleRetVals.empty()) {
775    if (const StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
776      if (MRVFunctionsTracked.count(F))
777        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
778          mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
779                       getStructValueState(ResultOp, i));
780
781  }
782}
783
784void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
785  SmallVector<bool, 16> SuccFeasible;
786  getFeasibleSuccessors(TI, SuccFeasible);
787
788  BasicBlock *BB = TI.getParent();
789
790  // Mark all feasible successors executable.
791  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
792    if (SuccFeasible[i])
793      markEdgeExecutable(BB, TI.getSuccessor(i));
794}
795
796void SCCPSolver::visitCastInst(CastInst &I) {
797  LatticeVal OpSt = getValueState(I.getOperand(0));
798  if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
799    markOverdefined(&I);
800  else if (OpSt.isConstant())        // Propagate constant value
801    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
802                                           OpSt.getConstant(), I.getType()));
803}
804
805
806void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
807  // If this returns a struct, mark all elements over defined, we don't track
808  // structs in structs.
809  if (EVI.getType()->isStructTy())
810    return markAnythingOverdefined(&EVI);
811
812  // If this is extracting from more than one level of struct, we don't know.
813  if (EVI.getNumIndices() != 1)
814    return markOverdefined(&EVI);
815
816  Value *AggVal = EVI.getAggregateOperand();
817  if (AggVal->getType()->isStructTy()) {
818    unsigned i = *EVI.idx_begin();
819    LatticeVal EltVal = getStructValueState(AggVal, i);
820    mergeInValue(getValueState(&EVI), &EVI, EltVal);
821  } else {
822    // Otherwise, must be extracting from an array.
823    return markOverdefined(&EVI);
824  }
825}
826
827void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
828  const StructType *STy = dyn_cast<StructType>(IVI.getType());
829  if (STy == 0)
830    return markOverdefined(&IVI);
831
832  // If this has more than one index, we can't handle it, drive all results to
833  // undef.
834  if (IVI.getNumIndices() != 1)
835    return markAnythingOverdefined(&IVI);
836
837  Value *Aggr = IVI.getAggregateOperand();
838  unsigned Idx = *IVI.idx_begin();
839
840  // Compute the result based on what we're inserting.
841  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
842    // This passes through all values that aren't the inserted element.
843    if (i != Idx) {
844      LatticeVal EltVal = getStructValueState(Aggr, i);
845      mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
846      continue;
847    }
848
849    Value *Val = IVI.getInsertedValueOperand();
850    if (Val->getType()->isStructTy())
851      // We don't track structs in structs.
852      markOverdefined(getStructValueState(&IVI, i), &IVI);
853    else {
854      LatticeVal InVal = getValueState(Val);
855      mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
856    }
857  }
858}
859
860void SCCPSolver::visitSelectInst(SelectInst &I) {
861  // If this select returns a struct, just mark the result overdefined.
862  // TODO: We could do a lot better than this if code actually uses this.
863  if (I.getType()->isStructTy())
864    return markAnythingOverdefined(&I);
865
866  LatticeVal CondValue = getValueState(I.getCondition());
867  if (CondValue.isUndefined())
868    return;
869
870  if (ConstantInt *CondCB = CondValue.getConstantInt()) {
871    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
872    mergeInValue(&I, getValueState(OpVal));
873    return;
874  }
875
876  // Otherwise, the condition is overdefined or a constant we can't evaluate.
877  // See if we can produce something better than overdefined based on the T/F
878  // value.
879  LatticeVal TVal = getValueState(I.getTrueValue());
880  LatticeVal FVal = getValueState(I.getFalseValue());
881
882  // select ?, C, C -> C.
883  if (TVal.isConstant() && FVal.isConstant() &&
884      TVal.getConstant() == FVal.getConstant())
885    return markConstant(&I, FVal.getConstant());
886
887  if (TVal.isUndefined())   // select ?, undef, X -> X.
888    return mergeInValue(&I, FVal);
889  if (FVal.isUndefined())   // select ?, X, undef -> X.
890    return mergeInValue(&I, TVal);
891  markOverdefined(&I);
892}
893
894// Handle Binary Operators.
895void SCCPSolver::visitBinaryOperator(Instruction &I) {
896  LatticeVal V1State = getValueState(I.getOperand(0));
897  LatticeVal V2State = getValueState(I.getOperand(1));
898
899  LatticeVal &IV = ValueState[&I];
900  if (IV.isOverdefined()) return;
901
902  if (V1State.isConstant() && V2State.isConstant())
903    return markConstant(IV, &I,
904                        ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
905                                          V2State.getConstant()));
906
907  // If something is undef, wait for it to resolve.
908  if (!V1State.isOverdefined() && !V2State.isOverdefined())
909    return;
910
911  // Otherwise, one of our operands is overdefined.  Try to produce something
912  // better than overdefined with some tricks.
913
914  // If this is an AND or OR with 0 or -1, it doesn't matter that the other
915  // operand is overdefined.
916  if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
917    LatticeVal *NonOverdefVal = 0;
918    if (!V1State.isOverdefined())
919      NonOverdefVal = &V1State;
920    else if (!V2State.isOverdefined())
921      NonOverdefVal = &V2State;
922
923    if (NonOverdefVal) {
924      if (NonOverdefVal->isUndefined()) {
925        // Could annihilate value.
926        if (I.getOpcode() == Instruction::And)
927          markConstant(IV, &I, Constant::getNullValue(I.getType()));
928        else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
929          markConstant(IV, &I, Constant::getAllOnesValue(PT));
930        else
931          markConstant(IV, &I,
932                       Constant::getAllOnesValue(I.getType()));
933        return;
934      }
935
936      if (I.getOpcode() == Instruction::And) {
937        // X and 0 = 0
938        if (NonOverdefVal->getConstant()->isNullValue())
939          return markConstant(IV, &I, NonOverdefVal->getConstant());
940      } else {
941        if (ConstantInt *CI = NonOverdefVal->getConstantInt())
942          if (CI->isAllOnesValue())     // X or -1 = -1
943            return markConstant(IV, &I, NonOverdefVal->getConstant());
944      }
945    }
946  }
947
948
949  // If both operands are PHI nodes, it is possible that this instruction has
950  // a constant value, despite the fact that the PHI node doesn't.  Check for
951  // this condition now.
952  if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
953    if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
954      if (PN1->getParent() == PN2->getParent()) {
955        // Since the two PHI nodes are in the same basic block, they must have
956        // entries for the same predecessors.  Walk the predecessor list, and
957        // if all of the incoming values are constants, and the result of
958        // evaluating this expression with all incoming value pairs is the
959        // same, then this expression is a constant even though the PHI node
960        // is not a constant!
961        LatticeVal Result;
962        for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
963          LatticeVal In1 = getValueState(PN1->getIncomingValue(i));
964          BasicBlock *InBlock = PN1->getIncomingBlock(i);
965          LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
966
967          if (In1.isOverdefined() || In2.isOverdefined()) {
968            Result.markOverdefined();
969            break;  // Cannot fold this operation over the PHI nodes!
970          }
971
972          if (In1.isConstant() && In2.isConstant()) {
973            Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
974                                            In2.getConstant());
975            if (Result.isUndefined())
976              Result.markConstant(V);
977            else if (Result.isConstant() && Result.getConstant() != V) {
978              Result.markOverdefined();
979              break;
980            }
981          }
982        }
983
984        // If we found a constant value here, then we know the instruction is
985        // constant despite the fact that the PHI nodes are overdefined.
986        if (Result.isConstant()) {
987          markConstant(IV, &I, Result.getConstant());
988          // Remember that this instruction is virtually using the PHI node
989          // operands.
990          InsertInOverdefinedPHIs(&I, PN1);
991          InsertInOverdefinedPHIs(&I, PN2);
992          return;
993        }
994
995        if (Result.isUndefined())
996          return;
997
998        // Okay, this really is overdefined now.  Since we might have
999        // speculatively thought that this was not overdefined before, and
1000        // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
1001        // make sure to clean out any entries that we put there, for
1002        // efficiency.
1003        RemoveFromOverdefinedPHIs(&I, PN1);
1004        RemoveFromOverdefinedPHIs(&I, PN2);
1005      }
1006
1007  markOverdefined(&I);
1008}
1009
1010// Handle ICmpInst instruction.
1011void SCCPSolver::visitCmpInst(CmpInst &I) {
1012  LatticeVal V1State = getValueState(I.getOperand(0));
1013  LatticeVal V2State = getValueState(I.getOperand(1));
1014
1015  LatticeVal &IV = ValueState[&I];
1016  if (IV.isOverdefined()) return;
1017
1018  if (V1State.isConstant() && V2State.isConstant())
1019    return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
1020                                                         V1State.getConstant(),
1021                                                        V2State.getConstant()));
1022
1023  // If operands are still undefined, wait for it to resolve.
1024  if (!V1State.isOverdefined() && !V2State.isOverdefined())
1025    return;
1026
1027  // If something is overdefined, use some tricks to avoid ending up and over
1028  // defined if we can.
1029
1030  // If both operands are PHI nodes, it is possible that this instruction has
1031  // a constant value, despite the fact that the PHI node doesn't.  Check for
1032  // this condition now.
1033  if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
1034    if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
1035      if (PN1->getParent() == PN2->getParent()) {
1036        // Since the two PHI nodes are in the same basic block, they must have
1037        // entries for the same predecessors.  Walk the predecessor list, and
1038        // if all of the incoming values are constants, and the result of
1039        // evaluating this expression with all incoming value pairs is the
1040        // same, then this expression is a constant even though the PHI node
1041        // is not a constant!
1042        LatticeVal Result;
1043        for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
1044          LatticeVal In1 = getValueState(PN1->getIncomingValue(i));
1045          BasicBlock *InBlock = PN1->getIncomingBlock(i);
1046          LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
1047
1048          if (In1.isOverdefined() || In2.isOverdefined()) {
1049            Result.markOverdefined();
1050            break;  // Cannot fold this operation over the PHI nodes!
1051          }
1052
1053          if (In1.isConstant() && In2.isConstant()) {
1054            Constant *V = ConstantExpr::getCompare(I.getPredicate(),
1055                                                   In1.getConstant(),
1056                                                   In2.getConstant());
1057            if (Result.isUndefined())
1058              Result.markConstant(V);
1059            else if (Result.isConstant() && Result.getConstant() != V) {
1060              Result.markOverdefined();
1061              break;
1062            }
1063          }
1064        }
1065
1066        // If we found a constant value here, then we know the instruction is
1067        // constant despite the fact that the PHI nodes are overdefined.
1068        if (Result.isConstant()) {
1069          markConstant(&I, Result.getConstant());
1070          // Remember that this instruction is virtually using the PHI node
1071          // operands.
1072          InsertInOverdefinedPHIs(&I, PN1);
1073          InsertInOverdefinedPHIs(&I, PN2);
1074          return;
1075        }
1076
1077        if (Result.isUndefined())
1078          return;
1079
1080        // Okay, this really is overdefined now.  Since we might have
1081        // speculatively thought that this was not overdefined before, and
1082        // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
1083        // make sure to clean out any entries that we put there, for
1084        // efficiency.
1085        RemoveFromOverdefinedPHIs(&I, PN1);
1086        RemoveFromOverdefinedPHIs(&I, PN2);
1087      }
1088
1089  markOverdefined(&I);
1090}
1091
1092void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1093  // TODO : SCCP does not handle vectors properly.
1094  return markOverdefined(&I);
1095
1096#if 0
1097  LatticeVal &ValState = getValueState(I.getOperand(0));
1098  LatticeVal &IdxState = getValueState(I.getOperand(1));
1099
1100  if (ValState.isOverdefined() || IdxState.isOverdefined())
1101    markOverdefined(&I);
1102  else if(ValState.isConstant() && IdxState.isConstant())
1103    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1104                                                     IdxState.getConstant()));
1105#endif
1106}
1107
1108void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1109  // TODO : SCCP does not handle vectors properly.
1110  return markOverdefined(&I);
1111#if 0
1112  LatticeVal &ValState = getValueState(I.getOperand(0));
1113  LatticeVal &EltState = getValueState(I.getOperand(1));
1114  LatticeVal &IdxState = getValueState(I.getOperand(2));
1115
1116  if (ValState.isOverdefined() || EltState.isOverdefined() ||
1117      IdxState.isOverdefined())
1118    markOverdefined(&I);
1119  else if(ValState.isConstant() && EltState.isConstant() &&
1120          IdxState.isConstant())
1121    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1122                                                    EltState.getConstant(),
1123                                                    IdxState.getConstant()));
1124  else if (ValState.isUndefined() && EltState.isConstant() &&
1125           IdxState.isConstant())
1126    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1127                                                   EltState.getConstant(),
1128                                                   IdxState.getConstant()));
1129#endif
1130}
1131
1132void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1133  // TODO : SCCP does not handle vectors properly.
1134  return markOverdefined(&I);
1135#if 0
1136  LatticeVal &V1State   = getValueState(I.getOperand(0));
1137  LatticeVal &V2State   = getValueState(I.getOperand(1));
1138  LatticeVal &MaskState = getValueState(I.getOperand(2));
1139
1140  if (MaskState.isUndefined() ||
1141      (V1State.isUndefined() && V2State.isUndefined()))
1142    return;  // Undefined output if mask or both inputs undefined.
1143
1144  if (V1State.isOverdefined() || V2State.isOverdefined() ||
1145      MaskState.isOverdefined()) {
1146    markOverdefined(&I);
1147  } else {
1148    // A mix of constant/undef inputs.
1149    Constant *V1 = V1State.isConstant() ?
1150        V1State.getConstant() : UndefValue::get(I.getType());
1151    Constant *V2 = V2State.isConstant() ?
1152        V2State.getConstant() : UndefValue::get(I.getType());
1153    Constant *Mask = MaskState.isConstant() ?
1154      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1155    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1156  }
1157#endif
1158}
1159
1160// Handle getelementptr instructions.  If all operands are constants then we
1161// can turn this into a getelementptr ConstantExpr.
1162//
1163void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1164  if (ValueState[&I].isOverdefined()) return;
1165
1166  SmallVector<Constant*, 8> Operands;
1167  Operands.reserve(I.getNumOperands());
1168
1169  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1170    LatticeVal State = getValueState(I.getOperand(i));
1171    if (State.isUndefined())
1172      return;  // Operands are not resolved yet.
1173
1174    if (State.isOverdefined())
1175      return markOverdefined(&I);
1176
1177    assert(State.isConstant() && "Unknown state!");
1178    Operands.push_back(State.getConstant());
1179  }
1180
1181  Constant *Ptr = Operands[0];
1182  markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0]+1,
1183                                                  Operands.size()-1));
1184}
1185
1186void SCCPSolver::visitStoreInst(StoreInst &SI) {
1187  // If this store is of a struct, ignore it.
1188  if (SI.getOperand(0)->getType()->isStructTy())
1189    return;
1190
1191  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1192    return;
1193
1194  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1195  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1196  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1197
1198  // Get the value we are storing into the global, then merge it.
1199  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1200  if (I->second.isOverdefined())
1201    TrackedGlobals.erase(I);      // No need to keep tracking this!
1202}
1203
1204
1205// Handle load instructions.  If the operand is a constant pointer to a constant
1206// global, we can replace the load with the loaded constant value!
1207void SCCPSolver::visitLoadInst(LoadInst &I) {
1208  // If this load is of a struct, just mark the result overdefined.
1209  if (I.getType()->isStructTy())
1210    return markAnythingOverdefined(&I);
1211
1212  LatticeVal PtrVal = getValueState(I.getOperand(0));
1213  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1214
1215  LatticeVal &IV = ValueState[&I];
1216  if (IV.isOverdefined()) return;
1217
1218  if (!PtrVal.isConstant() || I.isVolatile())
1219    return markOverdefined(IV, &I);
1220
1221  Constant *Ptr = PtrVal.getConstant();
1222
1223  // load null -> null
1224  if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1225    return markConstant(IV, &I, Constant::getNullValue(I.getType()));
1226
1227  // Transform load (constant global) into the value loaded.
1228  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1229    if (!TrackedGlobals.empty()) {
1230      // If we are tracking this global, merge in the known value for it.
1231      DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1232        TrackedGlobals.find(GV);
1233      if (It != TrackedGlobals.end()) {
1234        mergeInValue(IV, &I, It->second);
1235        return;
1236      }
1237    }
1238  }
1239
1240  // Transform load from a constant into a constant if possible.
1241  if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD))
1242    return markConstant(IV, &I, C);
1243
1244  // Otherwise we cannot say for certain what value this load will produce.
1245  // Bail out.
1246  markOverdefined(IV, &I);
1247}
1248
1249void SCCPSolver::visitCallSite(CallSite CS) {
1250  Function *F = CS.getCalledFunction();
1251  Instruction *I = CS.getInstruction();
1252
1253  // The common case is that we aren't tracking the callee, either because we
1254  // are not doing interprocedural analysis or the callee is indirect, or is
1255  // external.  Handle these cases first.
1256  if (F == 0 || F->isDeclaration()) {
1257CallOverdefined:
1258    // Void return and not tracking callee, just bail.
1259    if (I->getType()->isVoidTy()) return;
1260
1261    // Otherwise, if we have a single return value case, and if the function is
1262    // a declaration, maybe we can constant fold it.
1263    if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1264        canConstantFoldCallTo(F)) {
1265
1266      SmallVector<Constant*, 8> Operands;
1267      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1268           AI != E; ++AI) {
1269        LatticeVal State = getValueState(*AI);
1270
1271        if (State.isUndefined())
1272          return;  // Operands are not resolved yet.
1273        if (State.isOverdefined())
1274          return markOverdefined(I);
1275        assert(State.isConstant() && "Unknown state!");
1276        Operands.push_back(State.getConstant());
1277      }
1278
1279      // If we can constant fold this, mark the result of the call as a
1280      // constant.
1281      if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size()))
1282        return markConstant(I, C);
1283    }
1284
1285    // Otherwise, we don't know anything about this call, mark it overdefined.
1286    return markAnythingOverdefined(I);
1287  }
1288
1289  // If this is a local function that doesn't have its address taken, mark its
1290  // entry block executable and merge in the actual arguments to the call into
1291  // the formal arguments of the function.
1292  if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1293    MarkBlockExecutable(F->begin());
1294
1295    // Propagate information from this call site into the callee.
1296    CallSite::arg_iterator CAI = CS.arg_begin();
1297    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1298         AI != E; ++AI, ++CAI) {
1299      // If this argument is byval, and if the function is not readonly, there
1300      // will be an implicit copy formed of the input aggregate.
1301      if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1302        markOverdefined(AI);
1303        continue;
1304      }
1305
1306      if (const StructType *STy = dyn_cast<StructType>(AI->getType())) {
1307        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1308          LatticeVal CallArg = getStructValueState(*CAI, i);
1309          mergeInValue(getStructValueState(AI, i), AI, CallArg);
1310        }
1311      } else {
1312        mergeInValue(AI, getValueState(*CAI));
1313      }
1314    }
1315  }
1316
1317  // If this is a single/zero retval case, see if we're tracking the function.
1318  if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
1319    if (!MRVFunctionsTracked.count(F))
1320      goto CallOverdefined;  // Not tracking this callee.
1321
1322    // If we are tracking this callee, propagate the result of the function
1323    // into this call site.
1324    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1325      mergeInValue(getStructValueState(I, i), I,
1326                   TrackedMultipleRetVals[std::make_pair(F, i)]);
1327  } else {
1328    DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1329    if (TFRVI == TrackedRetVals.end())
1330      goto CallOverdefined;  // Not tracking this callee.
1331
1332    // If so, propagate the return value of the callee into this call result.
1333    mergeInValue(I, TFRVI->second);
1334  }
1335}
1336
1337void SCCPSolver::Solve() {
1338  // Process the work lists until they are empty!
1339  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1340         !OverdefinedInstWorkList.empty()) {
1341    // Process the overdefined instruction's work list first, which drives other
1342    // things to overdefined more quickly.
1343    while (!OverdefinedInstWorkList.empty()) {
1344      Value *I = OverdefinedInstWorkList.pop_back_val();
1345
1346      DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1347
1348      // "I" got into the work list because it either made the transition from
1349      // bottom to constant
1350      //
1351      // Anything on this worklist that is overdefined need not be visited
1352      // since all of its users will have already been marked as overdefined
1353      // Update all of the users of this instruction's value.
1354      //
1355      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1356           UI != E; ++UI)
1357        if (Instruction *I = dyn_cast<Instruction>(*UI))
1358          OperandChangedState(I);
1359    }
1360
1361    // Process the instruction work list.
1362    while (!InstWorkList.empty()) {
1363      Value *I = InstWorkList.pop_back_val();
1364
1365      DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1366
1367      // "I" got into the work list because it made the transition from undef to
1368      // constant.
1369      //
1370      // Anything on this worklist that is overdefined need not be visited
1371      // since all of its users will have already been marked as overdefined.
1372      // Update all of the users of this instruction's value.
1373      //
1374      if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1375        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1376             UI != E; ++UI)
1377          if (Instruction *I = dyn_cast<Instruction>(*UI))
1378            OperandChangedState(I);
1379    }
1380
1381    // Process the basic block work list.
1382    while (!BBWorkList.empty()) {
1383      BasicBlock *BB = BBWorkList.back();
1384      BBWorkList.pop_back();
1385
1386      DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1387
1388      // Notify all instructions in this basic block that they are newly
1389      // executable.
1390      visit(BB);
1391    }
1392  }
1393}
1394
1395/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1396/// that branches on undef values cannot reach any of their successors.
1397/// However, this is not a safe assumption.  After we solve dataflow, this
1398/// method should be use to handle this.  If this returns true, the solver
1399/// should be rerun.
1400///
1401/// This method handles this by finding an unresolved branch and marking it one
1402/// of the edges from the block as being feasible, even though the condition
1403/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1404/// CFG and only slightly pessimizes the analysis results (by marking one,
1405/// potentially infeasible, edge feasible).  This cannot usefully modify the
1406/// constraints on the condition of the branch, as that would impact other users
1407/// of the value.
1408///
1409/// This scan also checks for values that use undefs, whose results are actually
1410/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1411/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1412/// even if X isn't defined.
1413bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1414  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1415    if (!BBExecutable.count(BB))
1416      continue;
1417
1418    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1419      // Look for instructions which produce undef values.
1420      if (I->getType()->isVoidTy()) continue;
1421
1422      if (const StructType *STy = dyn_cast<StructType>(I->getType())) {
1423        // Only a few things that can be structs matter for undef.  Just send
1424        // all their results to overdefined.  We could be more precise than this
1425        // but it isn't worth bothering.
1426        if (isa<CallInst>(I) || isa<SelectInst>(I)) {
1427          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1428            LatticeVal &LV = getStructValueState(I, i);
1429            if (LV.isUndefined())
1430              markOverdefined(LV, I);
1431          }
1432        }
1433        continue;
1434      }
1435
1436      LatticeVal &LV = getValueState(I);
1437      if (!LV.isUndefined()) continue;
1438
1439      // No instructions using structs need disambiguation.
1440      if (I->getOperand(0)->getType()->isStructTy())
1441        continue;
1442
1443      // Get the lattice values of the first two operands for use below.
1444      LatticeVal Op0LV = getValueState(I->getOperand(0));
1445      LatticeVal Op1LV;
1446      if (I->getNumOperands() == 2) {
1447        // No instructions using structs need disambiguation.
1448        if (I->getOperand(1)->getType()->isStructTy())
1449          continue;
1450
1451        // If this is a two-operand instruction, and if both operands are
1452        // undefs, the result stays undef.
1453        Op1LV = getValueState(I->getOperand(1));
1454        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1455          continue;
1456      }
1457
1458      // If this is an instructions whose result is defined even if the input is
1459      // not fully defined, propagate the information.
1460      const Type *ITy = I->getType();
1461      switch (I->getOpcode()) {
1462      default: break;          // Leave the instruction as an undef.
1463      case Instruction::ZExt:
1464        // After a zero extend, we know the top part is zero.  SExt doesn't have
1465        // to be handled here, because we don't know whether the top part is 1's
1466        // or 0's.
1467      case Instruction::SIToFP:  // some FP values are not possible, just use 0.
1468      case Instruction::UIToFP:  // some FP values are not possible, just use 0.
1469        markForcedConstant(I, Constant::getNullValue(ITy));
1470        return true;
1471      case Instruction::Mul:
1472      case Instruction::And:
1473        // undef * X -> 0.   X could be zero.
1474        // undef & X -> 0.   X could be zero.
1475        markForcedConstant(I, Constant::getNullValue(ITy));
1476        return true;
1477
1478      case Instruction::Or:
1479        // undef | X -> -1.   X could be -1.
1480        markForcedConstant(I, Constant::getAllOnesValue(ITy));
1481        return true;
1482
1483      case Instruction::SDiv:
1484      case Instruction::UDiv:
1485      case Instruction::SRem:
1486      case Instruction::URem:
1487        // X / undef -> undef.  No change.
1488        // X % undef -> undef.  No change.
1489        if (Op1LV.isUndefined()) break;
1490
1491        // undef / X -> 0.   X could be maxint.
1492        // undef % X -> 0.   X could be 1.
1493        markForcedConstant(I, Constant::getNullValue(ITy));
1494        return true;
1495
1496      case Instruction::AShr:
1497        // undef >>s X -> undef.  No change.
1498        if (Op0LV.isUndefined()) break;
1499
1500        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1501        if (Op0LV.isConstant())
1502          markForcedConstant(I, Op0LV.getConstant());
1503        else
1504          markOverdefined(I);
1505        return true;
1506      case Instruction::LShr:
1507      case Instruction::Shl:
1508        // undef >> X -> undef.  No change.
1509        // undef << X -> undef.  No change.
1510        if (Op0LV.isUndefined()) break;
1511
1512        // X >> undef -> 0.  X could be 0.
1513        // X << undef -> 0.  X could be 0.
1514        markForcedConstant(I, Constant::getNullValue(ITy));
1515        return true;
1516      case Instruction::Select:
1517        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1518        if (Op0LV.isUndefined()) {
1519          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1520            Op1LV = getValueState(I->getOperand(2));
1521        } else if (Op1LV.isUndefined()) {
1522          // c ? undef : undef -> undef.  No change.
1523          Op1LV = getValueState(I->getOperand(2));
1524          if (Op1LV.isUndefined())
1525            break;
1526          // Otherwise, c ? undef : x -> x.
1527        } else {
1528          // Leave Op1LV as Operand(1)'s LatticeValue.
1529        }
1530
1531        if (Op1LV.isConstant())
1532          markForcedConstant(I, Op1LV.getConstant());
1533        else
1534          markOverdefined(I);
1535        return true;
1536      case Instruction::Call:
1537        // If a call has an undef result, it is because it is constant foldable
1538        // but one of the inputs was undef.  Just force the result to
1539        // overdefined.
1540        markOverdefined(I);
1541        return true;
1542      }
1543    }
1544
1545    // Check to see if we have a branch or switch on an undefined value.  If so
1546    // we force the branch to go one way or the other to make the successor
1547    // values live.  It doesn't really matter which way we force it.
1548    TerminatorInst *TI = BB->getTerminator();
1549    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1550      if (!BI->isConditional()) continue;
1551      if (!getValueState(BI->getCondition()).isUndefined())
1552        continue;
1553
1554      // If the input to SCCP is actually branch on undef, fix the undef to
1555      // false.
1556      if (isa<UndefValue>(BI->getCondition())) {
1557        BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1558        markEdgeExecutable(BB, TI->getSuccessor(1));
1559        return true;
1560      }
1561
1562      // Otherwise, it is a branch on a symbolic value which is currently
1563      // considered to be undef.  Handle this by forcing the input value to the
1564      // branch to false.
1565      markForcedConstant(BI->getCondition(),
1566                         ConstantInt::getFalse(TI->getContext()));
1567      return true;
1568    }
1569
1570    if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1571      if (SI->getNumSuccessors() < 2)   // no cases
1572        continue;
1573      if (!getValueState(SI->getCondition()).isUndefined())
1574        continue;
1575
1576      // If the input to SCCP is actually switch on undef, fix the undef to
1577      // the first constant.
1578      if (isa<UndefValue>(SI->getCondition())) {
1579        SI->setCondition(SI->getCaseValue(1));
1580        markEdgeExecutable(BB, TI->getSuccessor(1));
1581        return true;
1582      }
1583
1584      markForcedConstant(SI->getCondition(), SI->getCaseValue(1));
1585      return true;
1586    }
1587  }
1588
1589  return false;
1590}
1591
1592
1593namespace {
1594  //===--------------------------------------------------------------------===//
1595  //
1596  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1597  /// Sparse Conditional Constant Propagator.
1598  ///
1599  struct SCCP : public FunctionPass {
1600    static char ID; // Pass identification, replacement for typeid
1601    SCCP() : FunctionPass(ID) {
1602      initializeSCCPPass(*PassRegistry::getPassRegistry());
1603    }
1604
1605    // runOnFunction - Run the Sparse Conditional Constant Propagation
1606    // algorithm, and return true if the function was modified.
1607    //
1608    bool runOnFunction(Function &F);
1609
1610    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1611      AU.setPreservesCFG();
1612    }
1613  };
1614} // end anonymous namespace
1615
1616char SCCP::ID = 0;
1617INITIALIZE_PASS(SCCP, "sccp",
1618                "Sparse Conditional Constant Propagation", false, false)
1619
1620// createSCCPPass - This is the public interface to this file.
1621FunctionPass *llvm::createSCCPPass() {
1622  return new SCCP();
1623}
1624
1625static void DeleteInstructionInBlock(BasicBlock *BB) {
1626  DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
1627  ++NumDeadBlocks;
1628
1629  // Delete the instructions backwards, as it has a reduced likelihood of
1630  // having to update as many def-use and use-def chains.
1631  while (!isa<TerminatorInst>(BB->begin())) {
1632    Instruction *I = --BasicBlock::iterator(BB->getTerminator());
1633
1634    if (!I->use_empty())
1635      I->replaceAllUsesWith(UndefValue::get(I->getType()));
1636    BB->getInstList().erase(I);
1637    ++NumInstRemoved;
1638  }
1639}
1640
1641// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1642// and return true if the function was modified.
1643//
1644bool SCCP::runOnFunction(Function &F) {
1645  DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1646  SCCPSolver Solver(getAnalysisIfAvailable<TargetData>());
1647
1648  // Mark the first block of the function as being executable.
1649  Solver.MarkBlockExecutable(F.begin());
1650
1651  // Mark all arguments to the function as being overdefined.
1652  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1653    Solver.markAnythingOverdefined(AI);
1654
1655  // Solve for constants.
1656  bool ResolvedUndefs = true;
1657  while (ResolvedUndefs) {
1658    Solver.Solve();
1659    DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1660    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1661  }
1662
1663  bool MadeChanges = false;
1664
1665  // If we decided that there are basic blocks that are dead in this function,
1666  // delete their contents now.  Note that we cannot actually delete the blocks,
1667  // as we cannot modify the CFG of the function.
1668
1669  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1670    if (!Solver.isBlockExecutable(BB)) {
1671      DeleteInstructionInBlock(BB);
1672      MadeChanges = true;
1673      continue;
1674    }
1675
1676    // Iterate over all of the instructions in a function, replacing them with
1677    // constants if we have found them to be of constant values.
1678    //
1679    for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1680      Instruction *Inst = BI++;
1681      if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1682        continue;
1683
1684      // TODO: Reconstruct structs from their elements.
1685      if (Inst->getType()->isStructTy())
1686        continue;
1687
1688      LatticeVal IV = Solver.getLatticeValueFor(Inst);
1689      if (IV.isOverdefined())
1690        continue;
1691
1692      Constant *Const = IV.isConstant()
1693        ? IV.getConstant() : UndefValue::get(Inst->getType());
1694      DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
1695
1696      // Replaces all of the uses of a variable with uses of the constant.
1697      Inst->replaceAllUsesWith(Const);
1698
1699      // Delete the instruction.
1700      Inst->eraseFromParent();
1701
1702      // Hey, we just changed something!
1703      MadeChanges = true;
1704      ++NumInstRemoved;
1705    }
1706  }
1707
1708  return MadeChanges;
1709}
1710
1711namespace {
1712  //===--------------------------------------------------------------------===//
1713  //
1714  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1715  /// Constant Propagation.
1716  ///
1717  struct IPSCCP : public ModulePass {
1718    static char ID;
1719    IPSCCP() : ModulePass(ID) {
1720      initializeIPSCCPPass(*PassRegistry::getPassRegistry());
1721    }
1722    bool runOnModule(Module &M);
1723  };
1724} // end anonymous namespace
1725
1726char IPSCCP::ID = 0;
1727INITIALIZE_PASS(IPSCCP, "ipsccp",
1728                "Interprocedural Sparse Conditional Constant Propagation",
1729                false, false)
1730
1731// createIPSCCPPass - This is the public interface to this file.
1732ModulePass *llvm::createIPSCCPPass() {
1733  return new IPSCCP();
1734}
1735
1736
1737static bool AddressIsTaken(const GlobalValue *GV) {
1738  // Delete any dead constantexpr klingons.
1739  GV->removeDeadConstantUsers();
1740
1741  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1742       UI != E; ++UI) {
1743    const User *U = *UI;
1744    if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
1745      if (SI->getOperand(0) == GV || SI->isVolatile())
1746        return true;  // Storing addr of GV.
1747    } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) {
1748      // Make sure we are calling the function, not passing the address.
1749      ImmutableCallSite CS(cast<Instruction>(U));
1750      if (!CS.isCallee(UI))
1751        return true;
1752    } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1753      if (LI->isVolatile())
1754        return true;
1755    } else if (isa<BlockAddress>(U)) {
1756      // blockaddress doesn't take the address of the function, it takes addr
1757      // of label.
1758    } else {
1759      return true;
1760    }
1761  }
1762  return false;
1763}
1764
1765bool IPSCCP::runOnModule(Module &M) {
1766  SCCPSolver Solver(getAnalysisIfAvailable<TargetData>());
1767
1768  // AddressTakenFunctions - This set keeps track of the address-taken functions
1769  // that are in the input.  As IPSCCP runs through and simplifies code,
1770  // functions that were address taken can end up losing their
1771  // address-taken-ness.  Because of this, we keep track of their addresses from
1772  // the first pass so we can use them for the later simplification pass.
1773  SmallPtrSet<Function*, 32> AddressTakenFunctions;
1774
1775  // Loop over all functions, marking arguments to those with their addresses
1776  // taken or that are external as overdefined.
1777  //
1778  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1779    if (F->isDeclaration())
1780      continue;
1781
1782    // If this is a strong or ODR definition of this function, then we can
1783    // propagate information about its result into callsites of it.
1784    if (!F->mayBeOverridden())
1785      Solver.AddTrackedFunction(F);
1786
1787    // If this function only has direct calls that we can see, we can track its
1788    // arguments and return value aggressively, and can assume it is not called
1789    // unless we see evidence to the contrary.
1790    if (F->hasLocalLinkage()) {
1791      if (AddressIsTaken(F))
1792        AddressTakenFunctions.insert(F);
1793      else {
1794        Solver.AddArgumentTrackedFunction(F);
1795        continue;
1796      }
1797    }
1798
1799    // Assume the function is called.
1800    Solver.MarkBlockExecutable(F->begin());
1801
1802    // Assume nothing about the incoming arguments.
1803    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1804         AI != E; ++AI)
1805      Solver.markAnythingOverdefined(AI);
1806  }
1807
1808  // Loop over global variables.  We inform the solver about any internal global
1809  // variables that do not have their 'addresses taken'.  If they don't have
1810  // their addresses taken, we can propagate constants through them.
1811  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1812       G != E; ++G)
1813    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1814      Solver.TrackValueOfGlobalVariable(G);
1815
1816  // Solve for constants.
1817  bool ResolvedUndefs = true;
1818  while (ResolvedUndefs) {
1819    Solver.Solve();
1820
1821    DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1822    ResolvedUndefs = false;
1823    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1824      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1825  }
1826
1827  bool MadeChanges = false;
1828
1829  // Iterate over all of the instructions in the module, replacing them with
1830  // constants if we have found them to be of constant values.
1831  //
1832  SmallVector<BasicBlock*, 512> BlocksToErase;
1833
1834  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1835    if (Solver.isBlockExecutable(F->begin())) {
1836      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1837           AI != E; ++AI) {
1838        if (AI->use_empty() || AI->getType()->isStructTy()) continue;
1839
1840        // TODO: Could use getStructLatticeValueFor to find out if the entire
1841        // result is a constant and replace it entirely if so.
1842
1843        LatticeVal IV = Solver.getLatticeValueFor(AI);
1844        if (IV.isOverdefined()) continue;
1845
1846        Constant *CST = IV.isConstant() ?
1847        IV.getConstant() : UndefValue::get(AI->getType());
1848        DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1849
1850        // Replaces all of the uses of a variable with uses of the
1851        // constant.
1852        AI->replaceAllUsesWith(CST);
1853        ++IPNumArgsElimed;
1854      }
1855    }
1856
1857    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
1858      if (!Solver.isBlockExecutable(BB)) {
1859        DeleteInstructionInBlock(BB);
1860        MadeChanges = true;
1861
1862        TerminatorInst *TI = BB->getTerminator();
1863        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1864          BasicBlock *Succ = TI->getSuccessor(i);
1865          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1866            TI->getSuccessor(i)->removePredecessor(BB);
1867        }
1868        if (!TI->use_empty())
1869          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1870        TI->eraseFromParent();
1871
1872        if (&*BB != &F->front())
1873          BlocksToErase.push_back(BB);
1874        else
1875          new UnreachableInst(M.getContext(), BB);
1876        continue;
1877      }
1878
1879      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1880        Instruction *Inst = BI++;
1881        if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
1882          continue;
1883
1884        // TODO: Could use getStructLatticeValueFor to find out if the entire
1885        // result is a constant and replace it entirely if so.
1886
1887        LatticeVal IV = Solver.getLatticeValueFor(Inst);
1888        if (IV.isOverdefined())
1889          continue;
1890
1891        Constant *Const = IV.isConstant()
1892          ? IV.getConstant() : UndefValue::get(Inst->getType());
1893        DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
1894
1895        // Replaces all of the uses of a variable with uses of the
1896        // constant.
1897        Inst->replaceAllUsesWith(Const);
1898
1899        // Delete the instruction.
1900        if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1901          Inst->eraseFromParent();
1902
1903        // Hey, we just changed something!
1904        MadeChanges = true;
1905        ++IPNumInstRemoved;
1906      }
1907    }
1908
1909    // Now that all instructions in the function are constant folded, erase dead
1910    // blocks, because we can now use ConstantFoldTerminator to get rid of
1911    // in-edges.
1912    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1913      // If there are any PHI nodes in this successor, drop entries for BB now.
1914      BasicBlock *DeadBB = BlocksToErase[i];
1915      for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end();
1916           UI != UE; ) {
1917        // Grab the user and then increment the iterator early, as the user
1918        // will be deleted. Step past all adjacent uses from the same user.
1919        Instruction *I = dyn_cast<Instruction>(*UI);
1920        do { ++UI; } while (UI != UE && *UI == I);
1921
1922        // Ignore blockaddress users; BasicBlock's dtor will handle them.
1923        if (!I) continue;
1924
1925        bool Folded = ConstantFoldTerminator(I->getParent());
1926        if (!Folded) {
1927          // The constant folder may not have been able to fold the terminator
1928          // if this is a branch or switch on undef.  Fold it manually as a
1929          // branch to the first successor.
1930#ifndef NDEBUG
1931          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1932            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1933                   "Branch should be foldable!");
1934          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1935            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1936          } else {
1937            llvm_unreachable("Didn't fold away reference to block!");
1938          }
1939#endif
1940
1941          // Make this an uncond branch to the first successor.
1942          TerminatorInst *TI = I->getParent()->getTerminator();
1943          BranchInst::Create(TI->getSuccessor(0), TI);
1944
1945          // Remove entries in successor phi nodes to remove edges.
1946          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1947            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1948
1949          // Remove the old terminator.
1950          TI->eraseFromParent();
1951        }
1952      }
1953
1954      // Finally, delete the basic block.
1955      F->getBasicBlockList().erase(DeadBB);
1956    }
1957    BlocksToErase.clear();
1958  }
1959
1960  // If we inferred constant or undef return values for a function, we replaced
1961  // all call uses with the inferred value.  This means we don't need to bother
1962  // actually returning anything from the function.  Replace all return
1963  // instructions with return undef.
1964  //
1965  // Do this in two stages: first identify the functions we should process, then
1966  // actually zap their returns.  This is important because we can only do this
1967  // if the address of the function isn't taken.  In cases where a return is the
1968  // last use of a function, the order of processing functions would affect
1969  // whether other functions are optimizable.
1970  SmallVector<ReturnInst*, 8> ReturnsToZap;
1971
1972  // TODO: Process multiple value ret instructions also.
1973  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1974  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1975       E = RV.end(); I != E; ++I) {
1976    Function *F = I->first;
1977    if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
1978      continue;
1979
1980    // We can only do this if we know that nothing else can call the function.
1981    if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
1982      continue;
1983
1984    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1985      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1986        if (!isa<UndefValue>(RI->getOperand(0)))
1987          ReturnsToZap.push_back(RI);
1988  }
1989
1990  // Zap all returns which we've identified as zap to change.
1991  for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
1992    Function *F = ReturnsToZap[i]->getParent()->getParent();
1993    ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
1994  }
1995
1996  // If we infered constant or undef values for globals variables, we can delete
1997  // the global and any stores that remain to it.
1998  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1999  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
2000         E = TG.end(); I != E; ++I) {
2001    GlobalVariable *GV = I->first;
2002    assert(!I->second.isOverdefined() &&
2003           "Overdefined values should have been taken out of the map!");
2004    DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
2005    while (!GV->use_empty()) {
2006      StoreInst *SI = cast<StoreInst>(GV->use_back());
2007      SI->eraseFromParent();
2008    }
2009    M.getGlobalList().erase(GV);
2010    ++IPNumGlobalConst;
2011  }
2012
2013  return MadeChanges;
2014}
2015