SCCP.cpp revision c175e5de2dbb04e835b13f0554a7ba2f25ba4fc3
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "sccp"
21#include "llvm/Transforms/Scalar.h"
22#include "llvm/Transforms/IPO.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/Pass.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/Transforms/Utils/Local.h"
30#include "llvm/Target/TargetData.h"
31#include "llvm/Support/CallSite.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/InstVisitor.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/DenseSet.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/STLExtras.h"
43#include <algorithm>
44#include <map>
45using namespace llvm;
46
47STATISTIC(NumInstRemoved, "Number of instructions removed");
48STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
49
50STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
51STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
52STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
53
54namespace {
55/// LatticeVal class - This class represents the different lattice values that
56/// an LLVM value may occupy.  It is a simple class with value semantics.
57///
58class LatticeVal {
59  enum LatticeValueTy {
60    /// undefined - This LLVM Value has no known value yet.
61    undefined,
62
63    /// constant - This LLVM Value has a specific constant value.
64    constant,
65
66    /// forcedconstant - This LLVM Value was thought to be undef until
67    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
68    /// with another (different) constant, it goes to overdefined, instead of
69    /// asserting.
70    forcedconstant,
71
72    /// overdefined - This instruction is not known to be constant, and we know
73    /// it has a value.
74    overdefined
75  };
76
77  /// Val: This stores the current lattice value along with the Constant* for
78  /// the constant if this is a 'constant' or 'forcedconstant' value.
79  PointerIntPair<Constant *, 2, LatticeValueTy> Val;
80
81  LatticeValueTy getLatticeValue() const {
82    return Val.getInt();
83  }
84
85public:
86  LatticeVal() : Val(0, undefined) {}
87
88  bool isUndefined() const { return getLatticeValue() == undefined; }
89  bool isConstant() const {
90    return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
91  }
92  bool isOverdefined() const { return getLatticeValue() == overdefined; }
93
94  Constant *getConstant() const {
95    assert(isConstant() && "Cannot get the constant of a non-constant!");
96    return Val.getPointer();
97  }
98
99  /// markOverdefined - Return true if this is a change in status.
100  bool markOverdefined() {
101    if (isOverdefined())
102      return false;
103
104    Val.setInt(overdefined);
105    return true;
106  }
107
108  /// markConstant - Return true if this is a change in status.
109  bool markConstant(Constant *V) {
110    if (getLatticeValue() == constant) { // Constant but not forcedconstant.
111      assert(getConstant() == V && "Marking constant with different value");
112      return false;
113    }
114
115    if (isUndefined()) {
116      Val.setInt(constant);
117      assert(V && "Marking constant with NULL");
118      Val.setPointer(V);
119    } else {
120      assert(getLatticeValue() == forcedconstant &&
121             "Cannot move from overdefined to constant!");
122      // Stay at forcedconstant if the constant is the same.
123      if (V == getConstant()) return false;
124
125      // Otherwise, we go to overdefined.  Assumptions made based on the
126      // forced value are possibly wrong.  Assuming this is another constant
127      // could expose a contradiction.
128      Val.setInt(overdefined);
129    }
130    return true;
131  }
132
133  /// getConstantInt - If this is a constant with a ConstantInt value, return it
134  /// otherwise return null.
135  ConstantInt *getConstantInt() const {
136    if (isConstant())
137      return dyn_cast<ConstantInt>(getConstant());
138    return 0;
139  }
140
141  void markForcedConstant(Constant *V) {
142    assert(isUndefined() && "Can't force a defined value!");
143    Val.setInt(forcedconstant);
144    Val.setPointer(V);
145  }
146};
147} // end anonymous namespace.
148
149
150namespace {
151
152//===----------------------------------------------------------------------===//
153//
154/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
155/// Constant Propagation.
156///
157class SCCPSolver : public InstVisitor<SCCPSolver> {
158  const TargetData *TD;
159  SmallPtrSet<BasicBlock*, 8> BBExecutable;// The BBs that are executable.
160  DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
161
162  /// GlobalValue - If we are tracking any values for the contents of a global
163  /// variable, we keep a mapping from the constant accessor to the element of
164  /// the global, to the currently known value.  If the value becomes
165  /// overdefined, it's entry is simply removed from this map.
166  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
167
168  /// TrackedRetVals - If we are tracking arguments into and the return
169  /// value out of a function, it will have an entry in this map, indicating
170  /// what the known return value for the function is.
171  DenseMap<Function*, LatticeVal> TrackedRetVals;
172
173  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
174  /// that return multiple values.
175  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
176
177  /// The reason for two worklists is that overdefined is the lowest state
178  /// on the lattice, and moving things to overdefined as fast as possible
179  /// makes SCCP converge much faster.
180  ///
181  /// By having a separate worklist, we accomplish this because everything
182  /// possibly overdefined will become overdefined at the soonest possible
183  /// point.
184  SmallVector<Value*, 64> OverdefinedInstWorkList;
185  SmallVector<Value*, 64> InstWorkList;
186
187
188  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
189
190  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
191  /// overdefined, despite the fact that the PHI node is overdefined.
192  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
193
194  /// KnownFeasibleEdges - Entries in this set are edges which have already had
195  /// PHI nodes retriggered.
196  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
197  DenseSet<Edge> KnownFeasibleEdges;
198public:
199  SCCPSolver(const TargetData *td) : TD(td) {}
200
201  /// MarkBlockExecutable - This method can be used by clients to mark all of
202  /// the blocks that are known to be intrinsically live in the processed unit.
203  ///
204  /// This returns true if the block was not considered live before.
205  bool MarkBlockExecutable(BasicBlock *BB) {
206    if (!BBExecutable.insert(BB)) return false;
207    DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n");
208    BBWorkList.push_back(BB);  // Add the block to the work list!
209    return true;
210  }
211
212  /// TrackValueOfGlobalVariable - Clients can use this method to
213  /// inform the SCCPSolver that it should track loads and stores to the
214  /// specified global variable if it can.  This is only legal to call if
215  /// performing Interprocedural SCCP.
216  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
217    const Type *ElTy = GV->getType()->getElementType();
218    if (ElTy->isFirstClassType()) {
219      LatticeVal &IV = TrackedGlobals[GV];
220      if (!isa<UndefValue>(GV->getInitializer()))
221        IV.markConstant(GV->getInitializer());
222    }
223  }
224
225  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
226  /// and out of the specified function (which cannot have its address taken),
227  /// this method must be called.
228  void AddTrackedFunction(Function *F) {
229    // Add an entry, F -> undef.
230    if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
231      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
232        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
233                                                     LatticeVal()));
234    } else
235      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
236  }
237
238  /// Solve - Solve for constants and executable blocks.
239  ///
240  void Solve();
241
242  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
243  /// that branches on undef values cannot reach any of their successors.
244  /// However, this is not a safe assumption.  After we solve dataflow, this
245  /// method should be use to handle this.  If this returns true, the solver
246  /// should be rerun.
247  bool ResolvedUndefsIn(Function &F);
248
249  bool isBlockExecutable(BasicBlock *BB) const {
250    return BBExecutable.count(BB);
251  }
252
253  LatticeVal getLatticeValueFor(Value *V) const {
254    DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
255    assert(I != ValueState.end() && "V is not in valuemap!");
256    return I->second;
257  }
258
259  /// getTrackedRetVals - Get the inferred return value map.
260  ///
261  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
262    return TrackedRetVals;
263  }
264
265  /// getTrackedGlobals - Get and return the set of inferred initializers for
266  /// global variables.
267  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
268    return TrackedGlobals;
269  }
270
271  void markOverdefined(Value *V) {
272    markOverdefined(ValueState[V], V);
273  }
274
275private:
276  // markConstant - Make a value be marked as "constant".  If the value
277  // is not already a constant, add it to the instruction work list so that
278  // the users of the instruction are updated later.
279  //
280  void markConstant(LatticeVal &IV, Value *V, Constant *C) {
281    if (!IV.markConstant(C)) return;
282    DEBUG(errs() << "markConstant: " << *C << ": " << *V << '\n');
283    InstWorkList.push_back(V);
284  }
285
286  void markConstant(Value *V, Constant *C) {
287    markConstant(ValueState[V], V, C);
288  }
289
290  void markForcedConstant(Value *V, Constant *C) {
291    ValueState[V].markForcedConstant(C);
292    DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V << '\n');
293    InstWorkList.push_back(V);
294  }
295
296
297  // markOverdefined - Make a value be marked as "overdefined". If the
298  // value is not already overdefined, add it to the overdefined instruction
299  // work list so that the users of the instruction are updated later.
300  void markOverdefined(LatticeVal &IV, Value *V) {
301    if (!IV.markOverdefined()) return;
302
303    DEBUG(errs() << "markOverdefined: ";
304          if (Function *F = dyn_cast<Function>(V))
305            errs() << "Function '" << F->getName() << "'\n";
306          else
307            errs() << *V << '\n');
308    // Only instructions go on the work list
309    OverdefinedInstWorkList.push_back(V);
310  }
311
312  void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
313    if (IV.isOverdefined() || MergeWithV.isUndefined())
314      return;  // Noop.
315    if (MergeWithV.isOverdefined())
316      markOverdefined(IV, V);
317    else if (IV.isUndefined())
318      markConstant(IV, V, MergeWithV.getConstant());
319    else if (IV.getConstant() != MergeWithV.getConstant())
320      markOverdefined(IV, V);
321  }
322
323  void mergeInValue(Value *V, LatticeVal MergeWithV) {
324    mergeInValue(ValueState[V], V, MergeWithV);
325  }
326
327
328  /// getValueState - Return the LatticeVal object that corresponds to the
329  /// value.  This function handles the case when the value hasn't been seen yet
330  /// by properly seeding constants etc.
331  LatticeVal &getValueState(Value *V) {
332    DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V);
333    if (I != ValueState.end()) return I->second;  // Common case, in the map
334
335    LatticeVal &LV = ValueState[V];
336
337    if (Constant *C = dyn_cast<Constant>(V)) {
338      // Undef values remain undefined.
339      if (!isa<UndefValue>(V))
340        LV.markConstant(C);          // Constants are constant
341    }
342
343    // All others are underdefined by default.
344    return LV;
345  }
346
347  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
348  /// work list if it is not already executable.
349  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
350    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
351      return;  // This edge is already known to be executable!
352
353    if (!MarkBlockExecutable(Dest)) {
354      // If the destination is already executable, we just made an *edge*
355      // feasible that wasn't before.  Revisit the PHI nodes in the block
356      // because they have potentially new operands.
357      DEBUG(errs() << "Marking Edge Executable: " << Source->getName()
358            << " -> " << Dest->getName() << "\n");
359
360      PHINode *PN;
361      for (BasicBlock::iterator I = Dest->begin();
362           (PN = dyn_cast<PHINode>(I)); ++I)
363        visitPHINode(*PN);
364    }
365  }
366
367  // getFeasibleSuccessors - Return a vector of booleans to indicate which
368  // successors are reachable from a given terminator instruction.
369  //
370  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
371
372  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
373  // block to the 'To' basic block is currently feasible.
374  //
375  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
376
377  // OperandChangedState - This method is invoked on all of the users of an
378  // instruction that was just changed state somehow.  Based on this
379  // information, we need to update the specified user of this instruction.
380  //
381  void OperandChangedState(Instruction *I) {
382    if (BBExecutable.count(I->getParent()))   // Inst is executable?
383      visit(*I);
384  }
385
386  /// RemoveFromOverdefinedPHIs - If I has any entries in the
387  /// UsersOfOverdefinedPHIs map for PN, remove them now.
388  void RemoveFromOverdefinedPHIs(Instruction *I, PHINode *PN) {
389    if (UsersOfOverdefinedPHIs.empty()) return;
390    std::multimap<PHINode*, Instruction*>::iterator It, E;
391    tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN);
392    while (It != E) {
393      if (It->second == I)
394        UsersOfOverdefinedPHIs.erase(It++);
395      else
396        ++It;
397    }
398  }
399
400private:
401  friend class InstVisitor<SCCPSolver>;
402
403  // visit implementations - Something changed in this instruction.  Either an
404  // operand made a transition, or the instruction is newly executable.  Change
405  // the value type of I to reflect these changes if appropriate.
406  void visitPHINode(PHINode &I);
407
408  // Terminators
409  void visitReturnInst(ReturnInst &I);
410  void visitTerminatorInst(TerminatorInst &TI);
411
412  void visitCastInst(CastInst &I);
413  void visitSelectInst(SelectInst &I);
414  void visitBinaryOperator(Instruction &I);
415  void visitCmpInst(CmpInst &I);
416  void visitExtractElementInst(ExtractElementInst &I);
417  void visitInsertElementInst(InsertElementInst &I);
418  void visitShuffleVectorInst(ShuffleVectorInst &I);
419  void visitExtractValueInst(ExtractValueInst &EVI);
420  void visitInsertValueInst(InsertValueInst &IVI);
421
422  // Instructions that cannot be folded away.
423  void visitStoreInst     (StoreInst &I);
424  void visitLoadInst      (LoadInst &I);
425  void visitGetElementPtrInst(GetElementPtrInst &I);
426  void visitCallInst      (CallInst &I) {
427    visitCallSite(CallSite::get(&I));
428  }
429  void visitInvokeInst    (InvokeInst &II) {
430    visitCallSite(CallSite::get(&II));
431    visitTerminatorInst(II);
432  }
433  void visitCallSite      (CallSite CS);
434  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
435  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
436  void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
437  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
438  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
439
440  void visitInstruction(Instruction &I) {
441    // If a new instruction is added to LLVM that we don't handle.
442    errs() << "SCCP: Don't know how to handle: " << I;
443    markOverdefined(&I);   // Just in case
444  }
445};
446
447} // end anonymous namespace
448
449
450// getFeasibleSuccessors - Return a vector of booleans to indicate which
451// successors are reachable from a given terminator instruction.
452//
453void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
454                                       SmallVector<bool, 16> &Succs) {
455  Succs.resize(TI.getNumSuccessors());
456  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
457    if (BI->isUnconditional()) {
458      Succs[0] = true;
459      return;
460    }
461
462    LatticeVal BCValue = getValueState(BI->getCondition());
463    ConstantInt *CI = BCValue.getConstantInt();
464    if (CI == 0) {
465      // Overdefined condition variables, and branches on unfoldable constant
466      // conditions, mean the branch could go either way.
467      if (!BCValue.isUndefined())
468        Succs[0] = Succs[1] = true;
469      return;
470    }
471
472    // Constant condition variables mean the branch can only go a single way.
473    Succs[CI->isZero()] = true;
474    return;
475  }
476
477  if (isa<InvokeInst>(TI)) {
478    // Invoke instructions successors are always executable.
479    Succs[0] = Succs[1] = true;
480    return;
481  }
482
483  if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
484    LatticeVal SCValue = getValueState(SI->getCondition());
485    ConstantInt *CI = SCValue.getConstantInt();
486
487    if (CI == 0) {   // Overdefined or undefined condition?
488      // All destinations are executable!
489      if (!SCValue.isUndefined())
490        Succs.assign(TI.getNumSuccessors(), true);
491      return;
492    }
493
494    Succs[SI->findCaseValue(CI)] = true;
495    return;
496  }
497
498  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
499  if (isa<IndirectBrInst>(&TI)) {
500    // Just mark all destinations executable!
501    Succs.assign(TI.getNumSuccessors(), true);
502    return;
503  }
504
505#ifndef NDEBUG
506  errs() << "Unknown terminator instruction: " << TI << '\n';
507#endif
508  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
509}
510
511
512// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
513// block to the 'To' basic block is currently feasible.
514//
515bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
516  assert(BBExecutable.count(To) && "Dest should always be alive!");
517
518  // Make sure the source basic block is executable!!
519  if (!BBExecutable.count(From)) return false;
520
521  // Check to make sure this edge itself is actually feasible now.
522  TerminatorInst *TI = From->getTerminator();
523  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
524    if (BI->isUnconditional())
525      return true;
526
527    LatticeVal BCValue = getValueState(BI->getCondition());
528
529    // Overdefined condition variables mean the branch could go either way,
530    // undef conditions mean that neither edge is feasible yet.
531    ConstantInt *CI = BCValue.getConstantInt();
532    if (CI == 0)
533      return !BCValue.isUndefined();
534
535    // Constant condition variables mean the branch can only go a single way.
536    return BI->getSuccessor(CI->isZero()) == To;
537  }
538
539  // Invoke instructions successors are always executable.
540  if (isa<InvokeInst>(TI))
541    return true;
542
543  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
544    LatticeVal SCValue = getValueState(SI->getCondition());
545    ConstantInt *CI = SCValue.getConstantInt();
546
547    if (CI == 0)
548      return !SCValue.isUndefined();
549
550    // Make sure to skip the "default value" which isn't a value
551    for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
552      if (SI->getSuccessorValue(i) == CI) // Found the taken branch.
553        return SI->getSuccessor(i) == To;
554
555    // If the constant value is not equal to any of the branches, we must
556    // execute default branch.
557    return SI->getDefaultDest() == To;
558  }
559
560  // Just mark all destinations executable!
561  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
562  if (isa<IndirectBrInst>(&TI))
563    return true;
564
565#ifndef NDEBUG
566  errs() << "Unknown terminator instruction: " << *TI << '\n';
567#endif
568  llvm_unreachable(0);
569}
570
571// visit Implementations - Something changed in this instruction, either an
572// operand made a transition, or the instruction is newly executable.  Change
573// the value type of I to reflect these changes if appropriate.  This method
574// makes sure to do the following actions:
575//
576// 1. If a phi node merges two constants in, and has conflicting value coming
577//    from different branches, or if the PHI node merges in an overdefined
578//    value, then the PHI node becomes overdefined.
579// 2. If a phi node merges only constants in, and they all agree on value, the
580//    PHI node becomes a constant value equal to that.
581// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
582// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
583// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
584// 6. If a conditional branch has a value that is constant, make the selected
585//    destination executable
586// 7. If a conditional branch has a value that is overdefined, make all
587//    successors executable.
588//
589void SCCPSolver::visitPHINode(PHINode &PN) {
590  if (getValueState(&PN).isOverdefined()) {
591    // There may be instructions using this PHI node that are not overdefined
592    // themselves.  If so, make sure that they know that the PHI node operand
593    // changed.
594    std::multimap<PHINode*, Instruction*>::iterator I, E;
595    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
596    if (I == E)
597      return;
598
599    SmallVector<Instruction*, 16> Users;
600    for (; I != E; ++I)
601      Users.push_back(I->second);
602    while (!Users.empty())
603      visit(Users.pop_back_val());
604    return;  // Quick exit
605  }
606
607  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
608  // and slow us down a lot.  Just mark them overdefined.
609  if (PN.getNumIncomingValues() > 64)
610    return markOverdefined(&PN);
611
612  // Look at all of the executable operands of the PHI node.  If any of them
613  // are overdefined, the PHI becomes overdefined as well.  If they are all
614  // constant, and they agree with each other, the PHI becomes the identical
615  // constant.  If they are constant and don't agree, the PHI is overdefined.
616  // If there are no executable operands, the PHI remains undefined.
617  //
618  Constant *OperandVal = 0;
619  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
620    LatticeVal IV = getValueState(PN.getIncomingValue(i));
621    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
622
623    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
624      continue;
625
626    if (IV.isOverdefined())    // PHI node becomes overdefined!
627      return markOverdefined(&PN);
628
629    if (OperandVal == 0) {   // Grab the first value.
630      OperandVal = IV.getConstant();
631      continue;
632    }
633
634    // There is already a reachable operand.  If we conflict with it,
635    // then the PHI node becomes overdefined.  If we agree with it, we
636    // can continue on.
637
638    // Check to see if there are two different constants merging, if so, the PHI
639    // node is overdefined.
640    if (IV.getConstant() != OperandVal)
641      return markOverdefined(&PN);
642  }
643
644  // If we exited the loop, this means that the PHI node only has constant
645  // arguments that agree with each other(and OperandVal is the constant) or
646  // OperandVal is null because there are no defined incoming arguments.  If
647  // this is the case, the PHI remains undefined.
648  //
649  if (OperandVal)
650    markConstant(&PN, OperandVal);      // Acquire operand value
651}
652
653
654
655
656void SCCPSolver::visitReturnInst(ReturnInst &I) {
657  if (I.getNumOperands() == 0) return;  // ret void
658
659  Function *F = I.getParent()->getParent();
660
661  // If we are tracking the return value of this function, merge it in.
662  if (!TrackedRetVals.empty()) {
663    DenseMap<Function*, LatticeVal>::iterator TFRVI =
664      TrackedRetVals.find(F);
665    if (TFRVI != TrackedRetVals.end()) {
666      mergeInValue(TFRVI->second, F, getValueState(I.getOperand(0)));
667      return;
668    }
669  }
670
671  // Handle functions that return multiple values.
672  if (!TrackedMultipleRetVals.empty() &&
673      isa<StructType>(I.getOperand(0)->getType())) {
674    for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
675         i != e; ++i) {
676      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
677        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
678      if (It == TrackedMultipleRetVals.end()) break;
679      if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext()))
680        mergeInValue(It->second, F, getValueState(Val));
681    }
682  }
683}
684
685void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
686  SmallVector<bool, 16> SuccFeasible;
687  getFeasibleSuccessors(TI, SuccFeasible);
688
689  BasicBlock *BB = TI.getParent();
690
691  // Mark all feasible successors executable.
692  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
693    if (SuccFeasible[i])
694      markEdgeExecutable(BB, TI.getSuccessor(i));
695}
696
697void SCCPSolver::visitCastInst(CastInst &I) {
698  LatticeVal OpSt = getValueState(I.getOperand(0));
699  if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
700    markOverdefined(&I);
701  else if (OpSt.isConstant())        // Propagate constant value
702    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
703                                           OpSt.getConstant(), I.getType()));
704}
705
706void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
707  Value *Aggr = EVI.getAggregateOperand();
708
709  // If the operand to the extractvalue is an undef, the result is undef.
710  if (isa<UndefValue>(Aggr))
711    return;
712
713  // Currently only handle single-index extractvalues.
714  if (EVI.getNumIndices() != 1)
715    return markOverdefined(&EVI);
716
717  Function *F = 0;
718  if (CallInst *CI = dyn_cast<CallInst>(Aggr))
719    F = CI->getCalledFunction();
720  else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
721    F = II->getCalledFunction();
722
723  // TODO: If IPSCCP resolves the callee of this function, we could propagate a
724  // result back!
725  if (F == 0 || TrackedMultipleRetVals.empty())
726    return markOverdefined(&EVI);
727
728  // See if we are tracking the result of the callee.  If not tracking this
729  // function (for example, it is a declaration) just move to overdefined.
730  if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin())))
731    return markOverdefined(&EVI);
732
733  // Otherwise, the value will be merged in here as a result of CallSite
734  // handling.
735}
736
737void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
738  Value *Aggr = IVI.getAggregateOperand();
739  Value *Val = IVI.getInsertedValueOperand();
740
741  // If the operands to the insertvalue are undef, the result is undef.
742  if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
743    return;
744
745  // Currently only handle single-index insertvalues.
746  if (IVI.getNumIndices() != 1)
747    return markOverdefined(&IVI);
748
749  // Currently only handle insertvalue instructions that are in a single-use
750  // chain that builds up a return value.
751  for (const InsertValueInst *TmpIVI = &IVI; ; ) {
752    if (!TmpIVI->hasOneUse())
753      return markOverdefined(&IVI);
754
755    const Value *V = *TmpIVI->use_begin();
756    if (isa<ReturnInst>(V))
757      break;
758    TmpIVI = dyn_cast<InsertValueInst>(V);
759    if (!TmpIVI)
760      return markOverdefined(&IVI);
761  }
762
763  // See if we are tracking the result of the callee.
764  Function *F = IVI.getParent()->getParent();
765  DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
766    It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
767
768  // Merge in the inserted member value.
769  if (It != TrackedMultipleRetVals.end())
770    mergeInValue(It->second, F, getValueState(Val));
771
772  // Mark the aggregate result of the IVI overdefined; any tracking that we do
773  // will be done on the individual member values.
774  markOverdefined(&IVI);
775}
776
777void SCCPSolver::visitSelectInst(SelectInst &I) {
778  LatticeVal CondValue = getValueState(I.getCondition());
779  if (CondValue.isUndefined())
780    return;
781
782  if (ConstantInt *CondCB = CondValue.getConstantInt()) {
783    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
784    mergeInValue(&I, getValueState(OpVal));
785    return;
786  }
787
788  // Otherwise, the condition is overdefined or a constant we can't evaluate.
789  // See if we can produce something better than overdefined based on the T/F
790  // value.
791  LatticeVal TVal = getValueState(I.getTrueValue());
792  LatticeVal FVal = getValueState(I.getFalseValue());
793
794  // select ?, C, C -> C.
795  if (TVal.isConstant() && FVal.isConstant() &&
796      TVal.getConstant() == FVal.getConstant())
797    return markConstant(&I, FVal.getConstant());
798
799  if (TVal.isUndefined())   // select ?, undef, X -> X.
800    return mergeInValue(&I, FVal);
801  if (FVal.isUndefined())   // select ?, X, undef -> X.
802    return mergeInValue(&I, TVal);
803  markOverdefined(&I);
804}
805
806// Handle Binary Operators.
807void SCCPSolver::visitBinaryOperator(Instruction &I) {
808  LatticeVal V1State = getValueState(I.getOperand(0));
809  LatticeVal V2State = getValueState(I.getOperand(1));
810
811  LatticeVal &IV = ValueState[&I];
812  if (IV.isOverdefined()) return;
813
814  if (V1State.isConstant() && V2State.isConstant())
815    return markConstant(IV, &I,
816                        ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
817                                          V2State.getConstant()));
818
819  // If something is undef, wait for it to resolve.
820  if (!V1State.isOverdefined() && !V2State.isOverdefined())
821    return;
822
823  // Otherwise, one of our operands is overdefined.  Try to produce something
824  // better than overdefined with some tricks.
825
826  // If this is an AND or OR with 0 or -1, it doesn't matter that the other
827  // operand is overdefined.
828  if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
829    LatticeVal *NonOverdefVal = 0;
830    if (!V1State.isOverdefined())
831      NonOverdefVal = &V1State;
832    else if (!V2State.isOverdefined())
833      NonOverdefVal = &V2State;
834
835    if (NonOverdefVal) {
836      if (NonOverdefVal->isUndefined()) {
837        // Could annihilate value.
838        if (I.getOpcode() == Instruction::And)
839          markConstant(IV, &I, Constant::getNullValue(I.getType()));
840        else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
841          markConstant(IV, &I, Constant::getAllOnesValue(PT));
842        else
843          markConstant(IV, &I,
844                       Constant::getAllOnesValue(I.getType()));
845        return;
846      }
847
848      if (I.getOpcode() == Instruction::And) {
849        // X and 0 = 0
850        if (NonOverdefVal->getConstant()->isNullValue())
851          return markConstant(IV, &I, NonOverdefVal->getConstant());
852      } else {
853        if (ConstantInt *CI = NonOverdefVal->getConstantInt())
854          if (CI->isAllOnesValue())     // X or -1 = -1
855            return markConstant(IV, &I, NonOverdefVal->getConstant());
856      }
857    }
858  }
859
860
861  // If both operands are PHI nodes, it is possible that this instruction has
862  // a constant value, despite the fact that the PHI node doesn't.  Check for
863  // this condition now.
864  if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
865    if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
866      if (PN1->getParent() == PN2->getParent()) {
867        // Since the two PHI nodes are in the same basic block, they must have
868        // entries for the same predecessors.  Walk the predecessor list, and
869        // if all of the incoming values are constants, and the result of
870        // evaluating this expression with all incoming value pairs is the
871        // same, then this expression is a constant even though the PHI node
872        // is not a constant!
873        LatticeVal Result;
874        for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
875          LatticeVal In1 = getValueState(PN1->getIncomingValue(i));
876          BasicBlock *InBlock = PN1->getIncomingBlock(i);
877          LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
878
879          if (In1.isOverdefined() || In2.isOverdefined()) {
880            Result.markOverdefined();
881            break;  // Cannot fold this operation over the PHI nodes!
882          }
883
884          if (In1.isConstant() && In2.isConstant()) {
885            Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
886                                            In2.getConstant());
887            if (Result.isUndefined())
888              Result.markConstant(V);
889            else if (Result.isConstant() && Result.getConstant() != V) {
890              Result.markOverdefined();
891              break;
892            }
893          }
894        }
895
896        // If we found a constant value here, then we know the instruction is
897        // constant despite the fact that the PHI nodes are overdefined.
898        if (Result.isConstant()) {
899          markConstant(IV, &I, Result.getConstant());
900          // Remember that this instruction is virtually using the PHI node
901          // operands.
902          UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
903          UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
904          return;
905        }
906
907        if (Result.isUndefined())
908          return;
909
910        // Okay, this really is overdefined now.  Since we might have
911        // speculatively thought that this was not overdefined before, and
912        // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
913        // make sure to clean out any entries that we put there, for
914        // efficiency.
915        RemoveFromOverdefinedPHIs(&I, PN1);
916        RemoveFromOverdefinedPHIs(&I, PN2);
917      }
918
919  markOverdefined(&I);
920}
921
922// Handle ICmpInst instruction.
923void SCCPSolver::visitCmpInst(CmpInst &I) {
924  LatticeVal V1State = getValueState(I.getOperand(0));
925  LatticeVal V2State = getValueState(I.getOperand(1));
926
927  LatticeVal &IV = ValueState[&I];
928  if (IV.isOverdefined()) return;
929
930  if (V1State.isConstant() && V2State.isConstant())
931    return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
932                                                         V1State.getConstant(),
933                                                        V2State.getConstant()));
934
935  // If operands are still undefined, wait for it to resolve.
936  if (!V1State.isOverdefined() && !V2State.isOverdefined())
937    return;
938
939  // If something is overdefined, use some tricks to avoid ending up and over
940  // defined if we can.
941
942  // If both operands are PHI nodes, it is possible that this instruction has
943  // a constant value, despite the fact that the PHI node doesn't.  Check for
944  // this condition now.
945  if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
946    if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
947      if (PN1->getParent() == PN2->getParent()) {
948        // Since the two PHI nodes are in the same basic block, they must have
949        // entries for the same predecessors.  Walk the predecessor list, and
950        // if all of the incoming values are constants, and the result of
951        // evaluating this expression with all incoming value pairs is the
952        // same, then this expression is a constant even though the PHI node
953        // is not a constant!
954        LatticeVal Result;
955        for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
956          LatticeVal In1 = getValueState(PN1->getIncomingValue(i));
957          BasicBlock *InBlock = PN1->getIncomingBlock(i);
958          LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
959
960          if (In1.isOverdefined() || In2.isOverdefined()) {
961            Result.markOverdefined();
962            break;  // Cannot fold this operation over the PHI nodes!
963          }
964
965          if (In1.isConstant() && In2.isConstant()) {
966            Constant *V = ConstantExpr::getCompare(I.getPredicate(),
967                                                   In1.getConstant(),
968                                                   In2.getConstant());
969            if (Result.isUndefined())
970              Result.markConstant(V);
971            else if (Result.isConstant() && Result.getConstant() != V) {
972              Result.markOverdefined();
973              break;
974            }
975          }
976        }
977
978        // If we found a constant value here, then we know the instruction is
979        // constant despite the fact that the PHI nodes are overdefined.
980        if (Result.isConstant()) {
981          markConstant(&I, Result.getConstant());
982          // Remember that this instruction is virtually using the PHI node
983          // operands.
984          UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
985          UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
986          return;
987        }
988
989        if (Result.isUndefined())
990          return;
991
992        // Okay, this really is overdefined now.  Since we might have
993        // speculatively thought that this was not overdefined before, and
994        // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
995        // make sure to clean out any entries that we put there, for
996        // efficiency.
997        RemoveFromOverdefinedPHIs(&I, PN1);
998        RemoveFromOverdefinedPHIs(&I, PN2);
999      }
1000
1001  markOverdefined(&I);
1002}
1003
1004void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1005  // FIXME : SCCP does not handle vectors properly.
1006  return markOverdefined(&I);
1007
1008#if 0
1009  LatticeVal &ValState = getValueState(I.getOperand(0));
1010  LatticeVal &IdxState = getValueState(I.getOperand(1));
1011
1012  if (ValState.isOverdefined() || IdxState.isOverdefined())
1013    markOverdefined(&I);
1014  else if(ValState.isConstant() && IdxState.isConstant())
1015    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1016                                                     IdxState.getConstant()));
1017#endif
1018}
1019
1020void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1021  // FIXME : SCCP does not handle vectors properly.
1022  return markOverdefined(&I);
1023#if 0
1024  LatticeVal &ValState = getValueState(I.getOperand(0));
1025  LatticeVal &EltState = getValueState(I.getOperand(1));
1026  LatticeVal &IdxState = getValueState(I.getOperand(2));
1027
1028  if (ValState.isOverdefined() || EltState.isOverdefined() ||
1029      IdxState.isOverdefined())
1030    markOverdefined(&I);
1031  else if(ValState.isConstant() && EltState.isConstant() &&
1032          IdxState.isConstant())
1033    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1034                                                    EltState.getConstant(),
1035                                                    IdxState.getConstant()));
1036  else if (ValState.isUndefined() && EltState.isConstant() &&
1037           IdxState.isConstant())
1038    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1039                                                   EltState.getConstant(),
1040                                                   IdxState.getConstant()));
1041#endif
1042}
1043
1044void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1045  // FIXME : SCCP does not handle vectors properly.
1046  return markOverdefined(&I);
1047#if 0
1048  LatticeVal &V1State   = getValueState(I.getOperand(0));
1049  LatticeVal &V2State   = getValueState(I.getOperand(1));
1050  LatticeVal &MaskState = getValueState(I.getOperand(2));
1051
1052  if (MaskState.isUndefined() ||
1053      (V1State.isUndefined() && V2State.isUndefined()))
1054    return;  // Undefined output if mask or both inputs undefined.
1055
1056  if (V1State.isOverdefined() || V2State.isOverdefined() ||
1057      MaskState.isOverdefined()) {
1058    markOverdefined(&I);
1059  } else {
1060    // A mix of constant/undef inputs.
1061    Constant *V1 = V1State.isConstant() ?
1062        V1State.getConstant() : UndefValue::get(I.getType());
1063    Constant *V2 = V2State.isConstant() ?
1064        V2State.getConstant() : UndefValue::get(I.getType());
1065    Constant *Mask = MaskState.isConstant() ?
1066      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1067    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1068  }
1069#endif
1070}
1071
1072// Handle getelementptr instructions.  If all operands are constants then we
1073// can turn this into a getelementptr ConstantExpr.
1074//
1075void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1076  if (ValueState[&I].isOverdefined()) return;
1077
1078  SmallVector<Constant*, 8> Operands;
1079  Operands.reserve(I.getNumOperands());
1080
1081  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1082    LatticeVal State = getValueState(I.getOperand(i));
1083    if (State.isUndefined())
1084      return;  // Operands are not resolved yet.
1085
1086    if (State.isOverdefined())
1087      return markOverdefined(&I);
1088
1089    assert(State.isConstant() && "Unknown state!");
1090    Operands.push_back(State.getConstant());
1091  }
1092
1093  Constant *Ptr = Operands[0];
1094  markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0]+1,
1095                                                  Operands.size()-1));
1096}
1097
1098void SCCPSolver::visitStoreInst(StoreInst &SI) {
1099  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1100    return;
1101
1102  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1103  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1104  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1105
1106  // Get the value we are storing into the global, then merge it.
1107  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1108  if (I->second.isOverdefined())
1109    TrackedGlobals.erase(I);      // No need to keep tracking this!
1110}
1111
1112
1113// Handle load instructions.  If the operand is a constant pointer to a constant
1114// global, we can replace the load with the loaded constant value!
1115void SCCPSolver::visitLoadInst(LoadInst &I) {
1116  LatticeVal PtrVal = getValueState(I.getOperand(0));
1117  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1118
1119  LatticeVal &IV = ValueState[&I];
1120  if (IV.isOverdefined()) return;
1121
1122  if (!PtrVal.isConstant() || I.isVolatile())
1123    return markOverdefined(IV, &I);
1124
1125  Constant *Ptr = PtrVal.getConstant();
1126
1127  // load null -> null
1128  if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1129    return markConstant(IV, &I, Constant::getNullValue(I.getType()));
1130
1131  // Transform load (constant global) into the value loaded.
1132  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1133    if (!TrackedGlobals.empty()) {
1134      // If we are tracking this global, merge in the known value for it.
1135      DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1136        TrackedGlobals.find(GV);
1137      if (It != TrackedGlobals.end()) {
1138        mergeInValue(IV, &I, It->second);
1139        return;
1140      }
1141    }
1142  }
1143
1144  // Transform load from a constant into a constant if possible.
1145  if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD))
1146    return markConstant(IV, &I, C);
1147
1148  // Otherwise we cannot say for certain what value this load will produce.
1149  // Bail out.
1150  markOverdefined(IV, &I);
1151}
1152
1153void SCCPSolver::visitCallSite(CallSite CS) {
1154  Function *F = CS.getCalledFunction();
1155  Instruction *I = CS.getInstruction();
1156
1157  // The common case is that we aren't tracking the callee, either because we
1158  // are not doing interprocedural analysis or the callee is indirect, or is
1159  // external.  Handle these cases first.
1160  if (F == 0 || F->isDeclaration()) {
1161CallOverdefined:
1162    // Void return and not tracking callee, just bail.
1163    if (I->getType()->isVoidTy()) return;
1164
1165    // Otherwise, if we have a single return value case, and if the function is
1166    // a declaration, maybe we can constant fold it.
1167    if (F && F->isDeclaration() && !isa<StructType>(I->getType()) &&
1168        canConstantFoldCallTo(F)) {
1169
1170      SmallVector<Constant*, 8> Operands;
1171      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1172           AI != E; ++AI) {
1173        LatticeVal State = getValueState(*AI);
1174
1175        if (State.isUndefined())
1176          return;  // Operands are not resolved yet.
1177        if (State.isOverdefined())
1178          return markOverdefined(I);
1179        assert(State.isConstant() && "Unknown state!");
1180        Operands.push_back(State.getConstant());
1181      }
1182
1183      // If we can constant fold this, mark the result of the call as a
1184      // constant.
1185      if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size()))
1186        return markConstant(I, C);
1187    }
1188
1189    // Otherwise, we don't know anything about this call, mark it overdefined.
1190    return markOverdefined(I);
1191  }
1192
1193  // If this is a single/zero retval case, see if we're tracking the function.
1194  DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1195  if (TFRVI != TrackedRetVals.end()) {
1196    // If so, propagate the return value of the callee into this call result.
1197    mergeInValue(I, TFRVI->second);
1198  } else if (isa<StructType>(I->getType())) {
1199    // Check to see if we're tracking this callee, if not, handle it in the
1200    // common path above.
1201    DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
1202    TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
1203    if (TMRVI == TrackedMultipleRetVals.end())
1204      goto CallOverdefined;
1205
1206    // Need to mark as overdefined, otherwise it stays undefined which
1207    // creates extractvalue undef, <idx>
1208    markOverdefined(I);
1209
1210    // If we are tracking this callee, propagate the return values of the call
1211    // into this call site.  We do this by walking all the uses. Single-index
1212    // ExtractValueInst uses can be tracked; anything more complicated is
1213    // currently handled conservatively.
1214    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1215         UI != E; ++UI) {
1216      if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1217        if (EVI->getNumIndices() == 1) {
1218          mergeInValue(EVI,
1219                  TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
1220          continue;
1221        }
1222      }
1223      // The aggregate value is used in a way not handled here. Assume nothing.
1224      markOverdefined(*UI);
1225    }
1226  } else {
1227    // Otherwise we're not tracking this callee, so handle it in the
1228    // common path above.
1229    goto CallOverdefined;
1230  }
1231
1232  // Finally, if this is the first call to the function hit, mark its entry
1233  // block executable.
1234  MarkBlockExecutable(F->begin());
1235
1236  // Propagate information from this call site into the callee.
1237  CallSite::arg_iterator CAI = CS.arg_begin();
1238  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1239       AI != E; ++AI, ++CAI) {
1240    // If this argument is byval, and if the function is not readonly, there
1241    // will be an implicit copy formed of the input aggregate.
1242    if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1243      markOverdefined(AI);
1244      continue;
1245    }
1246
1247    mergeInValue(AI, getValueState(*CAI));
1248  }
1249}
1250
1251void SCCPSolver::Solve() {
1252  // Process the work lists until they are empty!
1253  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1254         !OverdefinedInstWorkList.empty()) {
1255    // Process the overdefined instruction's work list first, which drives other
1256    // things to overdefined more quickly.
1257    while (!OverdefinedInstWorkList.empty()) {
1258      Value *I = OverdefinedInstWorkList.pop_back_val();
1259
1260      DEBUG(errs() << "\nPopped off OI-WL: " << *I << '\n');
1261
1262      // "I" got into the work list because it either made the transition from
1263      // bottom to constant
1264      //
1265      // Anything on this worklist that is overdefined need not be visited
1266      // since all of its users will have already been marked as overdefined
1267      // Update all of the users of this instruction's value.
1268      //
1269      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1270           UI != E; ++UI)
1271        if (Instruction *I = dyn_cast<Instruction>(*UI))
1272          OperandChangedState(I);
1273    }
1274
1275    // Process the instruction work list.
1276    while (!InstWorkList.empty()) {
1277      Value *I = InstWorkList.pop_back_val();
1278
1279      DEBUG(errs() << "\nPopped off I-WL: " << *I << '\n');
1280
1281      // "I" got into the work list because it made the transition from undef to
1282      // constant.
1283      //
1284      // Anything on this worklist that is overdefined need not be visited
1285      // since all of its users will have already been marked as overdefined.
1286      // Update all of the users of this instruction's value.
1287      //
1288      if (!getValueState(I).isOverdefined())
1289        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1290             UI != E; ++UI)
1291          if (Instruction *I = dyn_cast<Instruction>(*UI))
1292            OperandChangedState(I);
1293    }
1294
1295    // Process the basic block work list.
1296    while (!BBWorkList.empty()) {
1297      BasicBlock *BB = BBWorkList.back();
1298      BBWorkList.pop_back();
1299
1300      DEBUG(errs() << "\nPopped off BBWL: " << *BB << '\n');
1301
1302      // Notify all instructions in this basic block that they are newly
1303      // executable.
1304      visit(BB);
1305    }
1306  }
1307}
1308
1309/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1310/// that branches on undef values cannot reach any of their successors.
1311/// However, this is not a safe assumption.  After we solve dataflow, this
1312/// method should be use to handle this.  If this returns true, the solver
1313/// should be rerun.
1314///
1315/// This method handles this by finding an unresolved branch and marking it one
1316/// of the edges from the block as being feasible, even though the condition
1317/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1318/// CFG and only slightly pessimizes the analysis results (by marking one,
1319/// potentially infeasible, edge feasible).  This cannot usefully modify the
1320/// constraints on the condition of the branch, as that would impact other users
1321/// of the value.
1322///
1323/// This scan also checks for values that use undefs, whose results are actually
1324/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1325/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1326/// even if X isn't defined.
1327bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1328  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1329    if (!BBExecutable.count(BB))
1330      continue;
1331
1332    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1333      // Look for instructions which produce undef values.
1334      if (I->getType()->isVoidTy()) continue;
1335
1336      LatticeVal &LV = getValueState(I);
1337      if (!LV.isUndefined()) continue;
1338
1339      // Get the lattice values of the first two operands for use below.
1340      LatticeVal Op0LV = getValueState(I->getOperand(0));
1341      LatticeVal Op1LV;
1342      if (I->getNumOperands() == 2) {
1343        // If this is a two-operand instruction, and if both operands are
1344        // undefs, the result stays undef.
1345        Op1LV = getValueState(I->getOperand(1));
1346        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1347          continue;
1348      }
1349
1350      // If this is an instructions whose result is defined even if the input is
1351      // not fully defined, propagate the information.
1352      const Type *ITy = I->getType();
1353      switch (I->getOpcode()) {
1354      default: break;          // Leave the instruction as an undef.
1355      case Instruction::ZExt:
1356        // After a zero extend, we know the top part is zero.  SExt doesn't have
1357        // to be handled here, because we don't know whether the top part is 1's
1358        // or 0's.
1359        markForcedConstant(I, Constant::getNullValue(ITy));
1360        return true;
1361      case Instruction::Mul:
1362      case Instruction::And:
1363        // undef * X -> 0.   X could be zero.
1364        // undef & X -> 0.   X could be zero.
1365        markForcedConstant(I, Constant::getNullValue(ITy));
1366        return true;
1367
1368      case Instruction::Or:
1369        // undef | X -> -1.   X could be -1.
1370        markForcedConstant(I, Constant::getAllOnesValue(ITy));
1371        return true;
1372
1373      case Instruction::SDiv:
1374      case Instruction::UDiv:
1375      case Instruction::SRem:
1376      case Instruction::URem:
1377        // X / undef -> undef.  No change.
1378        // X % undef -> undef.  No change.
1379        if (Op1LV.isUndefined()) break;
1380
1381        // undef / X -> 0.   X could be maxint.
1382        // undef % X -> 0.   X could be 1.
1383        markForcedConstant(I, Constant::getNullValue(ITy));
1384        return true;
1385
1386      case Instruction::AShr:
1387        // undef >>s X -> undef.  No change.
1388        if (Op0LV.isUndefined()) break;
1389
1390        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1391        if (Op0LV.isConstant())
1392          markForcedConstant(I, Op0LV.getConstant());
1393        else
1394          markOverdefined(I);
1395        return true;
1396      case Instruction::LShr:
1397      case Instruction::Shl:
1398        // undef >> X -> undef.  No change.
1399        // undef << X -> undef.  No change.
1400        if (Op0LV.isUndefined()) break;
1401
1402        // X >> undef -> 0.  X could be 0.
1403        // X << undef -> 0.  X could be 0.
1404        markForcedConstant(I, Constant::getNullValue(ITy));
1405        return true;
1406      case Instruction::Select:
1407        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1408        if (Op0LV.isUndefined()) {
1409          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1410            Op1LV = getValueState(I->getOperand(2));
1411        } else if (Op1LV.isUndefined()) {
1412          // c ? undef : undef -> undef.  No change.
1413          Op1LV = getValueState(I->getOperand(2));
1414          if (Op1LV.isUndefined())
1415            break;
1416          // Otherwise, c ? undef : x -> x.
1417        } else {
1418          // Leave Op1LV as Operand(1)'s LatticeValue.
1419        }
1420
1421        if (Op1LV.isConstant())
1422          markForcedConstant(I, Op1LV.getConstant());
1423        else
1424          markOverdefined(I);
1425        return true;
1426      case Instruction::Call:
1427        // If a call has an undef result, it is because it is constant foldable
1428        // but one of the inputs was undef.  Just force the result to
1429        // overdefined.
1430        markOverdefined(I);
1431        return true;
1432      }
1433    }
1434
1435    TerminatorInst *TI = BB->getTerminator();
1436    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1437      if (!BI->isConditional()) continue;
1438      if (!getValueState(BI->getCondition()).isUndefined())
1439        continue;
1440    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1441      if (SI->getNumSuccessors() < 2)   // no cases
1442        continue;
1443      if (!getValueState(SI->getCondition()).isUndefined())
1444        continue;
1445    } else {
1446      continue;
1447    }
1448
1449    // If the edge to the second successor isn't thought to be feasible yet,
1450    // mark it so now.  We pick the second one so that this goes to some
1451    // enumerated value in a switch instead of going to the default destination.
1452    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
1453      continue;
1454
1455    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
1456    // and return.  This will make other blocks reachable, which will allow new
1457    // values to be discovered and existing ones to be moved in the lattice.
1458    markEdgeExecutable(BB, TI->getSuccessor(1));
1459
1460    // This must be a conditional branch of switch on undef.  At this point,
1461    // force the old terminator to branch to the first successor.  This is
1462    // required because we are now influencing the dataflow of the function with
1463    // the assumption that this edge is taken.  If we leave the branch condition
1464    // as undef, then further analysis could think the undef went another way
1465    // leading to an inconsistent set of conclusions.
1466    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1467      BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1468    } else {
1469      SwitchInst *SI = cast<SwitchInst>(TI);
1470      SI->setCondition(SI->getCaseValue(1));
1471    }
1472
1473    return true;
1474  }
1475
1476  return false;
1477}
1478
1479
1480namespace {
1481  //===--------------------------------------------------------------------===//
1482  //
1483  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1484  /// Sparse Conditional Constant Propagator.
1485  ///
1486  struct SCCP : public FunctionPass {
1487    static char ID; // Pass identification, replacement for typeid
1488    SCCP() : FunctionPass(&ID) {}
1489
1490    // runOnFunction - Run the Sparse Conditional Constant Propagation
1491    // algorithm, and return true if the function was modified.
1492    //
1493    bool runOnFunction(Function &F);
1494
1495    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1496      AU.setPreservesCFG();
1497    }
1498  };
1499} // end anonymous namespace
1500
1501char SCCP::ID = 0;
1502static RegisterPass<SCCP>
1503X("sccp", "Sparse Conditional Constant Propagation");
1504
1505// createSCCPPass - This is the public interface to this file.
1506FunctionPass *llvm::createSCCPPass() {
1507  return new SCCP();
1508}
1509
1510static void DeleteInstructionInBlock(BasicBlock *BB) {
1511  DEBUG(errs() << "  BasicBlock Dead:" << *BB);
1512  ++NumDeadBlocks;
1513
1514  // Delete the instructions backwards, as it has a reduced likelihood of
1515  // having to update as many def-use and use-def chains.
1516  while (!isa<TerminatorInst>(BB->begin())) {
1517    Instruction *I = --BasicBlock::iterator(BB->getTerminator());
1518
1519    if (!I->use_empty())
1520      I->replaceAllUsesWith(UndefValue::get(I->getType()));
1521    BB->getInstList().erase(I);
1522    ++NumInstRemoved;
1523  }
1524}
1525
1526// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1527// and return true if the function was modified.
1528//
1529bool SCCP::runOnFunction(Function &F) {
1530  DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n");
1531  SCCPSolver Solver(getAnalysisIfAvailable<TargetData>());
1532
1533  // Mark the first block of the function as being executable.
1534  Solver.MarkBlockExecutable(F.begin());
1535
1536  // Mark all arguments to the function as being overdefined.
1537  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1538    Solver.markOverdefined(AI);
1539
1540  // Solve for constants.
1541  bool ResolvedUndefs = true;
1542  while (ResolvedUndefs) {
1543    Solver.Solve();
1544    DEBUG(errs() << "RESOLVING UNDEFs\n");
1545    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1546  }
1547
1548  bool MadeChanges = false;
1549
1550  // If we decided that there are basic blocks that are dead in this function,
1551  // delete their contents now.  Note that we cannot actually delete the blocks,
1552  // as we cannot modify the CFG of the function.
1553
1554  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1555    if (!Solver.isBlockExecutable(BB)) {
1556      DeleteInstructionInBlock(BB);
1557      MadeChanges = true;
1558      continue;
1559    }
1560
1561    // Iterate over all of the instructions in a function, replacing them with
1562    // constants if we have found them to be of constant values.
1563    //
1564    for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1565      Instruction *Inst = BI++;
1566      if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1567        continue;
1568
1569      LatticeVal IV = Solver.getLatticeValueFor(Inst);
1570      if (IV.isOverdefined())
1571        continue;
1572
1573      Constant *Const = IV.isConstant()
1574        ? IV.getConstant() : UndefValue::get(Inst->getType());
1575      DEBUG(errs() << "  Constant: " << *Const << " = " << *Inst);
1576
1577      // Replaces all of the uses of a variable with uses of the constant.
1578      Inst->replaceAllUsesWith(Const);
1579
1580      // Delete the instruction.
1581      Inst->eraseFromParent();
1582
1583      // Hey, we just changed something!
1584      MadeChanges = true;
1585      ++NumInstRemoved;
1586    }
1587  }
1588
1589  return MadeChanges;
1590}
1591
1592namespace {
1593  //===--------------------------------------------------------------------===//
1594  //
1595  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1596  /// Constant Propagation.
1597  ///
1598  struct IPSCCP : public ModulePass {
1599    static char ID;
1600    IPSCCP() : ModulePass(&ID) {}
1601    bool runOnModule(Module &M);
1602  };
1603} // end anonymous namespace
1604
1605char IPSCCP::ID = 0;
1606static RegisterPass<IPSCCP>
1607Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1608
1609// createIPSCCPPass - This is the public interface to this file.
1610ModulePass *llvm::createIPSCCPPass() {
1611  return new IPSCCP();
1612}
1613
1614
1615static bool AddressIsTaken(GlobalValue *GV) {
1616  // Delete any dead constantexpr klingons.
1617  GV->removeDeadConstantUsers();
1618
1619  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1620       UI != E; ++UI)
1621    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1622      if (SI->getOperand(0) == GV || SI->isVolatile())
1623        return true;  // Storing addr of GV.
1624    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1625      // Make sure we are calling the function, not passing the address.
1626      if (UI.getOperandNo() != 0)
1627        return true;
1628    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1629      if (LI->isVolatile())
1630        return true;
1631    } else if (isa<BlockAddress>(*UI)) {
1632      // blockaddress doesn't take the address of the function, it takes addr
1633      // of label.
1634    } else {
1635      return true;
1636    }
1637  return false;
1638}
1639
1640bool IPSCCP::runOnModule(Module &M) {
1641  SCCPSolver Solver(getAnalysisIfAvailable<TargetData>());
1642
1643  // Loop over all functions, marking arguments to those with their addresses
1644  // taken or that are external as overdefined.
1645  //
1646  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1647    if (F->isDeclaration())
1648      continue;
1649
1650    // If this is a strong or ODR definition of this function, then we can
1651    // propagate information about its result into callsites of it.
1652    if (!F->mayBeOverridden() &&
1653        !isa<StructType>(F->getReturnType()))
1654      Solver.AddTrackedFunction(F);
1655
1656    // If this function only has direct calls that we can see, we can track its
1657    // arguments and return value aggressively, and can assume it is not called
1658    // unless we see evidence to the contrary.
1659    if (F->hasLocalLinkage() && !AddressIsTaken(F))
1660      continue;
1661
1662    // Assume the function is called.
1663    Solver.MarkBlockExecutable(F->begin());
1664
1665    // Assume nothing about the incoming arguments.
1666    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1667         AI != E; ++AI)
1668      Solver.markOverdefined(AI);
1669  }
1670
1671  // Loop over global variables.  We inform the solver about any internal global
1672  // variables that do not have their 'addresses taken'.  If they don't have
1673  // their addresses taken, we can propagate constants through them.
1674  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1675       G != E; ++G)
1676    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1677      Solver.TrackValueOfGlobalVariable(G);
1678
1679  // Solve for constants.
1680  bool ResolvedUndefs = true;
1681  while (ResolvedUndefs) {
1682    Solver.Solve();
1683
1684    DEBUG(errs() << "RESOLVING UNDEFS\n");
1685    ResolvedUndefs = false;
1686    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1687      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1688  }
1689
1690  bool MadeChanges = false;
1691
1692  // Iterate over all of the instructions in the module, replacing them with
1693  // constants if we have found them to be of constant values.
1694  //
1695  SmallVector<BasicBlock*, 512> BlocksToErase;
1696
1697  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1698    if (Solver.isBlockExecutable(F->begin())) {
1699      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1700           AI != E; ++AI) {
1701        if (AI->use_empty()) continue;
1702
1703        LatticeVal IV = Solver.getLatticeValueFor(AI);
1704        if (IV.isOverdefined()) continue;
1705
1706        Constant *CST = IV.isConstant() ?
1707        IV.getConstant() : UndefValue::get(AI->getType());
1708        DEBUG(errs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1709
1710        // Replaces all of the uses of a variable with uses of the
1711        // constant.
1712        AI->replaceAllUsesWith(CST);
1713        ++IPNumArgsElimed;
1714      }
1715    }
1716
1717    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
1718      if (!Solver.isBlockExecutable(BB)) {
1719        DeleteInstructionInBlock(BB);
1720        MadeChanges = true;
1721
1722        TerminatorInst *TI = BB->getTerminator();
1723        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1724          BasicBlock *Succ = TI->getSuccessor(i);
1725          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1726            TI->getSuccessor(i)->removePredecessor(BB);
1727        }
1728        if (!TI->use_empty())
1729          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1730        TI->eraseFromParent();
1731
1732        if (&*BB != &F->front())
1733          BlocksToErase.push_back(BB);
1734        else
1735          new UnreachableInst(M.getContext(), BB);
1736        continue;
1737      }
1738
1739      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1740        Instruction *Inst = BI++;
1741        if (Inst->getType()->isVoidTy())
1742          continue;
1743
1744        LatticeVal IV = Solver.getLatticeValueFor(Inst);
1745        if (IV.isOverdefined())
1746          continue;
1747
1748        Constant *Const = IV.isConstant()
1749          ? IV.getConstant() : UndefValue::get(Inst->getType());
1750        DEBUG(errs() << "  Constant: " << *Const << " = " << *Inst);
1751
1752        // Replaces all of the uses of a variable with uses of the
1753        // constant.
1754        Inst->replaceAllUsesWith(Const);
1755
1756        // Delete the instruction.
1757        if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1758          Inst->eraseFromParent();
1759
1760        // Hey, we just changed something!
1761        MadeChanges = true;
1762        ++IPNumInstRemoved;
1763      }
1764    }
1765
1766    // Now that all instructions in the function are constant folded, erase dead
1767    // blocks, because we can now use ConstantFoldTerminator to get rid of
1768    // in-edges.
1769    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1770      // If there are any PHI nodes in this successor, drop entries for BB now.
1771      BasicBlock *DeadBB = BlocksToErase[i];
1772      while (!DeadBB->use_empty()) {
1773        Instruction *I = cast<Instruction>(DeadBB->use_back());
1774        bool Folded = ConstantFoldTerminator(I->getParent());
1775        if (!Folded) {
1776          // The constant folder may not have been able to fold the terminator
1777          // if this is a branch or switch on undef.  Fold it manually as a
1778          // branch to the first successor.
1779#ifndef NDEBUG
1780          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1781            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1782                   "Branch should be foldable!");
1783          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1784            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1785          } else {
1786            llvm_unreachable("Didn't fold away reference to block!");
1787          }
1788#endif
1789
1790          // Make this an uncond branch to the first successor.
1791          TerminatorInst *TI = I->getParent()->getTerminator();
1792          BranchInst::Create(TI->getSuccessor(0), TI);
1793
1794          // Remove entries in successor phi nodes to remove edges.
1795          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1796            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1797
1798          // Remove the old terminator.
1799          TI->eraseFromParent();
1800        }
1801      }
1802
1803      // Finally, delete the basic block.
1804      F->getBasicBlockList().erase(DeadBB);
1805    }
1806    BlocksToErase.clear();
1807  }
1808
1809  // If we inferred constant or undef return values for a function, we replaced
1810  // all call uses with the inferred value.  This means we don't need to bother
1811  // actually returning anything from the function.  Replace all return
1812  // instructions with return undef.
1813  // TODO: Process multiple value ret instructions also.
1814  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1815  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1816       E = RV.end(); I != E; ++I) {
1817    Function *F = I->first;
1818    if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
1819      continue;
1820
1821    // We can only do this if we know that nothing else can call the function.
1822    if (!F->hasLocalLinkage() || AddressIsTaken(F))
1823      continue;
1824
1825    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1826      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1827        if (!isa<UndefValue>(RI->getOperand(0)))
1828          RI->setOperand(0, UndefValue::get(F->getReturnType()));
1829  }
1830
1831  // If we infered constant or undef values for globals variables, we can delete
1832  // the global and any stores that remain to it.
1833  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1834  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1835         E = TG.end(); I != E; ++I) {
1836    GlobalVariable *GV = I->first;
1837    assert(!I->second.isOverdefined() &&
1838           "Overdefined values should have been taken out of the map!");
1839    DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1840    while (!GV->use_empty()) {
1841      StoreInst *SI = cast<StoreInst>(GV->use_back());
1842      SI->eraseFromParent();
1843    }
1844    M.getGlobalList().erase(GV);
1845    ++IPNumGlobalConst;
1846  }
1847
1848  return MadeChanges;
1849}
1850