SCCP.cpp revision f4023a1ef68197d995b4c6aa1ea27d38d7143cb4
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/ConstantFolding.h"
32#include "llvm/Transforms/Utils/Local.h"
33#include "llvm/Support/CallSite.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/InstVisitor.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/Statistic.h"
41#include "llvm/ADT/STLExtras.h"
42#include <algorithm>
43#include <map>
44using namespace llvm;
45
46STATISTIC(NumInstRemoved, "Number of instructions removed");
47STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
48
49STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
50STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
51STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
52STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
53
54namespace {
55/// LatticeVal class - This class represents the different lattice values that
56/// an LLVM value may occupy.  It is a simple class with value semantics.
57///
58class VISIBILITY_HIDDEN LatticeVal {
59  enum {
60    /// undefined - This LLVM Value has no known value yet.
61    undefined,
62
63    /// constant - This LLVM Value has a specific constant value.
64    constant,
65
66    /// forcedconstant - This LLVM Value was thought to be undef until
67    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
68    /// with another (different) constant, it goes to overdefined, instead of
69    /// asserting.
70    forcedconstant,
71
72    /// overdefined - This instruction is not known to be constant, and we know
73    /// it has a value.
74    overdefined
75  } LatticeValue;    // The current lattice position
76
77  Constant *ConstantVal; // If Constant value, the current value
78public:
79  inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
80
81  // markOverdefined - Return true if this is a new status to be in...
82  inline bool markOverdefined() {
83    if (LatticeValue != overdefined) {
84      LatticeValue = overdefined;
85      return true;
86    }
87    return false;
88  }
89
90  // markConstant - Return true if this is a new status for us.
91  inline bool markConstant(Constant *V) {
92    if (LatticeValue != constant) {
93      if (LatticeValue == undefined) {
94        LatticeValue = constant;
95        assert(V && "Marking constant with NULL");
96        ConstantVal = V;
97      } else {
98        assert(LatticeValue == forcedconstant &&
99               "Cannot move from overdefined to constant!");
100        // Stay at forcedconstant if the constant is the same.
101        if (V == ConstantVal) return false;
102
103        // Otherwise, we go to overdefined.  Assumptions made based on the
104        // forced value are possibly wrong.  Assuming this is another constant
105        // could expose a contradiction.
106        LatticeValue = overdefined;
107      }
108      return true;
109    } else {
110      assert(ConstantVal == V && "Marking constant with different value");
111    }
112    return false;
113  }
114
115  inline void markForcedConstant(Constant *V) {
116    assert(LatticeValue == undefined && "Can't force a defined value!");
117    LatticeValue = forcedconstant;
118    ConstantVal = V;
119  }
120
121  inline bool isUndefined() const { return LatticeValue == undefined; }
122  inline bool isConstant() const {
123    return LatticeValue == constant || LatticeValue == forcedconstant;
124  }
125  inline bool isOverdefined() const { return LatticeValue == overdefined; }
126
127  inline Constant *getConstant() const {
128    assert(isConstant() && "Cannot get the constant of a non-constant!");
129    return ConstantVal;
130  }
131};
132
133//===----------------------------------------------------------------------===//
134//
135/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
136/// Constant Propagation.
137///
138class SCCPSolver : public InstVisitor<SCCPSolver> {
139  SmallSet<BasicBlock*, 16> BBExecutable;// The basic blocks that are executable
140  std::map<Value*, LatticeVal> ValueState;  // The state each value is in.
141
142  /// GlobalValue - If we are tracking any values for the contents of a global
143  /// variable, we keep a mapping from the constant accessor to the element of
144  /// the global, to the currently known value.  If the value becomes
145  /// overdefined, it's entry is simply removed from this map.
146  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
147
148  /// TrackedRetVals - If we are tracking arguments into and the return
149  /// value out of a function, it will have an entry in this map, indicating
150  /// what the known return value for the function is.
151  DenseMap<Function*, LatticeVal> TrackedRetVals;
152
153  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
154  /// that return multiple values.
155  std::map<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
156
157  // The reason for two worklists is that overdefined is the lowest state
158  // on the lattice, and moving things to overdefined as fast as possible
159  // makes SCCP converge much faster.
160  // By having a separate worklist, we accomplish this because everything
161  // possibly overdefined will become overdefined at the soonest possible
162  // point.
163  std::vector<Value*> OverdefinedInstWorkList;
164  std::vector<Value*> InstWorkList;
165
166
167  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
168
169  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
170  /// overdefined, despite the fact that the PHI node is overdefined.
171  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
172
173  /// KnownFeasibleEdges - Entries in this set are edges which have already had
174  /// PHI nodes retriggered.
175  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
176  std::set<Edge> KnownFeasibleEdges;
177public:
178
179  /// MarkBlockExecutable - This method can be used by clients to mark all of
180  /// the blocks that are known to be intrinsically live in the processed unit.
181  void MarkBlockExecutable(BasicBlock *BB) {
182    DOUT << "Marking Block Executable: " << BB->getName() << "\n";
183    BBExecutable.insert(BB);   // Basic block is executable!
184    BBWorkList.push_back(BB);  // Add the block to the work list!
185  }
186
187  /// TrackValueOfGlobalVariable - Clients can use this method to
188  /// inform the SCCPSolver that it should track loads and stores to the
189  /// specified global variable if it can.  This is only legal to call if
190  /// performing Interprocedural SCCP.
191  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
192    const Type *ElTy = GV->getType()->getElementType();
193    if (ElTy->isFirstClassType()) {
194      LatticeVal &IV = TrackedGlobals[GV];
195      if (!isa<UndefValue>(GV->getInitializer()))
196        IV.markConstant(GV->getInitializer());
197    }
198  }
199
200  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
201  /// and out of the specified function (which cannot have its address taken),
202  /// this method must be called.
203  void AddTrackedFunction(Function *F) {
204    assert(F->hasInternalLinkage() && "Can only track internal functions!");
205    // Add an entry, F -> undef.
206    if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
207      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
208        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
209                                                     LatticeVal()));
210    } else
211      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
212  }
213
214  /// Solve - Solve for constants and executable blocks.
215  ///
216  void Solve();
217
218  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
219  /// that branches on undef values cannot reach any of their successors.
220  /// However, this is not a safe assumption.  After we solve dataflow, this
221  /// method should be use to handle this.  If this returns true, the solver
222  /// should be rerun.
223  bool ResolvedUndefsIn(Function &F);
224
225  /// getExecutableBlocks - Once we have solved for constants, return the set of
226  /// blocks that is known to be executable.
227  SmallSet<BasicBlock*, 16> &getExecutableBlocks() {
228    return BBExecutable;
229  }
230
231  /// getValueMapping - Once we have solved for constants, return the mapping of
232  /// LLVM values to LatticeVals.
233  std::map<Value*, LatticeVal> &getValueMapping() {
234    return ValueState;
235  }
236
237  /// getTrackedRetVals - Get the inferred return value map.
238  ///
239  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
240    return TrackedRetVals;
241  }
242
243  /// getTrackedGlobals - Get and return the set of inferred initializers for
244  /// global variables.
245  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
246    return TrackedGlobals;
247  }
248
249  inline void markOverdefined(Value *V) {
250    markOverdefined(ValueState[V], V);
251  }
252
253private:
254  // markConstant - Make a value be marked as "constant".  If the value
255  // is not already a constant, add it to the instruction work list so that
256  // the users of the instruction are updated later.
257  //
258  inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
259    if (IV.markConstant(C)) {
260      DOUT << "markConstant: " << *C << ": " << *V;
261      InstWorkList.push_back(V);
262    }
263  }
264
265  inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
266    IV.markForcedConstant(C);
267    DOUT << "markForcedConstant: " << *C << ": " << *V;
268    InstWorkList.push_back(V);
269  }
270
271  inline void markConstant(Value *V, Constant *C) {
272    markConstant(ValueState[V], V, C);
273  }
274
275  // markOverdefined - Make a value be marked as "overdefined". If the
276  // value is not already overdefined, add it to the overdefined instruction
277  // work list so that the users of the instruction are updated later.
278  inline void markOverdefined(LatticeVal &IV, Value *V) {
279    if (IV.markOverdefined()) {
280      DEBUG(DOUT << "markOverdefined: ";
281            if (Function *F = dyn_cast<Function>(V))
282              DOUT << "Function '" << F->getName() << "'\n";
283            else
284              DOUT << *V);
285      // Only instructions go on the work list
286      OverdefinedInstWorkList.push_back(V);
287    }
288  }
289
290  inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
291    if (IV.isOverdefined() || MergeWithV.isUndefined())
292      return;  // Noop.
293    if (MergeWithV.isOverdefined())
294      markOverdefined(IV, V);
295    else if (IV.isUndefined())
296      markConstant(IV, V, MergeWithV.getConstant());
297    else if (IV.getConstant() != MergeWithV.getConstant())
298      markOverdefined(IV, V);
299  }
300
301  inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
302    return mergeInValue(ValueState[V], V, MergeWithV);
303  }
304
305
306  // getValueState - Return the LatticeVal object that corresponds to the value.
307  // This function is necessary because not all values should start out in the
308  // underdefined state... Argument's should be overdefined, and
309  // constants should be marked as constants.  If a value is not known to be an
310  // Instruction object, then use this accessor to get its value from the map.
311  //
312  inline LatticeVal &getValueState(Value *V) {
313    std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
314    if (I != ValueState.end()) return I->second;  // Common case, in the map
315
316    if (Constant *C = dyn_cast<Constant>(V)) {
317      if (isa<UndefValue>(V)) {
318        // Nothing to do, remain undefined.
319      } else {
320        LatticeVal &LV = ValueState[C];
321        LV.markConstant(C);          // Constants are constant
322        return LV;
323      }
324    }
325    // All others are underdefined by default...
326    return ValueState[V];
327  }
328
329  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
330  // work list if it is not already executable...
331  //
332  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
333    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
334      return;  // This edge is already known to be executable!
335
336    if (BBExecutable.count(Dest)) {
337      DOUT << "Marking Edge Executable: " << Source->getName()
338           << " -> " << Dest->getName() << "\n";
339
340      // The destination is already executable, but we just made an edge
341      // feasible that wasn't before.  Revisit the PHI nodes in the block
342      // because they have potentially new operands.
343      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
344        visitPHINode(*cast<PHINode>(I));
345
346    } else {
347      MarkBlockExecutable(Dest);
348    }
349  }
350
351  // getFeasibleSuccessors - Return a vector of booleans to indicate which
352  // successors are reachable from a given terminator instruction.
353  //
354  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
355
356  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
357  // block to the 'To' basic block is currently feasible...
358  //
359  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
360
361  // OperandChangedState - This method is invoked on all of the users of an
362  // instruction that was just changed state somehow....  Based on this
363  // information, we need to update the specified user of this instruction.
364  //
365  void OperandChangedState(User *U) {
366    // Only instructions use other variable values!
367    Instruction &I = cast<Instruction>(*U);
368    if (BBExecutable.count(I.getParent()))   // Inst is executable?
369      visit(I);
370  }
371
372private:
373  friend class InstVisitor<SCCPSolver>;
374
375  // visit implementations - Something changed in this instruction... Either an
376  // operand made a transition, or the instruction is newly executable.  Change
377  // the value type of I to reflect these changes if appropriate.
378  //
379  void visitPHINode(PHINode &I);
380
381  // Terminators
382  void visitReturnInst(ReturnInst &I);
383  void visitTerminatorInst(TerminatorInst &TI);
384
385  void visitCastInst(CastInst &I);
386  void visitGetResultInst(GetResultInst &GRI);
387  void visitSelectInst(SelectInst &I);
388  void visitBinaryOperator(Instruction &I);
389  void visitCmpInst(CmpInst &I);
390  void visitExtractElementInst(ExtractElementInst &I);
391  void visitInsertElementInst(InsertElementInst &I);
392  void visitShuffleVectorInst(ShuffleVectorInst &I);
393
394  // Instructions that cannot be folded away...
395  void visitStoreInst     (Instruction &I);
396  void visitLoadInst      (LoadInst &I);
397  void visitGetElementPtrInst(GetElementPtrInst &I);
398  void visitCallInst      (CallInst &I) { visitCallSite(CallSite::get(&I)); }
399  void visitInvokeInst    (InvokeInst &II) {
400    visitCallSite(CallSite::get(&II));
401    visitTerminatorInst(II);
402  }
403  void visitCallSite      (CallSite CS);
404  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
405  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
406  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
407  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
408  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
409  void visitFreeInst      (Instruction &I) { /*returns void*/ }
410
411  void visitInstruction(Instruction &I) {
412    // If a new instruction is added to LLVM that we don't handle...
413    cerr << "SCCP: Don't know how to handle: " << I;
414    markOverdefined(&I);   // Just in case
415  }
416};
417
418} // end anonymous namespace
419
420
421// getFeasibleSuccessors - Return a vector of booleans to indicate which
422// successors are reachable from a given terminator instruction.
423//
424void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
425                                       SmallVector<bool, 16> &Succs) {
426  Succs.resize(TI.getNumSuccessors());
427  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
428    if (BI->isUnconditional()) {
429      Succs[0] = true;
430    } else {
431      LatticeVal &BCValue = getValueState(BI->getCondition());
432      if (BCValue.isOverdefined() ||
433          (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
434        // Overdefined condition variables, and branches on unfoldable constant
435        // conditions, mean the branch could go either way.
436        Succs[0] = Succs[1] = true;
437      } else if (BCValue.isConstant()) {
438        // Constant condition variables mean the branch can only go a single way
439        Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true;
440      }
441    }
442  } else if (isa<InvokeInst>(&TI)) {
443    // Invoke instructions successors are always executable.
444    Succs[0] = Succs[1] = true;
445  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
446    LatticeVal &SCValue = getValueState(SI->getCondition());
447    if (SCValue.isOverdefined() ||   // Overdefined condition?
448        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
449      // All destinations are executable!
450      Succs.assign(TI.getNumSuccessors(), true);
451    } else if (SCValue.isConstant()) {
452      Constant *CPV = SCValue.getConstant();
453      // Make sure to skip the "default value" which isn't a value
454      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
455        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
456          Succs[i] = true;
457          return;
458        }
459      }
460
461      // Constant value not equal to any of the branches... must execute
462      // default branch then...
463      Succs[0] = true;
464    }
465  } else {
466    assert(0 && "SCCP: Don't know how to handle this terminator!");
467  }
468}
469
470
471// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
472// block to the 'To' basic block is currently feasible...
473//
474bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
475  assert(BBExecutable.count(To) && "Dest should always be alive!");
476
477  // Make sure the source basic block is executable!!
478  if (!BBExecutable.count(From)) return false;
479
480  // Check to make sure this edge itself is actually feasible now...
481  TerminatorInst *TI = From->getTerminator();
482  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
483    if (BI->isUnconditional())
484      return true;
485    else {
486      LatticeVal &BCValue = getValueState(BI->getCondition());
487      if (BCValue.isOverdefined()) {
488        // Overdefined condition variables mean the branch could go either way.
489        return true;
490      } else if (BCValue.isConstant()) {
491        // Not branching on an evaluatable constant?
492        if (!isa<ConstantInt>(BCValue.getConstant())) return true;
493
494        // Constant condition variables mean the branch can only go a single way
495        return BI->getSuccessor(BCValue.getConstant() ==
496                                       ConstantInt::getFalse()) == To;
497      }
498      return false;
499    }
500  } else if (isa<InvokeInst>(TI)) {
501    // Invoke instructions successors are always executable.
502    return true;
503  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
504    LatticeVal &SCValue = getValueState(SI->getCondition());
505    if (SCValue.isOverdefined()) {  // Overdefined condition?
506      // All destinations are executable!
507      return true;
508    } else if (SCValue.isConstant()) {
509      Constant *CPV = SCValue.getConstant();
510      if (!isa<ConstantInt>(CPV))
511        return true;  // not a foldable constant?
512
513      // Make sure to skip the "default value" which isn't a value
514      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
515        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
516          return SI->getSuccessor(i) == To;
517
518      // Constant value not equal to any of the branches... must execute
519      // default branch then...
520      return SI->getDefaultDest() == To;
521    }
522    return false;
523  } else {
524    cerr << "Unknown terminator instruction: " << *TI;
525    abort();
526  }
527}
528
529// visit Implementations - Something changed in this instruction... Either an
530// operand made a transition, or the instruction is newly executable.  Change
531// the value type of I to reflect these changes if appropriate.  This method
532// makes sure to do the following actions:
533//
534// 1. If a phi node merges two constants in, and has conflicting value coming
535//    from different branches, or if the PHI node merges in an overdefined
536//    value, then the PHI node becomes overdefined.
537// 2. If a phi node merges only constants in, and they all agree on value, the
538//    PHI node becomes a constant value equal to that.
539// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
540// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
541// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
542// 6. If a conditional branch has a value that is constant, make the selected
543//    destination executable
544// 7. If a conditional branch has a value that is overdefined, make all
545//    successors executable.
546//
547void SCCPSolver::visitPHINode(PHINode &PN) {
548  LatticeVal &PNIV = getValueState(&PN);
549  if (PNIV.isOverdefined()) {
550    // There may be instructions using this PHI node that are not overdefined
551    // themselves.  If so, make sure that they know that the PHI node operand
552    // changed.
553    std::multimap<PHINode*, Instruction*>::iterator I, E;
554    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
555    if (I != E) {
556      SmallVector<Instruction*, 16> Users;
557      for (; I != E; ++I) Users.push_back(I->second);
558      while (!Users.empty()) {
559        visit(Users.back());
560        Users.pop_back();
561      }
562    }
563    return;  // Quick exit
564  }
565
566  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
567  // and slow us down a lot.  Just mark them overdefined.
568  if (PN.getNumIncomingValues() > 64) {
569    markOverdefined(PNIV, &PN);
570    return;
571  }
572
573  // Look at all of the executable operands of the PHI node.  If any of them
574  // are overdefined, the PHI becomes overdefined as well.  If they are all
575  // constant, and they agree with each other, the PHI becomes the identical
576  // constant.  If they are constant and don't agree, the PHI is overdefined.
577  // If there are no executable operands, the PHI remains undefined.
578  //
579  Constant *OperandVal = 0;
580  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
581    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
582    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
583
584    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
585      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
586        markOverdefined(PNIV, &PN);
587        return;
588      }
589
590      if (OperandVal == 0) {   // Grab the first value...
591        OperandVal = IV.getConstant();
592      } else {                // Another value is being merged in!
593        // There is already a reachable operand.  If we conflict with it,
594        // then the PHI node becomes overdefined.  If we agree with it, we
595        // can continue on.
596
597        // Check to see if there are two different constants merging...
598        if (IV.getConstant() != OperandVal) {
599          // Yes there is.  This means the PHI node is not constant.
600          // You must be overdefined poor PHI.
601          //
602          markOverdefined(PNIV, &PN);    // The PHI node now becomes overdefined
603          return;    // I'm done analyzing you
604        }
605      }
606    }
607  }
608
609  // If we exited the loop, this means that the PHI node only has constant
610  // arguments that agree with each other(and OperandVal is the constant) or
611  // OperandVal is null because there are no defined incoming arguments.  If
612  // this is the case, the PHI remains undefined.
613  //
614  if (OperandVal)
615    markConstant(PNIV, &PN, OperandVal);      // Acquire operand value
616}
617
618void SCCPSolver::visitReturnInst(ReturnInst &I) {
619  if (I.getNumOperands() == 0) return;  // Ret void
620
621  Function *F = I.getParent()->getParent();
622  // If we are tracking the return value of this function, merge it in.
623  if (!F->hasInternalLinkage())
624    return;
625
626  if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
627    DenseMap<Function*, LatticeVal>::iterator TFRVI =
628      TrackedRetVals.find(F);
629    if (TFRVI != TrackedRetVals.end() &&
630        !TFRVI->second.isOverdefined()) {
631      LatticeVal &IV = getValueState(I.getOperand(0));
632      mergeInValue(TFRVI->second, F, IV);
633      return;
634    }
635  }
636
637  // Handle functions that return multiple values.
638  if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
639    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
640      std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
641        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
642      if (It == TrackedMultipleRetVals.end()) break;
643      mergeInValue(It->second, F, getValueState(I.getOperand(i)));
644    }
645  }
646}
647
648void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
649  SmallVector<bool, 16> SuccFeasible;
650  getFeasibleSuccessors(TI, SuccFeasible);
651
652  BasicBlock *BB = TI.getParent();
653
654  // Mark all feasible successors executable...
655  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
656    if (SuccFeasible[i])
657      markEdgeExecutable(BB, TI.getSuccessor(i));
658}
659
660void SCCPSolver::visitCastInst(CastInst &I) {
661  Value *V = I.getOperand(0);
662  LatticeVal &VState = getValueState(V);
663  if (VState.isOverdefined())          // Inherit overdefinedness of operand
664    markOverdefined(&I);
665  else if (VState.isConstant())        // Propagate constant value
666    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
667                                           VState.getConstant(), I.getType()));
668}
669
670void SCCPSolver::visitGetResultInst(GetResultInst &GRI) {
671  Value *Aggr = GRI.getOperand(0);
672
673  // If the operand to the getresult is an undef, the result is undef.
674  if (isa<UndefValue>(Aggr))
675    return;
676
677  Function *F;
678  if (CallInst *CI = dyn_cast<CallInst>(Aggr))
679    F = CI->getCalledFunction();
680  else
681    F = cast<InvokeInst>(Aggr)->getCalledFunction();
682
683  // TODO: If IPSCCP resolves the callee of this function, we could propagate a
684  // result back!
685  if (F == 0 || TrackedMultipleRetVals.empty()) {
686    markOverdefined(&GRI);
687    return;
688  }
689
690  // See if we are tracking the result of the callee.
691  std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
692    It = TrackedMultipleRetVals.find(std::make_pair(F, GRI.getIndex()));
693
694  // If not tracking this function (for example, it is a declaration) just move
695  // to overdefined.
696  if (It == TrackedMultipleRetVals.end()) {
697    markOverdefined(&GRI);
698    return;
699  }
700
701  // Otherwise, the value will be merged in here as a result of CallSite
702  // handling.
703}
704
705void SCCPSolver::visitSelectInst(SelectInst &I) {
706  LatticeVal &CondValue = getValueState(I.getCondition());
707  if (CondValue.isUndefined())
708    return;
709  if (CondValue.isConstant()) {
710    if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
711      mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
712                                                          : I.getFalseValue()));
713      return;
714    }
715  }
716
717  // Otherwise, the condition is overdefined or a constant we can't evaluate.
718  // See if we can produce something better than overdefined based on the T/F
719  // value.
720  LatticeVal &TVal = getValueState(I.getTrueValue());
721  LatticeVal &FVal = getValueState(I.getFalseValue());
722
723  // select ?, C, C -> C.
724  if (TVal.isConstant() && FVal.isConstant() &&
725      TVal.getConstant() == FVal.getConstant()) {
726    markConstant(&I, FVal.getConstant());
727    return;
728  }
729
730  if (TVal.isUndefined()) {  // select ?, undef, X -> X.
731    mergeInValue(&I, FVal);
732  } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
733    mergeInValue(&I, TVal);
734  } else {
735    markOverdefined(&I);
736  }
737}
738
739// Handle BinaryOperators and Shift Instructions...
740void SCCPSolver::visitBinaryOperator(Instruction &I) {
741  LatticeVal &IV = ValueState[&I];
742  if (IV.isOverdefined()) return;
743
744  LatticeVal &V1State = getValueState(I.getOperand(0));
745  LatticeVal &V2State = getValueState(I.getOperand(1));
746
747  if (V1State.isOverdefined() || V2State.isOverdefined()) {
748    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
749    // operand is overdefined.
750    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
751      LatticeVal *NonOverdefVal = 0;
752      if (!V1State.isOverdefined()) {
753        NonOverdefVal = &V1State;
754      } else if (!V2State.isOverdefined()) {
755        NonOverdefVal = &V2State;
756      }
757
758      if (NonOverdefVal) {
759        if (NonOverdefVal->isUndefined()) {
760          // Could annihilate value.
761          if (I.getOpcode() == Instruction::And)
762            markConstant(IV, &I, Constant::getNullValue(I.getType()));
763          else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
764            markConstant(IV, &I, ConstantVector::getAllOnesValue(PT));
765          else
766            markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
767          return;
768        } else {
769          if (I.getOpcode() == Instruction::And) {
770            if (NonOverdefVal->getConstant()->isNullValue()) {
771              markConstant(IV, &I, NonOverdefVal->getConstant());
772              return;      // X and 0 = 0
773            }
774          } else {
775            if (ConstantInt *CI =
776                     dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
777              if (CI->isAllOnesValue()) {
778                markConstant(IV, &I, NonOverdefVal->getConstant());
779                return;    // X or -1 = -1
780              }
781          }
782        }
783      }
784    }
785
786
787    // If both operands are PHI nodes, it is possible that this instruction has
788    // a constant value, despite the fact that the PHI node doesn't.  Check for
789    // this condition now.
790    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
791      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
792        if (PN1->getParent() == PN2->getParent()) {
793          // Since the two PHI nodes are in the same basic block, they must have
794          // entries for the same predecessors.  Walk the predecessor list, and
795          // if all of the incoming values are constants, and the result of
796          // evaluating this expression with all incoming value pairs is the
797          // same, then this expression is a constant even though the PHI node
798          // is not a constant!
799          LatticeVal Result;
800          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
801            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
802            BasicBlock *InBlock = PN1->getIncomingBlock(i);
803            LatticeVal &In2 =
804              getValueState(PN2->getIncomingValueForBlock(InBlock));
805
806            if (In1.isOverdefined() || In2.isOverdefined()) {
807              Result.markOverdefined();
808              break;  // Cannot fold this operation over the PHI nodes!
809            } else if (In1.isConstant() && In2.isConstant()) {
810              Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
811                                              In2.getConstant());
812              if (Result.isUndefined())
813                Result.markConstant(V);
814              else if (Result.isConstant() && Result.getConstant() != V) {
815                Result.markOverdefined();
816                break;
817              }
818            }
819          }
820
821          // If we found a constant value here, then we know the instruction is
822          // constant despite the fact that the PHI nodes are overdefined.
823          if (Result.isConstant()) {
824            markConstant(IV, &I, Result.getConstant());
825            // Remember that this instruction is virtually using the PHI node
826            // operands.
827            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
828            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
829            return;
830          } else if (Result.isUndefined()) {
831            return;
832          }
833
834          // Okay, this really is overdefined now.  Since we might have
835          // speculatively thought that this was not overdefined before, and
836          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
837          // make sure to clean out any entries that we put there, for
838          // efficiency.
839          std::multimap<PHINode*, Instruction*>::iterator It, E;
840          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
841          while (It != E) {
842            if (It->second == &I) {
843              UsersOfOverdefinedPHIs.erase(It++);
844            } else
845              ++It;
846          }
847          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
848          while (It != E) {
849            if (It->second == &I) {
850              UsersOfOverdefinedPHIs.erase(It++);
851            } else
852              ++It;
853          }
854        }
855
856    markOverdefined(IV, &I);
857  } else if (V1State.isConstant() && V2State.isConstant()) {
858    markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
859                                           V2State.getConstant()));
860  }
861}
862
863// Handle ICmpInst instruction...
864void SCCPSolver::visitCmpInst(CmpInst &I) {
865  LatticeVal &IV = ValueState[&I];
866  if (IV.isOverdefined()) return;
867
868  LatticeVal &V1State = getValueState(I.getOperand(0));
869  LatticeVal &V2State = getValueState(I.getOperand(1));
870
871  if (V1State.isOverdefined() || V2State.isOverdefined()) {
872    // If both operands are PHI nodes, it is possible that this instruction has
873    // a constant value, despite the fact that the PHI node doesn't.  Check for
874    // this condition now.
875    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
876      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
877        if (PN1->getParent() == PN2->getParent()) {
878          // Since the two PHI nodes are in the same basic block, they must have
879          // entries for the same predecessors.  Walk the predecessor list, and
880          // if all of the incoming values are constants, and the result of
881          // evaluating this expression with all incoming value pairs is the
882          // same, then this expression is a constant even though the PHI node
883          // is not a constant!
884          LatticeVal Result;
885          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
886            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
887            BasicBlock *InBlock = PN1->getIncomingBlock(i);
888            LatticeVal &In2 =
889              getValueState(PN2->getIncomingValueForBlock(InBlock));
890
891            if (In1.isOverdefined() || In2.isOverdefined()) {
892              Result.markOverdefined();
893              break;  // Cannot fold this operation over the PHI nodes!
894            } else if (In1.isConstant() && In2.isConstant()) {
895              Constant *V = ConstantExpr::getCompare(I.getPredicate(),
896                                                     In1.getConstant(),
897                                                     In2.getConstant());
898              if (Result.isUndefined())
899                Result.markConstant(V);
900              else if (Result.isConstant() && Result.getConstant() != V) {
901                Result.markOverdefined();
902                break;
903              }
904            }
905          }
906
907          // If we found a constant value here, then we know the instruction is
908          // constant despite the fact that the PHI nodes are overdefined.
909          if (Result.isConstant()) {
910            markConstant(IV, &I, Result.getConstant());
911            // Remember that this instruction is virtually using the PHI node
912            // operands.
913            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
914            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
915            return;
916          } else if (Result.isUndefined()) {
917            return;
918          }
919
920          // Okay, this really is overdefined now.  Since we might have
921          // speculatively thought that this was not overdefined before, and
922          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
923          // make sure to clean out any entries that we put there, for
924          // efficiency.
925          std::multimap<PHINode*, Instruction*>::iterator It, E;
926          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
927          while (It != E) {
928            if (It->second == &I) {
929              UsersOfOverdefinedPHIs.erase(It++);
930            } else
931              ++It;
932          }
933          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
934          while (It != E) {
935            if (It->second == &I) {
936              UsersOfOverdefinedPHIs.erase(It++);
937            } else
938              ++It;
939          }
940        }
941
942    markOverdefined(IV, &I);
943  } else if (V1State.isConstant() && V2State.isConstant()) {
944    markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
945                                                  V1State.getConstant(),
946                                                  V2State.getConstant()));
947  }
948}
949
950void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
951  // FIXME : SCCP does not handle vectors properly.
952  markOverdefined(&I);
953  return;
954
955#if 0
956  LatticeVal &ValState = getValueState(I.getOperand(0));
957  LatticeVal &IdxState = getValueState(I.getOperand(1));
958
959  if (ValState.isOverdefined() || IdxState.isOverdefined())
960    markOverdefined(&I);
961  else if(ValState.isConstant() && IdxState.isConstant())
962    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
963                                                     IdxState.getConstant()));
964#endif
965}
966
967void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
968  // FIXME : SCCP does not handle vectors properly.
969  markOverdefined(&I);
970  return;
971#if 0
972  LatticeVal &ValState = getValueState(I.getOperand(0));
973  LatticeVal &EltState = getValueState(I.getOperand(1));
974  LatticeVal &IdxState = getValueState(I.getOperand(2));
975
976  if (ValState.isOverdefined() || EltState.isOverdefined() ||
977      IdxState.isOverdefined())
978    markOverdefined(&I);
979  else if(ValState.isConstant() && EltState.isConstant() &&
980          IdxState.isConstant())
981    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
982                                                    EltState.getConstant(),
983                                                    IdxState.getConstant()));
984  else if (ValState.isUndefined() && EltState.isConstant() &&
985           IdxState.isConstant())
986    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
987                                                   EltState.getConstant(),
988                                                   IdxState.getConstant()));
989#endif
990}
991
992void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
993  // FIXME : SCCP does not handle vectors properly.
994  markOverdefined(&I);
995  return;
996#if 0
997  LatticeVal &V1State   = getValueState(I.getOperand(0));
998  LatticeVal &V2State   = getValueState(I.getOperand(1));
999  LatticeVal &MaskState = getValueState(I.getOperand(2));
1000
1001  if (MaskState.isUndefined() ||
1002      (V1State.isUndefined() && V2State.isUndefined()))
1003    return;  // Undefined output if mask or both inputs undefined.
1004
1005  if (V1State.isOverdefined() || V2State.isOverdefined() ||
1006      MaskState.isOverdefined()) {
1007    markOverdefined(&I);
1008  } else {
1009    // A mix of constant/undef inputs.
1010    Constant *V1 = V1State.isConstant() ?
1011        V1State.getConstant() : UndefValue::get(I.getType());
1012    Constant *V2 = V2State.isConstant() ?
1013        V2State.getConstant() : UndefValue::get(I.getType());
1014    Constant *Mask = MaskState.isConstant() ?
1015      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1016    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1017  }
1018#endif
1019}
1020
1021// Handle getelementptr instructions... if all operands are constants then we
1022// can turn this into a getelementptr ConstantExpr.
1023//
1024void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1025  LatticeVal &IV = ValueState[&I];
1026  if (IV.isOverdefined()) return;
1027
1028  SmallVector<Constant*, 8> Operands;
1029  Operands.reserve(I.getNumOperands());
1030
1031  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1032    LatticeVal &State = getValueState(I.getOperand(i));
1033    if (State.isUndefined())
1034      return;  // Operands are not resolved yet...
1035    else if (State.isOverdefined()) {
1036      markOverdefined(IV, &I);
1037      return;
1038    }
1039    assert(State.isConstant() && "Unknown state!");
1040    Operands.push_back(State.getConstant());
1041  }
1042
1043  Constant *Ptr = Operands[0];
1044  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
1045
1046  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
1047                                                      Operands.size()));
1048}
1049
1050void SCCPSolver::visitStoreInst(Instruction &SI) {
1051  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1052    return;
1053  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1054  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1055  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1056
1057  // Get the value we are storing into the global.
1058  LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1059
1060  mergeInValue(I->second, GV, PtrVal);
1061  if (I->second.isOverdefined())
1062    TrackedGlobals.erase(I);      // No need to keep tracking this!
1063}
1064
1065
1066// Handle load instructions.  If the operand is a constant pointer to a constant
1067// global, we can replace the load with the loaded constant value!
1068void SCCPSolver::visitLoadInst(LoadInst &I) {
1069  LatticeVal &IV = ValueState[&I];
1070  if (IV.isOverdefined()) return;
1071
1072  LatticeVal &PtrVal = getValueState(I.getOperand(0));
1073  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1074  if (PtrVal.isConstant() && !I.isVolatile()) {
1075    Value *Ptr = PtrVal.getConstant();
1076    // TODO: Consider a target hook for valid address spaces for this xform.
1077    if (isa<ConstantPointerNull>(Ptr) &&
1078        cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
1079      // load null -> null
1080      markConstant(IV, &I, Constant::getNullValue(I.getType()));
1081      return;
1082    }
1083
1084    // Transform load (constant global) into the value loaded.
1085    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1086      if (GV->isConstant()) {
1087        if (!GV->isDeclaration()) {
1088          markConstant(IV, &I, GV->getInitializer());
1089          return;
1090        }
1091      } else if (!TrackedGlobals.empty()) {
1092        // If we are tracking this global, merge in the known value for it.
1093        DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1094          TrackedGlobals.find(GV);
1095        if (It != TrackedGlobals.end()) {
1096          mergeInValue(IV, &I, It->second);
1097          return;
1098        }
1099      }
1100    }
1101
1102    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1103    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1104      if (CE->getOpcode() == Instruction::GetElementPtr)
1105    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1106      if (GV->isConstant() && !GV->isDeclaration())
1107        if (Constant *V =
1108             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
1109          markConstant(IV, &I, V);
1110          return;
1111        }
1112  }
1113
1114  // Otherwise we cannot say for certain what value this load will produce.
1115  // Bail out.
1116  markOverdefined(IV, &I);
1117}
1118
1119void SCCPSolver::visitCallSite(CallSite CS) {
1120  Function *F = CS.getCalledFunction();
1121  Instruction *I = CS.getInstruction();
1122
1123  // The common case is that we aren't tracking the callee, either because we
1124  // are not doing interprocedural analysis or the callee is indirect, or is
1125  // external.  Handle these cases first.
1126  if (F == 0 || !F->hasInternalLinkage()) {
1127CallOverdefined:
1128    // Void return and not tracking callee, just bail.
1129    if (I->getType() == Type::VoidTy) return;
1130
1131    // Otherwise, if we have a single return value case, and if the function is
1132    // a declaration, maybe we can constant fold it.
1133    if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1134        canConstantFoldCallTo(F)) {
1135
1136      SmallVector<Constant*, 8> Operands;
1137      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1138           AI != E; ++AI) {
1139        LatticeVal &State = getValueState(*AI);
1140        if (State.isUndefined())
1141          return;  // Operands are not resolved yet.
1142        else if (State.isOverdefined()) {
1143          markOverdefined(I);
1144          return;
1145        }
1146        assert(State.isConstant() && "Unknown state!");
1147        Operands.push_back(State.getConstant());
1148      }
1149
1150      // If we can constant fold this, mark the result of the call as a
1151      // constant.
1152      if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size())) {
1153        markConstant(I, C);
1154        return;
1155      }
1156    }
1157
1158    // Otherwise, we don't know anything about this call, mark it overdefined.
1159    markOverdefined(I);
1160    return;
1161  }
1162
1163  // If this is a single/zero retval case, see if we're tracking the function.
1164  const StructType *RetSTy = dyn_cast<StructType>(I->getType());
1165  if (RetSTy == 0) {
1166    // Check to see if we're tracking this callee, if not, handle it in the
1167    // common path above.
1168    DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1169    if (TFRVI == TrackedRetVals.end())
1170      goto CallOverdefined;
1171
1172    // If so, propagate the return value of the callee into this call result.
1173    mergeInValue(I, TFRVI->second);
1174  } else {
1175    // Check to see if we're tracking this callee, if not, handle it in the
1176    // common path above.
1177    std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
1178      TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
1179    if (TMRVI == TrackedMultipleRetVals.end())
1180      goto CallOverdefined;
1181
1182    // If we are tracking this callee, propagate the return values of the call
1183    // into this call site.  We do this by walking all the getresult uses.
1184    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1185         UI != E; ++UI) {
1186      GetResultInst *GRI = cast<GetResultInst>(*UI);
1187      mergeInValue(GRI,
1188                   TrackedMultipleRetVals[std::make_pair(F, GRI->getIndex())]);
1189    }
1190  }
1191
1192  // Finally, if this is the first call to the function hit, mark its entry
1193  // block executable.
1194  if (!BBExecutable.count(F->begin()))
1195    MarkBlockExecutable(F->begin());
1196
1197  // Propagate information from this call site into the callee.
1198  CallSite::arg_iterator CAI = CS.arg_begin();
1199  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1200       AI != E; ++AI, ++CAI) {
1201    LatticeVal &IV = ValueState[AI];
1202    if (!IV.isOverdefined())
1203      mergeInValue(IV, AI, getValueState(*CAI));
1204  }
1205}
1206
1207
1208void SCCPSolver::Solve() {
1209  // Process the work lists until they are empty!
1210  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1211         !OverdefinedInstWorkList.empty()) {
1212    // Process the instruction work list...
1213    while (!OverdefinedInstWorkList.empty()) {
1214      Value *I = OverdefinedInstWorkList.back();
1215      OverdefinedInstWorkList.pop_back();
1216
1217      DOUT << "\nPopped off OI-WL: " << *I;
1218
1219      // "I" got into the work list because it either made the transition from
1220      // bottom to constant
1221      //
1222      // Anything on this worklist that is overdefined need not be visited
1223      // since all of its users will have already been marked as overdefined
1224      // Update all of the users of this instruction's value...
1225      //
1226      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1227           UI != E; ++UI)
1228        OperandChangedState(*UI);
1229    }
1230    // Process the instruction work list...
1231    while (!InstWorkList.empty()) {
1232      Value *I = InstWorkList.back();
1233      InstWorkList.pop_back();
1234
1235      DOUT << "\nPopped off I-WL: " << *I;
1236
1237      // "I" got into the work list because it either made the transition from
1238      // bottom to constant
1239      //
1240      // Anything on this worklist that is overdefined need not be visited
1241      // since all of its users will have already been marked as overdefined.
1242      // Update all of the users of this instruction's value...
1243      //
1244      if (!getValueState(I).isOverdefined())
1245        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1246             UI != E; ++UI)
1247          OperandChangedState(*UI);
1248    }
1249
1250    // Process the basic block work list...
1251    while (!BBWorkList.empty()) {
1252      BasicBlock *BB = BBWorkList.back();
1253      BBWorkList.pop_back();
1254
1255      DOUT << "\nPopped off BBWL: " << *BB;
1256
1257      // Notify all instructions in this basic block that they are newly
1258      // executable.
1259      visit(BB);
1260    }
1261  }
1262}
1263
1264/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1265/// that branches on undef values cannot reach any of their successors.
1266/// However, this is not a safe assumption.  After we solve dataflow, this
1267/// method should be use to handle this.  If this returns true, the solver
1268/// should be rerun.
1269///
1270/// This method handles this by finding an unresolved branch and marking it one
1271/// of the edges from the block as being feasible, even though the condition
1272/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1273/// CFG and only slightly pessimizes the analysis results (by marking one,
1274/// potentially infeasible, edge feasible).  This cannot usefully modify the
1275/// constraints on the condition of the branch, as that would impact other users
1276/// of the value.
1277///
1278/// This scan also checks for values that use undefs, whose results are actually
1279/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1280/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1281/// even if X isn't defined.
1282bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1283  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1284    if (!BBExecutable.count(BB))
1285      continue;
1286
1287    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1288      // Look for instructions which produce undef values.
1289      if (I->getType() == Type::VoidTy) continue;
1290
1291      LatticeVal &LV = getValueState(I);
1292      if (!LV.isUndefined()) continue;
1293
1294      // Get the lattice values of the first two operands for use below.
1295      LatticeVal &Op0LV = getValueState(I->getOperand(0));
1296      LatticeVal Op1LV;
1297      if (I->getNumOperands() == 2) {
1298        // If this is a two-operand instruction, and if both operands are
1299        // undefs, the result stays undef.
1300        Op1LV = getValueState(I->getOperand(1));
1301        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1302          continue;
1303      }
1304
1305      // If this is an instructions whose result is defined even if the input is
1306      // not fully defined, propagate the information.
1307      const Type *ITy = I->getType();
1308      switch (I->getOpcode()) {
1309      default: break;          // Leave the instruction as an undef.
1310      case Instruction::ZExt:
1311        // After a zero extend, we know the top part is zero.  SExt doesn't have
1312        // to be handled here, because we don't know whether the top part is 1's
1313        // or 0's.
1314        assert(Op0LV.isUndefined());
1315        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1316        return true;
1317      case Instruction::Mul:
1318      case Instruction::And:
1319        // undef * X -> 0.   X could be zero.
1320        // undef & X -> 0.   X could be zero.
1321        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1322        return true;
1323
1324      case Instruction::Or:
1325        // undef | X -> -1.   X could be -1.
1326        if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
1327          markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy));
1328        else
1329          markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy));
1330        return true;
1331
1332      case Instruction::SDiv:
1333      case Instruction::UDiv:
1334      case Instruction::SRem:
1335      case Instruction::URem:
1336        // X / undef -> undef.  No change.
1337        // X % undef -> undef.  No change.
1338        if (Op1LV.isUndefined()) break;
1339
1340        // undef / X -> 0.   X could be maxint.
1341        // undef % X -> 0.   X could be 1.
1342        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1343        return true;
1344
1345      case Instruction::AShr:
1346        // undef >>s X -> undef.  No change.
1347        if (Op0LV.isUndefined()) break;
1348
1349        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1350        if (Op0LV.isConstant())
1351          markForcedConstant(LV, I, Op0LV.getConstant());
1352        else
1353          markOverdefined(LV, I);
1354        return true;
1355      case Instruction::LShr:
1356      case Instruction::Shl:
1357        // undef >> X -> undef.  No change.
1358        // undef << X -> undef.  No change.
1359        if (Op0LV.isUndefined()) break;
1360
1361        // X >> undef -> 0.  X could be 0.
1362        // X << undef -> 0.  X could be 0.
1363        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1364        return true;
1365      case Instruction::Select:
1366        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1367        if (Op0LV.isUndefined()) {
1368          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1369            Op1LV = getValueState(I->getOperand(2));
1370        } else if (Op1LV.isUndefined()) {
1371          // c ? undef : undef -> undef.  No change.
1372          Op1LV = getValueState(I->getOperand(2));
1373          if (Op1LV.isUndefined())
1374            break;
1375          // Otherwise, c ? undef : x -> x.
1376        } else {
1377          // Leave Op1LV as Operand(1)'s LatticeValue.
1378        }
1379
1380        if (Op1LV.isConstant())
1381          markForcedConstant(LV, I, Op1LV.getConstant());
1382        else
1383          markOverdefined(LV, I);
1384        return true;
1385      }
1386    }
1387
1388    TerminatorInst *TI = BB->getTerminator();
1389    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1390      if (!BI->isConditional()) continue;
1391      if (!getValueState(BI->getCondition()).isUndefined())
1392        continue;
1393    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1394      if (!getValueState(SI->getCondition()).isUndefined())
1395        continue;
1396    } else {
1397      continue;
1398    }
1399
1400    // If the edge to the second successor isn't thought to be feasible yet,
1401    // mark it so now.  We pick the second one so that this goes to some
1402    // enumerated value in a switch instead of going to the default destination.
1403    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
1404      continue;
1405
1406    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
1407    // and return.  This will make other blocks reachable, which will allow new
1408    // values to be discovered and existing ones to be moved in the lattice.
1409    markEdgeExecutable(BB, TI->getSuccessor(1));
1410
1411    // This must be a conditional branch of switch on undef.  At this point,
1412    // force the old terminator to branch to the first successor.  This is
1413    // required because we are now influencing the dataflow of the function with
1414    // the assumption that this edge is taken.  If we leave the branch condition
1415    // as undef, then further analysis could think the undef went another way
1416    // leading to an inconsistent set of conclusions.
1417    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1418      BI->setCondition(ConstantInt::getFalse());
1419    } else {
1420      SwitchInst *SI = cast<SwitchInst>(TI);
1421      SI->setCondition(SI->getCaseValue(1));
1422    }
1423
1424    return true;
1425  }
1426
1427  return false;
1428}
1429
1430
1431namespace {
1432  //===--------------------------------------------------------------------===//
1433  //
1434  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1435  /// Sparse Conditional Constant Propagator.
1436  ///
1437  struct VISIBILITY_HIDDEN SCCP : public FunctionPass {
1438    static char ID; // Pass identification, replacement for typeid
1439    SCCP() : FunctionPass((intptr_t)&ID) {}
1440
1441    // runOnFunction - Run the Sparse Conditional Constant Propagation
1442    // algorithm, and return true if the function was modified.
1443    //
1444    bool runOnFunction(Function &F);
1445
1446    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1447      AU.setPreservesCFG();
1448    }
1449  };
1450
1451  char SCCP::ID = 0;
1452  RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
1453} // end anonymous namespace
1454
1455
1456// createSCCPPass - This is the public interface to this file...
1457FunctionPass *llvm::createSCCPPass() {
1458  return new SCCP();
1459}
1460
1461
1462// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1463// and return true if the function was modified.
1464//
1465bool SCCP::runOnFunction(Function &F) {
1466  DOUT << "SCCP on function '" << F.getName() << "'\n";
1467  SCCPSolver Solver;
1468
1469  // Mark the first block of the function as being executable.
1470  Solver.MarkBlockExecutable(F.begin());
1471
1472  // Mark all arguments to the function as being overdefined.
1473  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1474    Solver.markOverdefined(AI);
1475
1476  // Solve for constants.
1477  bool ResolvedUndefs = true;
1478  while (ResolvedUndefs) {
1479    Solver.Solve();
1480    DOUT << "RESOLVING UNDEFs\n";
1481    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1482  }
1483
1484  bool MadeChanges = false;
1485
1486  // If we decided that there are basic blocks that are dead in this function,
1487  // delete their contents now.  Note that we cannot actually delete the blocks,
1488  // as we cannot modify the CFG of the function.
1489  //
1490  SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks();
1491  SmallVector<Instruction*, 32> Insts;
1492  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1493
1494  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1495    if (!ExecutableBBs.count(BB)) {
1496      DOUT << "  BasicBlock Dead:" << *BB;
1497      ++NumDeadBlocks;
1498
1499      // Delete the instructions backwards, as it has a reduced likelihood of
1500      // having to update as many def-use and use-def chains.
1501      for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1502           I != E; ++I)
1503        Insts.push_back(I);
1504      while (!Insts.empty()) {
1505        Instruction *I = Insts.back();
1506        Insts.pop_back();
1507        if (!I->use_empty())
1508          I->replaceAllUsesWith(UndefValue::get(I->getType()));
1509        BB->getInstList().erase(I);
1510        MadeChanges = true;
1511        ++NumInstRemoved;
1512      }
1513    } else {
1514      // Iterate over all of the instructions in a function, replacing them with
1515      // constants if we have found them to be of constant values.
1516      //
1517      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1518        Instruction *Inst = BI++;
1519        if (Inst->getType() == Type::VoidTy ||
1520            isa<TerminatorInst>(Inst))
1521          continue;
1522
1523        LatticeVal &IV = Values[Inst];
1524        if (!IV.isConstant() && !IV.isUndefined())
1525          continue;
1526
1527        Constant *Const = IV.isConstant()
1528          ? IV.getConstant() : UndefValue::get(Inst->getType());
1529        DOUT << "  Constant: " << *Const << " = " << *Inst;
1530
1531        // Replaces all of the uses of a variable with uses of the constant.
1532        Inst->replaceAllUsesWith(Const);
1533
1534        // Delete the instruction.
1535        Inst->eraseFromParent();
1536
1537        // Hey, we just changed something!
1538        MadeChanges = true;
1539        ++NumInstRemoved;
1540      }
1541    }
1542
1543  return MadeChanges;
1544}
1545
1546namespace {
1547  //===--------------------------------------------------------------------===//
1548  //
1549  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1550  /// Constant Propagation.
1551  ///
1552  struct VISIBILITY_HIDDEN IPSCCP : public ModulePass {
1553    static char ID;
1554    IPSCCP() : ModulePass((intptr_t)&ID) {}
1555    bool runOnModule(Module &M);
1556  };
1557
1558  char IPSCCP::ID = 0;
1559  RegisterPass<IPSCCP>
1560  Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1561} // end anonymous namespace
1562
1563// createIPSCCPPass - This is the public interface to this file...
1564ModulePass *llvm::createIPSCCPPass() {
1565  return new IPSCCP();
1566}
1567
1568
1569static bool AddressIsTaken(GlobalValue *GV) {
1570  // Delete any dead constantexpr klingons.
1571  GV->removeDeadConstantUsers();
1572
1573  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1574       UI != E; ++UI)
1575    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1576      if (SI->getOperand(0) == GV || SI->isVolatile())
1577        return true;  // Storing addr of GV.
1578    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1579      // Make sure we are calling the function, not passing the address.
1580      CallSite CS = CallSite::get(cast<Instruction>(*UI));
1581      for (CallSite::arg_iterator AI = CS.arg_begin(),
1582             E = CS.arg_end(); AI != E; ++AI)
1583        if (*AI == GV)
1584          return true;
1585    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1586      if (LI->isVolatile())
1587        return true;
1588    } else {
1589      return true;
1590    }
1591  return false;
1592}
1593
1594bool IPSCCP::runOnModule(Module &M) {
1595  SCCPSolver Solver;
1596
1597  // Loop over all functions, marking arguments to those with their addresses
1598  // taken or that are external as overdefined.
1599  //
1600  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1601    if (!F->hasInternalLinkage() || AddressIsTaken(F)) {
1602      if (!F->isDeclaration())
1603        Solver.MarkBlockExecutable(F->begin());
1604      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1605           AI != E; ++AI)
1606        Solver.markOverdefined(AI);
1607    } else {
1608      Solver.AddTrackedFunction(F);
1609    }
1610
1611  // Loop over global variables.  We inform the solver about any internal global
1612  // variables that do not have their 'addresses taken'.  If they don't have
1613  // their addresses taken, we can propagate constants through them.
1614  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1615       G != E; ++G)
1616    if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G))
1617      Solver.TrackValueOfGlobalVariable(G);
1618
1619  // Solve for constants.
1620  bool ResolvedUndefs = true;
1621  while (ResolvedUndefs) {
1622    Solver.Solve();
1623
1624    DOUT << "RESOLVING UNDEFS\n";
1625    ResolvedUndefs = false;
1626    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1627      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1628  }
1629
1630  bool MadeChanges = false;
1631
1632  // Iterate over all of the instructions in the module, replacing them with
1633  // constants if we have found them to be of constant values.
1634  //
1635  SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks();
1636  SmallVector<Instruction*, 32> Insts;
1637  SmallVector<BasicBlock*, 32> BlocksToErase;
1638  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1639
1640  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1641    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1642         AI != E; ++AI)
1643      if (!AI->use_empty()) {
1644        LatticeVal &IV = Values[AI];
1645        if (IV.isConstant() || IV.isUndefined()) {
1646          Constant *CST = IV.isConstant() ?
1647            IV.getConstant() : UndefValue::get(AI->getType());
1648          DOUT << "***  Arg " << *AI << " = " << *CST <<"\n";
1649
1650          // Replaces all of the uses of a variable with uses of the
1651          // constant.
1652          AI->replaceAllUsesWith(CST);
1653          ++IPNumArgsElimed;
1654        }
1655      }
1656
1657    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1658      if (!ExecutableBBs.count(BB)) {
1659        DOUT << "  BasicBlock Dead:" << *BB;
1660        ++IPNumDeadBlocks;
1661
1662        // Delete the instructions backwards, as it has a reduced likelihood of
1663        // having to update as many def-use and use-def chains.
1664        TerminatorInst *TI = BB->getTerminator();
1665        for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1666          Insts.push_back(I);
1667
1668        while (!Insts.empty()) {
1669          Instruction *I = Insts.back();
1670          Insts.pop_back();
1671          if (!I->use_empty())
1672            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1673          BB->getInstList().erase(I);
1674          MadeChanges = true;
1675          ++IPNumInstRemoved;
1676        }
1677
1678        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1679          BasicBlock *Succ = TI->getSuccessor(i);
1680          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1681            TI->getSuccessor(i)->removePredecessor(BB);
1682        }
1683        if (!TI->use_empty())
1684          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1685        BB->getInstList().erase(TI);
1686
1687        if (&*BB != &F->front())
1688          BlocksToErase.push_back(BB);
1689        else
1690          new UnreachableInst(BB);
1691
1692      } else {
1693        for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1694          Instruction *Inst = BI++;
1695          if (Inst->getType() != Type::VoidTy) {
1696            LatticeVal &IV = Values[Inst];
1697            if (IV.isConstant() ||
1698                (IV.isUndefined() && !isa<TerminatorInst>(Inst))) {
1699              Constant *Const = IV.isConstant()
1700                ? IV.getConstant() : UndefValue::get(Inst->getType());
1701              DOUT << "  Constant: " << *Const << " = " << *Inst;
1702
1703              // Replaces all of the uses of a variable with uses of the
1704              // constant.
1705              Inst->replaceAllUsesWith(Const);
1706
1707              // Delete the instruction.
1708              if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst))
1709                BB->getInstList().erase(Inst);
1710
1711              // Hey, we just changed something!
1712              MadeChanges = true;
1713              ++IPNumInstRemoved;
1714            }
1715          }
1716        }
1717      }
1718
1719    // Now that all instructions in the function are constant folded, erase dead
1720    // blocks, because we can now use ConstantFoldTerminator to get rid of
1721    // in-edges.
1722    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1723      // If there are any PHI nodes in this successor, drop entries for BB now.
1724      BasicBlock *DeadBB = BlocksToErase[i];
1725      while (!DeadBB->use_empty()) {
1726        if (BasicBlock *PredBB = dyn_cast<BasicBlock>(DeadBB->use_back())) {
1727          PredBB->setUnwindDest(NULL);
1728          continue;
1729        }
1730
1731        Instruction *I = cast<Instruction>(DeadBB->use_back());
1732        bool Folded = ConstantFoldTerminator(I->getParent());
1733        if (!Folded) {
1734          // The constant folder may not have been able to fold the terminator
1735          // if this is a branch or switch on undef.  Fold it manually as a
1736          // branch to the first successor.
1737          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1738            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1739                   "Branch should be foldable!");
1740          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1741            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1742          } else {
1743            assert(0 && "Didn't fold away reference to block!");
1744          }
1745
1746          // Make this an uncond branch to the first successor.
1747          TerminatorInst *TI = I->getParent()->getTerminator();
1748          BranchInst::Create(TI->getSuccessor(0), TI);
1749
1750          // Remove entries in successor phi nodes to remove edges.
1751          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1752            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1753
1754          // Remove the old terminator.
1755          TI->eraseFromParent();
1756        }
1757      }
1758
1759      // Finally, delete the basic block.
1760      F->getBasicBlockList().erase(DeadBB);
1761    }
1762    BlocksToErase.clear();
1763  }
1764
1765  // If we inferred constant or undef return values for a function, we replaced
1766  // all call uses with the inferred value.  This means we don't need to bother
1767  // actually returning anything from the function.  Replace all return
1768  // instructions with return undef.
1769  // TODO: Process multiple value ret instructions also.
1770  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1771  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1772         E = RV.end(); I != E; ++I)
1773    if (!I->second.isOverdefined() &&
1774        I->first->getReturnType() != Type::VoidTy) {
1775      Function *F = I->first;
1776      for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1777        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1778          if (!isa<UndefValue>(RI->getOperand(0)))
1779            RI->setOperand(0, UndefValue::get(F->getReturnType()));
1780    }
1781
1782  // If we infered constant or undef values for globals variables, we can delete
1783  // the global and any stores that remain to it.
1784  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1785  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1786         E = TG.end(); I != E; ++I) {
1787    GlobalVariable *GV = I->first;
1788    assert(!I->second.isOverdefined() &&
1789           "Overdefined values should have been taken out of the map!");
1790    DOUT << "Found that GV '" << GV->getName()<< "' is constant!\n";
1791    while (!GV->use_empty()) {
1792      StoreInst *SI = cast<StoreInst>(GV->use_back());
1793      SI->eraseFromParent();
1794    }
1795    M.getGlobalList().erase(GV);
1796    ++IPNumGlobalConst;
1797  }
1798
1799  return MadeChanges;
1800}
1801