LCSSA.cpp revision 8c1db67a4c58fc05e41fd530129a7bc5fd8f8b20
1//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops by placing phi nodes at the end of the loops for
11// all values that are live across the loop boundary.  For example, it turns
12// the left into the right code:
13//
14// for (...)                for (...)
15//   if (c)                   if (c)
16//     X1 = ...                 X1 = ...
17//   else                     else
18//     X2 = ...                 X2 = ...
19//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20// ... = X3 + 4             X4 = phi(X3)
21//                          ... = X4 + 4
22//
23// This is still valid LLVM; the extra phi nodes are purely redundant, and will
24// be trivially eliminated by InstCombine.  The major benefit of this
25// transformation is that it makes many other loop optimizations, such as
26// LoopUnswitching, simpler.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "lcssa"
31#include "llvm/Transforms/Scalar.h"
32#include "llvm/Constants.h"
33#include "llvm/Pass.h"
34#include "llvm/Function.h"
35#include "llvm/Instructions.h"
36#include "llvm/Analysis/Dominators.h"
37#include "llvm/Analysis/LoopPass.h"
38#include "llvm/Analysis/ScalarEvolution.h"
39#include "llvm/Transforms/Utils/SSAUpdater.h"
40#include "llvm/ADT/Statistic.h"
41#include "llvm/ADT/STLExtras.h"
42#include "llvm/Support/PredIteratorCache.h"
43using namespace llvm;
44
45STATISTIC(NumLCSSA, "Number of live out of a loop variables");
46
47namespace {
48  struct LCSSA : public LoopPass {
49    static char ID; // Pass identification, replacement for typeid
50    LCSSA() : LoopPass(&ID) {}
51
52    // Cached analysis information for the current function.
53    LoopInfo *LI;
54    DominatorTree *DT;
55    std::vector<BasicBlock*> LoopBlocks;
56    PredIteratorCache PredCache;
57    Loop *L;
58
59    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
60
61    /// This transformation requires natural loop information & requires that
62    /// loop preheaders be inserted into the CFG.  It maintains both of these,
63    /// as well as the CFG.  It also requires dominator information.
64    ///
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.setPreservesCFG();
67      AU.addRequiredID(LoopSimplifyID);
68      AU.addPreservedID(LoopSimplifyID);
69      AU.addRequiredTransitive<LoopInfo>();
70      AU.addPreserved<LoopInfo>();
71      AU.addRequiredTransitive<DominatorTree>();
72      AU.addPreserved<ScalarEvolution>();
73      AU.addPreserved<DominatorTree>();
74
75      // Request DominanceFrontier now, even though LCSSA does
76      // not use it. This allows Pass Manager to schedule Dominance
77      // Frontier early enough such that one LPPassManager can handle
78      // multiple loop transformation passes.
79      AU.addRequired<DominanceFrontier>();
80      AU.addPreserved<DominanceFrontier>();
81    }
82  private:
83    bool ProcessInstruction(Instruction *Inst,
84                            const SmallVectorImpl<BasicBlock*> &ExitBlocks);
85
86    /// verifyAnalysis() - Verify loop nest.
87    virtual void verifyAnalysis() const {
88      // Check the special guarantees that LCSSA makes.
89      assert(L->isLCSSAForm() && "LCSSA form not preserved!");
90    }
91
92    /// inLoop - returns true if the given block is within the current loop
93    bool inLoop(BasicBlock *B) const {
94      return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
95    }
96  };
97}
98
99char LCSSA::ID = 0;
100static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
101
102Pass *llvm::createLCSSAPass() { return new LCSSA(); }
103const PassInfo *const llvm::LCSSAID = &X;
104
105
106/// BlockDominatesAnExit - Return true if the specified block dominates at least
107/// one of the blocks in the specified list.
108static bool BlockDominatesAnExit(BasicBlock *BB,
109                                 const SmallVectorImpl<BasicBlock*> &ExitBlocks,
110                                 DominatorTree *DT) {
111  DomTreeNode *DomNode = DT->getNode(BB);
112  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
113    if (DT->dominates(DomNode, DT->getNode(ExitBlocks[i])))
114      return true;
115
116  return false;
117}
118
119
120/// runOnFunction - Process all loops in the function, inner-most out.
121bool LCSSA::runOnLoop(Loop *TheLoop, LPPassManager &LPM) {
122  L = TheLoop;
123
124  LI = &LPM.getAnalysis<LoopInfo>();
125  DT = &getAnalysis<DominatorTree>();
126
127  // Get the set of exiting blocks.
128  SmallVector<BasicBlock*, 8> ExitBlocks;
129  L->getExitBlocks(ExitBlocks);
130
131  if (ExitBlocks.empty())
132    return false;
133
134  // Speed up queries by creating a sorted vector of blocks.
135  LoopBlocks.clear();
136  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
137  array_pod_sort(LoopBlocks.begin(), LoopBlocks.end());
138
139  // Look at all the instructions in the loop, checking to see if they have uses
140  // outside the loop.  If so, rewrite those uses.
141  bool MadeChange = false;
142
143  for (Loop::block_iterator BBI = L->block_begin(), E = L->block_end();
144       BBI != E; ++BBI) {
145    BasicBlock *BB = *BBI;
146
147    // For large loops, avoid use-scanning by using dominance information:  In
148    // particular, if a block does not dominate any of the loop exits, then none
149    // of the values defined in the block could be used outside the loop.
150    if (!BlockDominatesAnExit(BB, ExitBlocks, DT))
151      continue;
152
153    for (BasicBlock::iterator I = BB->begin(), E = BB->end();
154         I != E; ++I) {
155      // Reject two common cases fast: instructions with no uses (like stores)
156      // and instructions with one use that is in the same block as this.
157      if (I->use_empty() ||
158          (I->hasOneUse() && I->use_back()->getParent() == BB &&
159           !isa<PHINode>(I->use_back())))
160        continue;
161
162      MadeChange |= ProcessInstruction(I, ExitBlocks);
163    }
164  }
165
166  assert(L->isLCSSAForm());
167  PredCache.clear();
168
169  return MadeChange;
170}
171
172/// isExitBlock - Return true if the specified block is in the list.
173static bool isExitBlock(BasicBlock *BB,
174                        const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
175  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
176    if (ExitBlocks[i] == BB)
177      return true;
178  return false;
179}
180
181/// ProcessInstruction - Given an instruction in the loop, check to see if it
182/// has any uses that are outside the current loop.  If so, insert LCSSA PHI
183/// nodes and rewrite the uses.
184bool LCSSA::ProcessInstruction(Instruction *Inst,
185                               const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
186  SmallVector<Use*, 16> UsesToRewrite;
187
188  BasicBlock *InstBB = Inst->getParent();
189
190  for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
191       UI != E; ++UI) {
192    BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
193    if (PHINode *PN = dyn_cast<PHINode>(*UI))
194      UserBB = PN->getIncomingBlock(UI);
195
196    if (InstBB != UserBB && !inLoop(UserBB))
197      UsesToRewrite.push_back(&UI.getUse());
198  }
199
200  // If there are no uses outside the loop, exit with no change.
201  if (UsesToRewrite.empty()) return false;
202
203  ++NumLCSSA; // We are applying the transformation
204
205  // Invoke instructions are special in that their result value is not available
206  // along their unwind edge. The code below tests to see whether DomBB dominates
207  // the value, so adjust DomBB to the normal destination block, which is
208  // effectively where the value is first usable.
209  BasicBlock *DomBB = Inst->getParent();
210  if (InvokeInst *Inv = dyn_cast<InvokeInst>(Inst))
211    DomBB = Inv->getNormalDest();
212
213  DomTreeNode *DomNode = DT->getNode(DomBB);
214
215  SSAUpdater SSAUpdate;
216  SSAUpdate.Initialize(Inst);
217
218  // Insert the LCSSA phi's into all of the exit blocks dominated by the
219  // value., and add them to the Phi's map.
220  for (SmallVectorImpl<BasicBlock*>::const_iterator BBI = ExitBlocks.begin(),
221      BBE = ExitBlocks.end(); BBI != BBE; ++BBI) {
222    BasicBlock *ExitBB = *BBI;
223    if (!DT->dominates(DomNode, DT->getNode(ExitBB))) continue;
224
225    // If we already inserted something for this BB, don't reprocess it.
226    if (SSAUpdate.HasValueForBlock(ExitBB)) continue;
227
228    PHINode *PN = PHINode::Create(Inst->getType(), Inst->getName()+".lcssa",
229                                  ExitBB->begin());
230    PN->reserveOperandSpace(PredCache.GetNumPreds(ExitBB));
231
232    // Add inputs from inside the loop for this PHI.
233    for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI)
234      PN->addIncoming(Inst, *PI);
235
236    // Remember that this phi makes the value alive in this block.
237    SSAUpdate.AddAvailableValue(ExitBB, PN);
238  }
239
240  // Rewrite all uses outside the loop in terms of the new PHIs we just
241  // inserted.
242  for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) {
243    // If this use is in an exit block, rewrite to use the newly inserted PHI.
244    // This is required for correctness because SSAUpdate doesn't handle uses in
245    // the same block.  It assumes the PHI we inserted is at the end of the
246    // block.
247    Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser());
248    BasicBlock *UserBB = User->getParent();
249    if (PHINode *PN = dyn_cast<PHINode>(User))
250      UserBB = PN->getIncomingBlock(*UsesToRewrite[i]);
251
252    if (isa<PHINode>(UserBB->begin()) &&
253        isExitBlock(UserBB, ExitBlocks)) {
254      UsesToRewrite[i]->set(UserBB->begin());
255      continue;
256    }
257
258    // Otherwise, do full PHI insertion.
259    SSAUpdate.RewriteUse(*UsesToRewrite[i]);
260  }
261
262  return true;
263}
264
265