LCSSA.cpp revision fc74abfba5128544a750fce22fdf13eb0403e3ce
1//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops by placing phi nodes at the end of the loops for
11// all values that are live across the loop boundary.  For example, it turns
12// the left into the right code:
13//
14// for (...)                for (...)
15//   if (c)                   if (c)
16//     X1 = ...                 X1 = ...
17//   else                     else
18//     X2 = ...                 X2 = ...
19//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20// ... = X3 + 4             X4 = phi(X3)
21//                          ... = X4 + 4
22//
23// This is still valid LLVM; the extra phi nodes are purely redundant, and will
24// be trivially eliminated by InstCombine.  The major benefit of this
25// transformation is that it makes many other loop optimizations, such as
26// LoopUnswitching, simpler.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "lcssa"
31#include "llvm/Transforms/Scalar.h"
32#include "llvm/Constants.h"
33#include "llvm/Pass.h"
34#include "llvm/Function.h"
35#include "llvm/Instructions.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Analysis/LoopPass.h"
40#include "llvm/Analysis/ScalarEvolution.h"
41#include "llvm/Support/CFG.h"
42#include "llvm/Support/Compiler.h"
43#include <algorithm>
44#include <map>
45using namespace llvm;
46
47STATISTIC(NumLCSSA, "Number of live out of a loop variables");
48
49namespace {
50  struct VISIBILITY_HIDDEN LCSSA : public LoopPass {
51    static char ID; // Pass identification, replacement for typeid
52    LCSSA() : LoopPass((intptr_t)&ID) {}
53
54    // Cached analysis information for the current function.
55    LoopInfo *LI;
56    DominatorTree *DT;
57    std::vector<BasicBlock*> LoopBlocks;
58
59    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
60
61    void ProcessInstruction(Instruction* Instr,
62                            const SmallVector<BasicBlock*, 8>& exitBlocks);
63
64    /// This transformation requires natural loop information & requires that
65    /// loop preheaders be inserted into the CFG.  It maintains both of these,
66    /// as well as the CFG.  It also requires dominator information.
67    ///
68    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69      AU.setPreservesCFG();
70      AU.addRequiredID(LoopSimplifyID);
71      AU.addPreservedID(LoopSimplifyID);
72      AU.addRequired<LoopInfo>();
73      AU.addPreserved<LoopInfo>();
74      AU.addRequired<DominatorTree>();
75      AU.addPreserved<ScalarEvolution>();
76      AU.addPreserved<DominatorTree>();
77
78      // Request DominanceFrontier now, even though LCSSA does
79      // not use it. This allows Pass Manager to schedule Dominance
80      // Frontier early enough such that one LPPassManager can handle
81      // multiple loop transformation passes.
82      AU.addRequired<DominanceFrontier>();
83      AU.addPreserved<DominanceFrontier>();
84    }
85  private:
86    void getLoopValuesUsedOutsideLoop(Loop *L,
87                                      SetVector<Instruction*> &AffectedValues);
88
89    Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
90                            DenseMap<DomTreeNode*, Value*> &Phis);
91
92    /// inLoop - returns true if the given block is within the current loop
93    bool inLoop(BasicBlock* B) {
94      return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
95    }
96  };
97}
98
99char LCSSA::ID = 0;
100static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
101
102LoopPass *llvm::createLCSSAPass() { return new LCSSA(); }
103const PassInfo *const llvm::LCSSAID = &X;
104
105/// runOnFunction - Process all loops in the function, inner-most out.
106bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) {
107
108  LI = &LPM.getAnalysis<LoopInfo>();
109  DT = &getAnalysis<DominatorTree>();
110
111  // Speed up queries by creating a sorted list of blocks
112  LoopBlocks.clear();
113  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
114  std::sort(LoopBlocks.begin(), LoopBlocks.end());
115
116  SetVector<Instruction*> AffectedValues;
117  getLoopValuesUsedOutsideLoop(L, AffectedValues);
118
119  // If no values are affected, we can save a lot of work, since we know that
120  // nothing will be changed.
121  if (AffectedValues.empty())
122    return false;
123
124  SmallVector<BasicBlock*, 8> exitBlocks;
125  L->getExitBlocks(exitBlocks);
126
127  // Iterate over all affected values for this loop and insert Phi nodes
128  // for them in the appropriate exit blocks
129
130  for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
131       E = AffectedValues.end(); I != E; ++I)
132    ProcessInstruction(*I, exitBlocks);
133
134  assert(L->isLCSSAForm());
135
136  return true;
137}
138
139/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
140/// eliminate all out-of-loop uses.
141void LCSSA::ProcessInstruction(Instruction *Instr,
142                               const SmallVector<BasicBlock*, 8>& exitBlocks) {
143  ++NumLCSSA; // We are applying the transformation
144
145  // Keep track of the blocks that have the value available already.
146  DenseMap<DomTreeNode*, Value*> Phis;
147
148  DomTreeNode *InstrNode = DT->getNode(Instr->getParent());
149
150  // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
151  // add them to the Phi's map.
152  for (SmallVector<BasicBlock*, 8>::const_iterator BBI = exitBlocks.begin(),
153      BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
154    BasicBlock *BB = *BBI;
155    DomTreeNode *ExitBBNode = DT->getNode(BB);
156    Value *&Phi = Phis[ExitBBNode];
157    if (!Phi && DT->dominates(InstrNode, ExitBBNode)) {
158      PHINode *PN = PHINode::Create(Instr->getType(), Instr->getName()+".lcssa",
159                                    BB->begin());
160      PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
161
162      // Remember that this phi makes the value alive in this block.
163      Phi = PN;
164
165      // Add inputs from inside the loop for this PHI.
166      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
167        PN->addIncoming(Instr, *PI);
168    }
169  }
170
171
172  // Record all uses of Instr outside the loop.  We need to rewrite these.  The
173  // LCSSA phis won't be included because they use the value in the loop.
174  for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
175       UI != E;) {
176    BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
177    if (PHINode *P = dyn_cast<PHINode>(*UI)) {
178      unsigned OperandNo = UI.getOperandNo();
179      UserBB = P->getIncomingBlock(OperandNo/2);
180    }
181
182    // If the user is in the loop, don't rewrite it!
183    if (UserBB == Instr->getParent() || inLoop(UserBB)) {
184      ++UI;
185      continue;
186    }
187
188    // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
189    // inserting PHI nodes into join points where needed.
190    Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
191
192    // Preincrement the iterator to avoid invalidating it when we change the
193    // value.
194    Use &U = UI.getUse();
195    ++UI;
196    U.set(Val);
197  }
198}
199
200/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
201/// are used by instructions outside of it.
202void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
203                                      SetVector<Instruction*> &AffectedValues) {
204  // FIXME: For large loops, we may be able to avoid a lot of use-scanning
205  // by using dominance information.  In particular, if a block does not
206  // dominate any of the loop exits, then none of the values defined in the
207  // block could be used outside the loop.
208  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
209       BB != E; ++BB) {
210    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
211      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
212           ++UI) {
213        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
214        if (PHINode* p = dyn_cast<PHINode>(*UI)) {
215          unsigned OperandNo = UI.getOperandNo();
216          UserBB = p->getIncomingBlock(OperandNo/2);
217        }
218
219        if (*BB != UserBB && !inLoop(UserBB)) {
220          AffectedValues.insert(I);
221          break;
222        }
223      }
224  }
225}
226
227/// GetValueForBlock - Get the value to use within the specified basic block.
228/// available values are in Phis.
229Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
230                               DenseMap<DomTreeNode*, Value*> &Phis) {
231  // If there is no dominator info for this BB, it is unreachable.
232  if (BB == 0)
233    return UndefValue::get(OrigInst->getType());
234
235  // If we have already computed this value, return the previously computed val.
236  if (Phis.count(BB)) return Phis[BB];
237
238  DomTreeNode *IDom = BB->getIDom();
239
240  // Otherwise, there are two cases: we either have to insert a PHI node or we
241  // don't.  We need to insert a PHI node if this block is not dominated by one
242  // of the exit nodes from the loop (the loop could have multiple exits, and
243  // though the value defined *inside* the loop dominated all its uses, each
244  // exit by itself may not dominate all the uses).
245  //
246  // The simplest way to check for this condition is by checking to see if the
247  // idom is in the loop.  If so, we *know* that none of the exit blocks
248  // dominate this block.  Note that we *know* that the block defining the
249  // original instruction is in the idom chain, because if it weren't, then the
250  // original value didn't dominate this use.
251  if (!inLoop(IDom->getBlock())) {
252    // Idom is not in the loop, we must still be "below" the exit block and must
253    // be fully dominated by the value live in the idom.
254    Value* val = GetValueForBlock(IDom, OrigInst, Phis);
255    Phis.insert(std::make_pair(BB, val));
256    return val;
257  }
258
259  BasicBlock *BBN = BB->getBlock();
260
261  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
262  // now, then get values to fill in the incoming values for the PHI.
263  PHINode *PN = PHINode::Create(OrigInst->getType(),
264                                OrigInst->getName() + ".lcssa", BBN->begin());
265  PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN)));
266  Phis.insert(std::make_pair(BB, PN));
267
268  // Fill in the incoming values for the block.
269  for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI)
270    PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
271  return PN;
272}
273
274