Local.cpp revision 0aa32d5d0ff6cd65b6cff957858a79e2d2a614bd
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Metadata.h"
24#include "llvm/Operator.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/Analysis/DebugInfo.h"
28#include "llvm/Analysis/DIBuilder.h"
29#include "llvm/Analysis/Dominators.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/MemoryBuiltins.h"
32#include "llvm/Analysis/ProfileInfo.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/GetElementPtrTypeIterator.h"
38#include "llvm/Support/IRBuilder.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/ValueHandle.h"
41#include "llvm/Support/raw_ostream.h"
42using namespace llvm;
43
44//===----------------------------------------------------------------------===//
45//  Local constant propagation.
46//
47
48/// ConstantFoldTerminator - If a terminator instruction is predicated on a
49/// constant value, convert it into an unconditional branch to the constant
50/// destination.  This is a nontrivial operation because the successors of this
51/// basic block must have their PHI nodes updated.
52/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
53/// conditions and indirectbr addresses this might make dead if
54/// DeleteDeadConditions is true.
55bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) {
56  TerminatorInst *T = BB->getTerminator();
57  IRBuilder<> Builder(T);
58
59  // Branch - See if we are conditional jumping on constant
60  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
61    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
62    BasicBlock *Dest1 = BI->getSuccessor(0);
63    BasicBlock *Dest2 = BI->getSuccessor(1);
64
65    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
66      // Are we branching on constant?
67      // YES.  Change to unconditional branch...
68      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
69      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
70
71      //cerr << "Function: " << T->getParent()->getParent()
72      //     << "\nRemoving branch from " << T->getParent()
73      //     << "\n\nTo: " << OldDest << endl;
74
75      // Let the basic block know that we are letting go of it.  Based on this,
76      // it will adjust it's PHI nodes.
77      OldDest->removePredecessor(BB);
78
79      // Replace the conditional branch with an unconditional one.
80      Builder.CreateBr(Destination);
81      BI->eraseFromParent();
82      return true;
83    }
84
85    if (Dest2 == Dest1) {       // Conditional branch to same location?
86      // This branch matches something like this:
87      //     br bool %cond, label %Dest, label %Dest
88      // and changes it into:  br label %Dest
89
90      // Let the basic block know that we are letting go of one copy of it.
91      assert(BI->getParent() && "Terminator not inserted in block!");
92      Dest1->removePredecessor(BI->getParent());
93
94      // Replace the conditional branch with an unconditional one.
95      Builder.CreateBr(Dest1);
96      Value *Cond = BI->getCondition();
97      BI->eraseFromParent();
98      if (DeleteDeadConditions)
99        RecursivelyDeleteTriviallyDeadInstructions(Cond);
100      return true;
101    }
102    return false;
103  }
104
105  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
106    // If we are switching on a constant, we can convert the switch into a
107    // single branch instruction!
108    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
109    BasicBlock *TheOnlyDest = SI->getDefaultDest();
110    BasicBlock *DefaultDest = TheOnlyDest;
111
112    // Figure out which case it goes to.
113    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
114         i != e; ++i) {
115      // Found case matching a constant operand?
116      if (i.getCaseValue() == CI) {
117        TheOnlyDest = i.getCaseSuccessor();
118        break;
119      }
120
121      // Check to see if this branch is going to the same place as the default
122      // dest.  If so, eliminate it as an explicit compare.
123      if (i.getCaseSuccessor() == DefaultDest) {
124        // Remove this entry.
125        DefaultDest->removePredecessor(SI->getParent());
126        SI->removeCase(i);
127        --i; --e;
128        continue;
129      }
130
131      // Otherwise, check to see if the switch only branches to one destination.
132      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
133      // destinations.
134      if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0;
135    }
136
137    if (CI && !TheOnlyDest) {
138      // Branching on a constant, but not any of the cases, go to the default
139      // successor.
140      TheOnlyDest = SI->getDefaultDest();
141    }
142
143    // If we found a single destination that we can fold the switch into, do so
144    // now.
145    if (TheOnlyDest) {
146      // Insert the new branch.
147      Builder.CreateBr(TheOnlyDest);
148      BasicBlock *BB = SI->getParent();
149
150      // Remove entries from PHI nodes which we no longer branch to...
151      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
152        // Found case matching a constant operand?
153        BasicBlock *Succ = SI->getSuccessor(i);
154        if (Succ == TheOnlyDest)
155          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
156        else
157          Succ->removePredecessor(BB);
158      }
159
160      // Delete the old switch.
161      Value *Cond = SI->getCondition();
162      SI->eraseFromParent();
163      if (DeleteDeadConditions)
164        RecursivelyDeleteTriviallyDeadInstructions(Cond);
165      return true;
166    }
167
168    if (SI->getNumCases() == 1) {
169      // Otherwise, we can fold this switch into a conditional branch
170      // instruction if it has only one non-default destination.
171      SwitchInst::CaseIt FirstCase = SI->case_begin();
172      IntegersSubset CaseRanges = FirstCase.getCaseValueEx();
173      if (CaseRanges.getNumItems() == 1 && CaseRanges.isSingleNumber(0)) {
174        // FIXME: Currently work with ConstantInt based numbers.
175        Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
176            CaseRanges.getItem(0).Low.toConstantInt(),
177            "cond");
178
179        // Insert the new branch.
180        Builder.CreateCondBr(Cond, FirstCase.getCaseSuccessor(),
181                             SI->getDefaultDest());
182
183        // Delete the old switch.
184        SI->eraseFromParent();
185        return true;
186
187      }
188    }
189    return false;
190  }
191
192  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
193    // indirectbr blockaddress(@F, @BB) -> br label @BB
194    if (BlockAddress *BA =
195          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
196      BasicBlock *TheOnlyDest = BA->getBasicBlock();
197      // Insert the new branch.
198      Builder.CreateBr(TheOnlyDest);
199
200      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
201        if (IBI->getDestination(i) == TheOnlyDest)
202          TheOnlyDest = 0;
203        else
204          IBI->getDestination(i)->removePredecessor(IBI->getParent());
205      }
206      Value *Address = IBI->getAddress();
207      IBI->eraseFromParent();
208      if (DeleteDeadConditions)
209        RecursivelyDeleteTriviallyDeadInstructions(Address);
210
211      // If we didn't find our destination in the IBI successor list, then we
212      // have undefined behavior.  Replace the unconditional branch with an
213      // 'unreachable' instruction.
214      if (TheOnlyDest) {
215        BB->getTerminator()->eraseFromParent();
216        new UnreachableInst(BB->getContext(), BB);
217      }
218
219      return true;
220    }
221  }
222
223  return false;
224}
225
226
227//===----------------------------------------------------------------------===//
228//  Local dead code elimination.
229//
230
231/// isInstructionTriviallyDead - Return true if the result produced by the
232/// instruction is not used, and the instruction has no side effects.
233///
234bool llvm::isInstructionTriviallyDead(Instruction *I) {
235  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
236
237  // We don't want the landingpad instruction removed by anything this general.
238  if (isa<LandingPadInst>(I))
239    return false;
240
241  // We don't want debug info removed by anything this general, unless
242  // debug info is empty.
243  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
244    if (DDI->getAddress())
245      return false;
246    return true;
247  }
248  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
249    if (DVI->getValue())
250      return false;
251    return true;
252  }
253
254  if (!I->mayHaveSideEffects()) return true;
255
256  // Special case intrinsics that "may have side effects" but can be deleted
257  // when dead.
258  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
259    // Safe to delete llvm.stacksave if dead.
260    if (II->getIntrinsicID() == Intrinsic::stacksave)
261      return true;
262
263    // Lifetime intrinsics are dead when their right-hand is undef.
264    if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
265        II->getIntrinsicID() == Intrinsic::lifetime_end)
266      return isa<UndefValue>(II->getArgOperand(1));
267  }
268
269  if (extractMallocCall(I) || extractCallocCall(I)) return true;
270
271  if (CallInst *CI = isFreeCall(I))
272    if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
273      return C->isNullValue() || isa<UndefValue>(C);
274
275  return false;
276}
277
278/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
279/// trivially dead instruction, delete it.  If that makes any of its operands
280/// trivially dead, delete them too, recursively.  Return true if any
281/// instructions were deleted.
282bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
283  Instruction *I = dyn_cast<Instruction>(V);
284  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
285    return false;
286
287  SmallVector<Instruction*, 16> DeadInsts;
288  DeadInsts.push_back(I);
289
290  do {
291    I = DeadInsts.pop_back_val();
292
293    // Null out all of the instruction's operands to see if any operand becomes
294    // dead as we go.
295    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
296      Value *OpV = I->getOperand(i);
297      I->setOperand(i, 0);
298
299      if (!OpV->use_empty()) continue;
300
301      // If the operand is an instruction that became dead as we nulled out the
302      // operand, and if it is 'trivially' dead, delete it in a future loop
303      // iteration.
304      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
305        if (isInstructionTriviallyDead(OpI))
306          DeadInsts.push_back(OpI);
307    }
308
309    I->eraseFromParent();
310  } while (!DeadInsts.empty());
311
312  return true;
313}
314
315/// areAllUsesEqual - Check whether the uses of a value are all the same.
316/// This is similar to Instruction::hasOneUse() except this will also return
317/// true when there are no uses or multiple uses that all refer to the same
318/// value.
319static bool areAllUsesEqual(Instruction *I) {
320  Value::use_iterator UI = I->use_begin();
321  Value::use_iterator UE = I->use_end();
322  if (UI == UE)
323    return true;
324
325  User *TheUse = *UI;
326  for (++UI; UI != UE; ++UI) {
327    if (*UI != TheUse)
328      return false;
329  }
330  return true;
331}
332
333/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
334/// dead PHI node, due to being a def-use chain of single-use nodes that
335/// either forms a cycle or is terminated by a trivially dead instruction,
336/// delete it.  If that makes any of its operands trivially dead, delete them
337/// too, recursively.  Return true if a change was made.
338bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
339  SmallPtrSet<Instruction*, 4> Visited;
340  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
341       I = cast<Instruction>(*I->use_begin())) {
342    if (I->use_empty())
343      return RecursivelyDeleteTriviallyDeadInstructions(I);
344
345    // If we find an instruction more than once, we're on a cycle that
346    // won't prove fruitful.
347    if (!Visited.insert(I)) {
348      // Break the cycle and delete the instruction and its operands.
349      I->replaceAllUsesWith(UndefValue::get(I->getType()));
350      (void)RecursivelyDeleteTriviallyDeadInstructions(I);
351      return true;
352    }
353  }
354  return false;
355}
356
357/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
358/// simplify any instructions in it and recursively delete dead instructions.
359///
360/// This returns true if it changed the code, note that it can delete
361/// instructions in other blocks as well in this block.
362bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
363  bool MadeChange = false;
364
365#ifndef NDEBUG
366  // In debug builds, ensure that the terminator of the block is never replaced
367  // or deleted by these simplifications. The idea of simplification is that it
368  // cannot introduce new instructions, and there is no way to replace the
369  // terminator of a block without introducing a new instruction.
370  AssertingVH<Instruction> TerminatorVH(--BB->end());
371#endif
372
373  for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
374    assert(!BI->isTerminator());
375    Instruction *Inst = BI++;
376
377    WeakVH BIHandle(BI);
378    if (recursivelySimplifyInstruction(Inst, TD)) {
379      MadeChange = true;
380      if (BIHandle != BI)
381        BI = BB->begin();
382      continue;
383    }
384
385    MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
386    if (BIHandle != BI)
387      BI = BB->begin();
388  }
389  return MadeChange;
390}
391
392//===----------------------------------------------------------------------===//
393//  Control Flow Graph Restructuring.
394//
395
396
397/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
398/// method is called when we're about to delete Pred as a predecessor of BB.  If
399/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
400///
401/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
402/// nodes that collapse into identity values.  For example, if we have:
403///   x = phi(1, 0, 0, 0)
404///   y = and x, z
405///
406/// .. and delete the predecessor corresponding to the '1', this will attempt to
407/// recursively fold the and to 0.
408void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
409                                        TargetData *TD) {
410  // This only adjusts blocks with PHI nodes.
411  if (!isa<PHINode>(BB->begin()))
412    return;
413
414  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
415  // them down.  This will leave us with single entry phi nodes and other phis
416  // that can be removed.
417  BB->removePredecessor(Pred, true);
418
419  WeakVH PhiIt = &BB->front();
420  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
421    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
422    Value *OldPhiIt = PhiIt;
423
424    if (!recursivelySimplifyInstruction(PN, TD))
425      continue;
426
427    // If recursive simplification ended up deleting the next PHI node we would
428    // iterate to, then our iterator is invalid, restart scanning from the top
429    // of the block.
430    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
431  }
432}
433
434
435/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
436/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
437/// between them, moving the instructions in the predecessor into DestBB and
438/// deleting the predecessor block.
439///
440void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
441  // If BB has single-entry PHI nodes, fold them.
442  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
443    Value *NewVal = PN->getIncomingValue(0);
444    // Replace self referencing PHI with undef, it must be dead.
445    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
446    PN->replaceAllUsesWith(NewVal);
447    PN->eraseFromParent();
448  }
449
450  BasicBlock *PredBB = DestBB->getSinglePredecessor();
451  assert(PredBB && "Block doesn't have a single predecessor!");
452
453  // Zap anything that took the address of DestBB.  Not doing this will give the
454  // address an invalid value.
455  if (DestBB->hasAddressTaken()) {
456    BlockAddress *BA = BlockAddress::get(DestBB);
457    Constant *Replacement =
458      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
459    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
460                                                     BA->getType()));
461    BA->destroyConstant();
462  }
463
464  // Anything that branched to PredBB now branches to DestBB.
465  PredBB->replaceAllUsesWith(DestBB);
466
467  // Splice all the instructions from PredBB to DestBB.
468  PredBB->getTerminator()->eraseFromParent();
469  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
470
471  if (P) {
472    DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
473    if (DT) {
474      BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
475      DT->changeImmediateDominator(DestBB, PredBBIDom);
476      DT->eraseNode(PredBB);
477    }
478    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
479    if (PI) {
480      PI->replaceAllUses(PredBB, DestBB);
481      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
482    }
483  }
484  // Nuke BB.
485  PredBB->eraseFromParent();
486}
487
488/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
489/// almost-empty BB ending in an unconditional branch to Succ, into succ.
490///
491/// Assumption: Succ is the single successor for BB.
492///
493static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
494  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
495
496  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
497        << Succ->getName() << "\n");
498  // Shortcut, if there is only a single predecessor it must be BB and merging
499  // is always safe
500  if (Succ->getSinglePredecessor()) return true;
501
502  // Make a list of the predecessors of BB
503  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
504
505  // Look at all the phi nodes in Succ, to see if they present a conflict when
506  // merging these blocks
507  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
508    PHINode *PN = cast<PHINode>(I);
509
510    // If the incoming value from BB is again a PHINode in
511    // BB which has the same incoming value for *PI as PN does, we can
512    // merge the phi nodes and then the blocks can still be merged
513    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
514    if (BBPN && BBPN->getParent() == BB) {
515      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
516        BasicBlock *IBB = PN->getIncomingBlock(PI);
517        if (BBPreds.count(IBB) &&
518            BBPN->getIncomingValueForBlock(IBB) != PN->getIncomingValue(PI)) {
519          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
520                << Succ->getName() << " is conflicting with "
521                << BBPN->getName() << " with regard to common predecessor "
522                << IBB->getName() << "\n");
523          return false;
524        }
525      }
526    } else {
527      Value* Val = PN->getIncomingValueForBlock(BB);
528      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
529        // See if the incoming value for the common predecessor is equal to the
530        // one for BB, in which case this phi node will not prevent the merging
531        // of the block.
532        BasicBlock *IBB = PN->getIncomingBlock(PI);
533        if (BBPreds.count(IBB) && Val != PN->getIncomingValue(PI)) {
534          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
535                << Succ->getName() << " is conflicting with regard to common "
536                << "predecessor " << IBB->getName() << "\n");
537          return false;
538        }
539      }
540    }
541  }
542
543  return true;
544}
545
546/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
547/// unconditional branch, and contains no instructions other than PHI nodes,
548/// potential side-effect free intrinsics and the branch.  If possible,
549/// eliminate BB by rewriting all the predecessors to branch to the successor
550/// block and return true.  If we can't transform, return false.
551bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
552  assert(BB != &BB->getParent()->getEntryBlock() &&
553         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
554
555  // We can't eliminate infinite loops.
556  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
557  if (BB == Succ) return false;
558
559  // Check to see if merging these blocks would cause conflicts for any of the
560  // phi nodes in BB or Succ. If not, we can safely merge.
561  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
562
563  // Check for cases where Succ has multiple predecessors and a PHI node in BB
564  // has uses which will not disappear when the PHI nodes are merged.  It is
565  // possible to handle such cases, but difficult: it requires checking whether
566  // BB dominates Succ, which is non-trivial to calculate in the case where
567  // Succ has multiple predecessors.  Also, it requires checking whether
568  // constructing the necessary self-referential PHI node doesn't intoduce any
569  // conflicts; this isn't too difficult, but the previous code for doing this
570  // was incorrect.
571  //
572  // Note that if this check finds a live use, BB dominates Succ, so BB is
573  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
574  // folding the branch isn't profitable in that case anyway.
575  if (!Succ->getSinglePredecessor()) {
576    BasicBlock::iterator BBI = BB->begin();
577    while (isa<PHINode>(*BBI)) {
578      for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
579           UI != E; ++UI) {
580        if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
581          if (PN->getIncomingBlock(UI) != BB)
582            return false;
583        } else {
584          return false;
585        }
586      }
587      ++BBI;
588    }
589  }
590
591  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
592
593  if (isa<PHINode>(Succ->begin())) {
594    // If there is more than one pred of succ, and there are PHI nodes in
595    // the successor, then we need to add incoming edges for the PHI nodes
596    //
597    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
598
599    // Loop over all of the PHI nodes in the successor of BB.
600    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
601      PHINode *PN = cast<PHINode>(I);
602      Value *OldVal = PN->removeIncomingValue(BB, false);
603      assert(OldVal && "No entry in PHI for Pred BB!");
604
605      // If this incoming value is one of the PHI nodes in BB, the new entries
606      // in the PHI node are the entries from the old PHI.
607      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
608        PHINode *OldValPN = cast<PHINode>(OldVal);
609        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
610          // Note that, since we are merging phi nodes and BB and Succ might
611          // have common predecessors, we could end up with a phi node with
612          // identical incoming branches. This will be cleaned up later (and
613          // will trigger asserts if we try to clean it up now, without also
614          // simplifying the corresponding conditional branch).
615          PN->addIncoming(OldValPN->getIncomingValue(i),
616                          OldValPN->getIncomingBlock(i));
617      } else {
618        // Add an incoming value for each of the new incoming values.
619        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
620          PN->addIncoming(OldVal, BBPreds[i]);
621      }
622    }
623  }
624
625  if (Succ->getSinglePredecessor()) {
626    // BB is the only predecessor of Succ, so Succ will end up with exactly
627    // the same predecessors BB had.
628
629    // Copy over any phi, debug or lifetime instruction.
630    BB->getTerminator()->eraseFromParent();
631    Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
632  } else {
633    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
634      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
635      assert(PN->use_empty() && "There shouldn't be any uses here!");
636      PN->eraseFromParent();
637    }
638  }
639
640  // Everything that jumped to BB now goes to Succ.
641  BB->replaceAllUsesWith(Succ);
642  if (!Succ->hasName()) Succ->takeName(BB);
643  BB->eraseFromParent();              // Delete the old basic block.
644  return true;
645}
646
647/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
648/// nodes in this block. This doesn't try to be clever about PHI nodes
649/// which differ only in the order of the incoming values, but instcombine
650/// orders them so it usually won't matter.
651///
652bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
653  bool Changed = false;
654
655  // This implementation doesn't currently consider undef operands
656  // specially. Theoretically, two phis which are identical except for
657  // one having an undef where the other doesn't could be collapsed.
658
659  // Map from PHI hash values to PHI nodes. If multiple PHIs have
660  // the same hash value, the element is the first PHI in the
661  // linked list in CollisionMap.
662  DenseMap<uintptr_t, PHINode *> HashMap;
663
664  // Maintain linked lists of PHI nodes with common hash values.
665  DenseMap<PHINode *, PHINode *> CollisionMap;
666
667  // Examine each PHI.
668  for (BasicBlock::iterator I = BB->begin();
669       PHINode *PN = dyn_cast<PHINode>(I++); ) {
670    // Compute a hash value on the operands. Instcombine will likely have sorted
671    // them, which helps expose duplicates, but we have to check all the
672    // operands to be safe in case instcombine hasn't run.
673    uintptr_t Hash = 0;
674    // This hash algorithm is quite weak as hash functions go, but it seems
675    // to do a good enough job for this particular purpose, and is very quick.
676    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
677      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
678      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
679    }
680    for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
681         I != E; ++I) {
682      Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
683      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
684    }
685    // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
686    Hash >>= 1;
687    // If we've never seen this hash value before, it's a unique PHI.
688    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
689      HashMap.insert(std::make_pair(Hash, PN));
690    if (Pair.second) continue;
691    // Otherwise it's either a duplicate or a hash collision.
692    for (PHINode *OtherPN = Pair.first->second; ; ) {
693      if (OtherPN->isIdenticalTo(PN)) {
694        // A duplicate. Replace this PHI with its duplicate.
695        PN->replaceAllUsesWith(OtherPN);
696        PN->eraseFromParent();
697        Changed = true;
698        break;
699      }
700      // A non-duplicate hash collision.
701      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
702      if (I == CollisionMap.end()) {
703        // Set this PHI to be the head of the linked list of colliding PHIs.
704        PHINode *Old = Pair.first->second;
705        Pair.first->second = PN;
706        CollisionMap[PN] = Old;
707        break;
708      }
709      // Procede to the next PHI in the list.
710      OtherPN = I->second;
711    }
712  }
713
714  return Changed;
715}
716
717/// enforceKnownAlignment - If the specified pointer points to an object that
718/// we control, modify the object's alignment to PrefAlign. This isn't
719/// often possible though. If alignment is important, a more reliable approach
720/// is to simply align all global variables and allocation instructions to
721/// their preferred alignment from the beginning.
722///
723static unsigned enforceKnownAlignment(Value *V, unsigned Align,
724                                      unsigned PrefAlign, const TargetData *TD) {
725  V = V->stripPointerCasts();
726
727  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
728    // If the preferred alignment is greater than the natural stack alignment
729    // then don't round up. This avoids dynamic stack realignment.
730    if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
731      return Align;
732    // If there is a requested alignment and if this is an alloca, round up.
733    if (AI->getAlignment() >= PrefAlign)
734      return AI->getAlignment();
735    AI->setAlignment(PrefAlign);
736    return PrefAlign;
737  }
738
739  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
740    // If there is a large requested alignment and we can, bump up the alignment
741    // of the global.
742    if (GV->isDeclaration()) return Align;
743    // If the memory we set aside for the global may not be the memory used by
744    // the final program then it is impossible for us to reliably enforce the
745    // preferred alignment.
746    if (GV->isWeakForLinker()) return Align;
747
748    if (GV->getAlignment() >= PrefAlign)
749      return GV->getAlignment();
750    // We can only increase the alignment of the global if it has no alignment
751    // specified or if it is not assigned a section.  If it is assigned a
752    // section, the global could be densely packed with other objects in the
753    // section, increasing the alignment could cause padding issues.
754    if (!GV->hasSection() || GV->getAlignment() == 0)
755      GV->setAlignment(PrefAlign);
756    return GV->getAlignment();
757  }
758
759  return Align;
760}
761
762/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
763/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
764/// and it is more than the alignment of the ultimate object, see if we can
765/// increase the alignment of the ultimate object, making this check succeed.
766unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
767                                          const TargetData *TD) {
768  assert(V->getType()->isPointerTy() &&
769         "getOrEnforceKnownAlignment expects a pointer!");
770  unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
771  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
772  ComputeMaskedBits(V, KnownZero, KnownOne, TD);
773  unsigned TrailZ = KnownZero.countTrailingOnes();
774
775  // Avoid trouble with rediculously large TrailZ values, such as
776  // those computed from a null pointer.
777  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
778
779  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
780
781  // LLVM doesn't support alignments larger than this currently.
782  Align = std::min(Align, +Value::MaximumAlignment);
783
784  if (PrefAlign > Align)
785    Align = enforceKnownAlignment(V, Align, PrefAlign, TD);
786
787  // We don't need to make any adjustment.
788  return Align;
789}
790
791///===---------------------------------------------------------------------===//
792///  Dbg Intrinsic utilities
793///
794
795/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
796/// that has an associated llvm.dbg.decl intrinsic.
797bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
798                                           StoreInst *SI, DIBuilder &Builder) {
799  DIVariable DIVar(DDI->getVariable());
800  if (!DIVar.Verify())
801    return false;
802
803  Instruction *DbgVal = NULL;
804  // If an argument is zero extended then use argument directly. The ZExt
805  // may be zapped by an optimization pass in future.
806  Argument *ExtendedArg = NULL;
807  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
808    ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
809  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
810    ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
811  if (ExtendedArg)
812    DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
813  else
814    DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
815
816  // Propagate any debug metadata from the store onto the dbg.value.
817  DebugLoc SIDL = SI->getDebugLoc();
818  if (!SIDL.isUnknown())
819    DbgVal->setDebugLoc(SIDL);
820  // Otherwise propagate debug metadata from dbg.declare.
821  else
822    DbgVal->setDebugLoc(DDI->getDebugLoc());
823  return true;
824}
825
826/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
827/// that has an associated llvm.dbg.decl intrinsic.
828bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
829                                           LoadInst *LI, DIBuilder &Builder) {
830  DIVariable DIVar(DDI->getVariable());
831  if (!DIVar.Verify())
832    return false;
833
834  Instruction *DbgVal =
835    Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
836                                    DIVar, LI);
837
838  // Propagate any debug metadata from the store onto the dbg.value.
839  DebugLoc LIDL = LI->getDebugLoc();
840  if (!LIDL.isUnknown())
841    DbgVal->setDebugLoc(LIDL);
842  // Otherwise propagate debug metadata from dbg.declare.
843  else
844    DbgVal->setDebugLoc(DDI->getDebugLoc());
845  return true;
846}
847
848/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
849/// of llvm.dbg.value intrinsics.
850bool llvm::LowerDbgDeclare(Function &F) {
851  DIBuilder DIB(*F.getParent());
852  SmallVector<DbgDeclareInst *, 4> Dbgs;
853  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
854    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
855      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
856        Dbgs.push_back(DDI);
857    }
858  if (Dbgs.empty())
859    return false;
860
861  for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
862         E = Dbgs.end(); I != E; ++I) {
863    DbgDeclareInst *DDI = *I;
864    if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
865      bool RemoveDDI = true;
866      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
867           UI != E; ++UI)
868        if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
869          ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
870        else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
871          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
872        else
873          RemoveDDI = false;
874      if (RemoveDDI)
875        DDI->eraseFromParent();
876    }
877  }
878  return true;
879}
880
881/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
882/// alloca 'V', if any.
883DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
884  if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
885    for (Value::use_iterator UI = DebugNode->use_begin(),
886         E = DebugNode->use_end(); UI != E; ++UI)
887      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
888        return DDI;
889
890  return 0;
891}
892