Local.cpp revision 227dfdb3c44c5cc5ec140b4be89f618bdc59a133
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Operator.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/Analysis/DebugInfo.h"
27#include "llvm/Analysis/DIBuilder.h"
28#include "llvm/Analysis/Dominators.h"
29#include "llvm/Analysis/ConstantFolding.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/ProfileInfo.h"
32#include "llvm/Analysis/ValueTracking.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/ValueHandle.h"
39#include "llvm/Support/raw_ostream.h"
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43//  Local constant propagation.
44//
45
46// ConstantFoldTerminator - If a terminator instruction is predicated on a
47// constant value, convert it into an unconditional branch to the constant
48// destination.
49//
50bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
51  TerminatorInst *T = BB->getTerminator();
52
53  // Branch - See if we are conditional jumping on constant
54  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
55    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
56    BasicBlock *Dest1 = BI->getSuccessor(0);
57    BasicBlock *Dest2 = BI->getSuccessor(1);
58
59    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
60      // Are we branching on constant?
61      // YES.  Change to unconditional branch...
62      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
63      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
64
65      //cerr << "Function: " << T->getParent()->getParent()
66      //     << "\nRemoving branch from " << T->getParent()
67      //     << "\n\nTo: " << OldDest << endl;
68
69      // Let the basic block know that we are letting go of it.  Based on this,
70      // it will adjust it's PHI nodes.
71      OldDest->removePredecessor(BB);
72
73      // Replace the conditional branch with an unconditional one.
74      BranchInst::Create(Destination, BI);
75      BI->eraseFromParent();
76      return true;
77    }
78
79    if (Dest2 == Dest1) {       // Conditional branch to same location?
80      // This branch matches something like this:
81      //     br bool %cond, label %Dest, label %Dest
82      // and changes it into:  br label %Dest
83
84      // Let the basic block know that we are letting go of one copy of it.
85      assert(BI->getParent() && "Terminator not inserted in block!");
86      Dest1->removePredecessor(BI->getParent());
87
88      // Replace the conditional branch with an unconditional one.
89      BranchInst::Create(Dest1, BI);
90      BI->eraseFromParent();
91      return true;
92    }
93    return false;
94  }
95
96  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
97    // If we are switching on a constant, we can convert the switch into a
98    // single branch instruction!
99    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
100    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
101    BasicBlock *DefaultDest = TheOnlyDest;
102    assert(TheOnlyDest == SI->getDefaultDest() &&
103           "Default destination is not successor #0?");
104
105    // Figure out which case it goes to.
106    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
107      // Found case matching a constant operand?
108      if (SI->getSuccessorValue(i) == CI) {
109        TheOnlyDest = SI->getSuccessor(i);
110        break;
111      }
112
113      // Check to see if this branch is going to the same place as the default
114      // dest.  If so, eliminate it as an explicit compare.
115      if (SI->getSuccessor(i) == DefaultDest) {
116        // Remove this entry.
117        DefaultDest->removePredecessor(SI->getParent());
118        SI->removeCase(i);
119        --i; --e;  // Don't skip an entry...
120        continue;
121      }
122
123      // Otherwise, check to see if the switch only branches to one destination.
124      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
125      // destinations.
126      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
127    }
128
129    if (CI && !TheOnlyDest) {
130      // Branching on a constant, but not any of the cases, go to the default
131      // successor.
132      TheOnlyDest = SI->getDefaultDest();
133    }
134
135    // If we found a single destination that we can fold the switch into, do so
136    // now.
137    if (TheOnlyDest) {
138      // Insert the new branch.
139      BranchInst::Create(TheOnlyDest, SI);
140      BasicBlock *BB = SI->getParent();
141
142      // Remove entries from PHI nodes which we no longer branch to...
143      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
144        // Found case matching a constant operand?
145        BasicBlock *Succ = SI->getSuccessor(i);
146        if (Succ == TheOnlyDest)
147          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
148        else
149          Succ->removePredecessor(BB);
150      }
151
152      // Delete the old switch.
153      BB->getInstList().erase(SI);
154      return true;
155    }
156
157    if (SI->getNumSuccessors() == 2) {
158      // Otherwise, we can fold this switch into a conditional branch
159      // instruction if it has only one non-default destination.
160      Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
161                                 SI->getSuccessorValue(1), "cond");
162      // Insert the new branch.
163      BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
164
165      // Delete the old switch.
166      SI->eraseFromParent();
167      return true;
168    }
169    return false;
170  }
171
172  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
173    // indirectbr blockaddress(@F, @BB) -> br label @BB
174    if (BlockAddress *BA =
175          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
176      BasicBlock *TheOnlyDest = BA->getBasicBlock();
177      // Insert the new branch.
178      BranchInst::Create(TheOnlyDest, IBI);
179
180      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
181        if (IBI->getDestination(i) == TheOnlyDest)
182          TheOnlyDest = 0;
183        else
184          IBI->getDestination(i)->removePredecessor(IBI->getParent());
185      }
186      IBI->eraseFromParent();
187
188      // If we didn't find our destination in the IBI successor list, then we
189      // have undefined behavior.  Replace the unconditional branch with an
190      // 'unreachable' instruction.
191      if (TheOnlyDest) {
192        BB->getTerminator()->eraseFromParent();
193        new UnreachableInst(BB->getContext(), BB);
194      }
195
196      return true;
197    }
198  }
199
200  return false;
201}
202
203
204//===----------------------------------------------------------------------===//
205//  Local dead code elimination.
206//
207
208/// isInstructionTriviallyDead - Return true if the result produced by the
209/// instruction is not used, and the instruction has no side effects.
210///
211bool llvm::isInstructionTriviallyDead(Instruction *I) {
212  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
213
214  // We don't want debug info removed by anything this general, unless
215  // debug info is empty.
216  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
217    if (DDI->getAddress())
218      return false;
219    return true;
220  }
221  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
222    if (DVI->getValue())
223      return false;
224    return true;
225  }
226
227  if (!I->mayHaveSideEffects()) return true;
228
229  // Special case intrinsics that "may have side effects" but can be deleted
230  // when dead.
231  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
232    // Safe to delete llvm.stacksave if dead.
233    if (II->getIntrinsicID() == Intrinsic::stacksave)
234      return true;
235  return false;
236}
237
238/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
239/// trivially dead instruction, delete it.  If that makes any of its operands
240/// trivially dead, delete them too, recursively.  Return true if any
241/// instructions were deleted.
242bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
243  Instruction *I = dyn_cast<Instruction>(V);
244  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
245    return false;
246
247  SmallVector<Instruction*, 16> DeadInsts;
248  DeadInsts.push_back(I);
249
250  do {
251    I = DeadInsts.pop_back_val();
252
253    // Null out all of the instruction's operands to see if any operand becomes
254    // dead as we go.
255    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
256      Value *OpV = I->getOperand(i);
257      I->setOperand(i, 0);
258
259      if (!OpV->use_empty()) continue;
260
261      // If the operand is an instruction that became dead as we nulled out the
262      // operand, and if it is 'trivially' dead, delete it in a future loop
263      // iteration.
264      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
265        if (isInstructionTriviallyDead(OpI))
266          DeadInsts.push_back(OpI);
267    }
268
269    I->eraseFromParent();
270  } while (!DeadInsts.empty());
271
272  return true;
273}
274
275/// areAllUsesEqual - Check whether the uses of a value are all the same.
276/// This is similar to Instruction::hasOneUse() except this will also return
277/// true when there are no uses or multiple uses that all refer to the same
278/// value.
279static bool areAllUsesEqual(Instruction *I) {
280  Value::use_iterator UI = I->use_begin();
281  Value::use_iterator UE = I->use_end();
282  if (UI == UE)
283    return true;
284
285  User *TheUse = *UI;
286  for (++UI; UI != UE; ++UI) {
287    if (*UI != TheUse)
288      return false;
289  }
290  return true;
291}
292
293/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
294/// dead PHI node, due to being a def-use chain of single-use nodes that
295/// either forms a cycle or is terminated by a trivially dead instruction,
296/// delete it.  If that makes any of its operands trivially dead, delete them
297/// too, recursively.  Return true if a change was made.
298bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
299  SmallPtrSet<Instruction*, 4> Visited;
300  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
301       I = cast<Instruction>(*I->use_begin())) {
302    if (I->use_empty())
303      return RecursivelyDeleteTriviallyDeadInstructions(I);
304
305    // If we find an instruction more than once, we're on a cycle that
306    // won't prove fruitful.
307    if (!Visited.insert(I)) {
308      // Break the cycle and delete the instruction and its operands.
309      I->replaceAllUsesWith(UndefValue::get(I->getType()));
310      (void)RecursivelyDeleteTriviallyDeadInstructions(I);
311      return true;
312    }
313  }
314  return false;
315}
316
317/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
318/// simplify any instructions in it and recursively delete dead instructions.
319///
320/// This returns true if it changed the code, note that it can delete
321/// instructions in other blocks as well in this block.
322bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
323  bool MadeChange = false;
324  for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
325    Instruction *Inst = BI++;
326
327    if (Value *V = SimplifyInstruction(Inst, TD)) {
328      WeakVH BIHandle(BI);
329      ReplaceAndSimplifyAllUses(Inst, V, TD);
330      MadeChange = true;
331      if (BIHandle != BI)
332        BI = BB->begin();
333      continue;
334    }
335
336    if (Inst->isTerminator())
337      break;
338
339    WeakVH BIHandle(BI);
340    MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
341    if (BIHandle != BI)
342      BI = BB->begin();
343  }
344  return MadeChange;
345}
346
347//===----------------------------------------------------------------------===//
348//  Control Flow Graph Restructuring.
349//
350
351
352/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
353/// method is called when we're about to delete Pred as a predecessor of BB.  If
354/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
355///
356/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
357/// nodes that collapse into identity values.  For example, if we have:
358///   x = phi(1, 0, 0, 0)
359///   y = and x, z
360///
361/// .. and delete the predecessor corresponding to the '1', this will attempt to
362/// recursively fold the and to 0.
363void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
364                                        TargetData *TD) {
365  // This only adjusts blocks with PHI nodes.
366  if (!isa<PHINode>(BB->begin()))
367    return;
368
369  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
370  // them down.  This will leave us with single entry phi nodes and other phis
371  // that can be removed.
372  BB->removePredecessor(Pred, true);
373
374  WeakVH PhiIt = &BB->front();
375  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
376    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
377
378    Value *PNV = SimplifyInstruction(PN, TD);
379    if (PNV == 0) continue;
380
381    // If we're able to simplify the phi to a single value, substitute the new
382    // value into all of its uses.
383    assert(PNV != PN && "SimplifyInstruction broken!");
384
385    Value *OldPhiIt = PhiIt;
386    ReplaceAndSimplifyAllUses(PN, PNV, TD);
387
388    // If recursive simplification ended up deleting the next PHI node we would
389    // iterate to, then our iterator is invalid, restart scanning from the top
390    // of the block.
391    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
392  }
393}
394
395
396/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
397/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
398/// between them, moving the instructions in the predecessor into DestBB and
399/// deleting the predecessor block.
400///
401void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
402  // If BB has single-entry PHI nodes, fold them.
403  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
404    Value *NewVal = PN->getIncomingValue(0);
405    // Replace self referencing PHI with undef, it must be dead.
406    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
407    PN->replaceAllUsesWith(NewVal);
408    PN->eraseFromParent();
409  }
410
411  BasicBlock *PredBB = DestBB->getSinglePredecessor();
412  assert(PredBB && "Block doesn't have a single predecessor!");
413
414  // Splice all the instructions from PredBB to DestBB.
415  PredBB->getTerminator()->eraseFromParent();
416  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
417
418  // Zap anything that took the address of DestBB.  Not doing this will give the
419  // address an invalid value.
420  if (DestBB->hasAddressTaken()) {
421    BlockAddress *BA = BlockAddress::get(DestBB);
422    Constant *Replacement =
423      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
424    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
425                                                     BA->getType()));
426    BA->destroyConstant();
427  }
428
429  // Anything that branched to PredBB now branches to DestBB.
430  PredBB->replaceAllUsesWith(DestBB);
431
432  if (P) {
433    DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
434    if (DT) {
435      BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
436      DT->changeImmediateDominator(DestBB, PredBBIDom);
437      DT->eraseNode(PredBB);
438    }
439    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
440    if (PI) {
441      PI->replaceAllUses(PredBB, DestBB);
442      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
443    }
444  }
445  // Nuke BB.
446  PredBB->eraseFromParent();
447}
448
449/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
450/// almost-empty BB ending in an unconditional branch to Succ, into succ.
451///
452/// Assumption: Succ is the single successor for BB.
453///
454static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
455  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
456
457  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
458        << Succ->getName() << "\n");
459  // Shortcut, if there is only a single predecessor it must be BB and merging
460  // is always safe
461  if (Succ->getSinglePredecessor()) return true;
462
463  // Make a list of the predecessors of BB
464  typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
465  BlockSet BBPreds(pred_begin(BB), pred_end(BB));
466
467  // Use that list to make another list of common predecessors of BB and Succ
468  BlockSet CommonPreds;
469  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
470       PI != PE; ++PI) {
471    BasicBlock *P = *PI;
472    if (BBPreds.count(P))
473      CommonPreds.insert(P);
474  }
475
476  // Shortcut, if there are no common predecessors, merging is always safe
477  if (CommonPreds.empty())
478    return true;
479
480  // Look at all the phi nodes in Succ, to see if they present a conflict when
481  // merging these blocks
482  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
483    PHINode *PN = cast<PHINode>(I);
484
485    // If the incoming value from BB is again a PHINode in
486    // BB which has the same incoming value for *PI as PN does, we can
487    // merge the phi nodes and then the blocks can still be merged
488    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
489    if (BBPN && BBPN->getParent() == BB) {
490      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
491            PI != PE; PI++) {
492        if (BBPN->getIncomingValueForBlock(*PI)
493              != PN->getIncomingValueForBlock(*PI)) {
494          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
495                << Succ->getName() << " is conflicting with "
496                << BBPN->getName() << " with regard to common predecessor "
497                << (*PI)->getName() << "\n");
498          return false;
499        }
500      }
501    } else {
502      Value* Val = PN->getIncomingValueForBlock(BB);
503      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
504            PI != PE; PI++) {
505        // See if the incoming value for the common predecessor is equal to the
506        // one for BB, in which case this phi node will not prevent the merging
507        // of the block.
508        if (Val != PN->getIncomingValueForBlock(*PI)) {
509          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
510                << Succ->getName() << " is conflicting with regard to common "
511                << "predecessor " << (*PI)->getName() << "\n");
512          return false;
513        }
514      }
515    }
516  }
517
518  return true;
519}
520
521/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
522/// unconditional branch, and contains no instructions other than PHI nodes,
523/// potential debug intrinsics and the branch.  If possible, eliminate BB by
524/// rewriting all the predecessors to branch to the successor block and return
525/// true.  If we can't transform, return false.
526bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
527  assert(BB != &BB->getParent()->getEntryBlock() &&
528         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
529
530  // We can't eliminate infinite loops.
531  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
532  if (BB == Succ) return false;
533
534  // Check to see if merging these blocks would cause conflicts for any of the
535  // phi nodes in BB or Succ. If not, we can safely merge.
536  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
537
538  // Check for cases where Succ has multiple predecessors and a PHI node in BB
539  // has uses which will not disappear when the PHI nodes are merged.  It is
540  // possible to handle such cases, but difficult: it requires checking whether
541  // BB dominates Succ, which is non-trivial to calculate in the case where
542  // Succ has multiple predecessors.  Also, it requires checking whether
543  // constructing the necessary self-referential PHI node doesn't intoduce any
544  // conflicts; this isn't too difficult, but the previous code for doing this
545  // was incorrect.
546  //
547  // Note that if this check finds a live use, BB dominates Succ, so BB is
548  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
549  // folding the branch isn't profitable in that case anyway.
550  if (!Succ->getSinglePredecessor()) {
551    BasicBlock::iterator BBI = BB->begin();
552    while (isa<PHINode>(*BBI)) {
553      for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
554           UI != E; ++UI) {
555        if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
556          if (PN->getIncomingBlock(UI) != BB)
557            return false;
558        } else {
559          return false;
560        }
561      }
562      ++BBI;
563    }
564  }
565
566  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
567
568  if (isa<PHINode>(Succ->begin())) {
569    // If there is more than one pred of succ, and there are PHI nodes in
570    // the successor, then we need to add incoming edges for the PHI nodes
571    //
572    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
573
574    // Loop over all of the PHI nodes in the successor of BB.
575    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
576      PHINode *PN = cast<PHINode>(I);
577      Value *OldVal = PN->removeIncomingValue(BB, false);
578      assert(OldVal && "No entry in PHI for Pred BB!");
579
580      // If this incoming value is one of the PHI nodes in BB, the new entries
581      // in the PHI node are the entries from the old PHI.
582      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
583        PHINode *OldValPN = cast<PHINode>(OldVal);
584        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
585          // Note that, since we are merging phi nodes and BB and Succ might
586          // have common predecessors, we could end up with a phi node with
587          // identical incoming branches. This will be cleaned up later (and
588          // will trigger asserts if we try to clean it up now, without also
589          // simplifying the corresponding conditional branch).
590          PN->addIncoming(OldValPN->getIncomingValue(i),
591                          OldValPN->getIncomingBlock(i));
592      } else {
593        // Add an incoming value for each of the new incoming values.
594        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
595          PN->addIncoming(OldVal, BBPreds[i]);
596      }
597    }
598  }
599
600  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
601    if (Succ->getSinglePredecessor()) {
602      // BB is the only predecessor of Succ, so Succ will end up with exactly
603      // the same predecessors BB had.
604      Succ->getInstList().splice(Succ->begin(),
605                                 BB->getInstList(), BB->begin());
606    } else {
607      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
608      assert(PN->use_empty() && "There shouldn't be any uses here!");
609      PN->eraseFromParent();
610    }
611  }
612
613  // Everything that jumped to BB now goes to Succ.
614  BB->replaceAllUsesWith(Succ);
615  if (!Succ->hasName()) Succ->takeName(BB);
616  BB->eraseFromParent();              // Delete the old basic block.
617  return true;
618}
619
620/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
621/// nodes in this block. This doesn't try to be clever about PHI nodes
622/// which differ only in the order of the incoming values, but instcombine
623/// orders them so it usually won't matter.
624///
625bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
626  bool Changed = false;
627
628  // This implementation doesn't currently consider undef operands
629  // specially. Theroetically, two phis which are identical except for
630  // one having an undef where the other doesn't could be collapsed.
631
632  // Map from PHI hash values to PHI nodes. If multiple PHIs have
633  // the same hash value, the element is the first PHI in the
634  // linked list in CollisionMap.
635  DenseMap<uintptr_t, PHINode *> HashMap;
636
637  // Maintain linked lists of PHI nodes with common hash values.
638  DenseMap<PHINode *, PHINode *> CollisionMap;
639
640  // Examine each PHI.
641  for (BasicBlock::iterator I = BB->begin();
642       PHINode *PN = dyn_cast<PHINode>(I++); ) {
643    // Compute a hash value on the operands. Instcombine will likely have sorted
644    // them, which helps expose duplicates, but we have to check all the
645    // operands to be safe in case instcombine hasn't run.
646    uintptr_t Hash = 0;
647    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
648      // This hash algorithm is quite weak as hash functions go, but it seems
649      // to do a good enough job for this particular purpose, and is very quick.
650      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
651      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
652    }
653    // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
654    Hash >>= 1;
655    // If we've never seen this hash value before, it's a unique PHI.
656    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
657      HashMap.insert(std::make_pair(Hash, PN));
658    if (Pair.second) continue;
659    // Otherwise it's either a duplicate or a hash collision.
660    for (PHINode *OtherPN = Pair.first->second; ; ) {
661      if (OtherPN->isIdenticalTo(PN)) {
662        // A duplicate. Replace this PHI with its duplicate.
663        PN->replaceAllUsesWith(OtherPN);
664        PN->eraseFromParent();
665        Changed = true;
666        break;
667      }
668      // A non-duplicate hash collision.
669      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
670      if (I == CollisionMap.end()) {
671        // Set this PHI to be the head of the linked list of colliding PHIs.
672        PHINode *Old = Pair.first->second;
673        Pair.first->second = PN;
674        CollisionMap[PN] = Old;
675        break;
676      }
677      // Procede to the next PHI in the list.
678      OtherPN = I->second;
679    }
680  }
681
682  return Changed;
683}
684
685/// enforceKnownAlignment - If the specified pointer points to an object that
686/// we control, modify the object's alignment to PrefAlign. This isn't
687/// often possible though. If alignment is important, a more reliable approach
688/// is to simply align all global variables and allocation instructions to
689/// their preferred alignment from the beginning.
690///
691static unsigned enforceKnownAlignment(Value *V, unsigned Align,
692                                      unsigned PrefAlign) {
693
694  User *U = dyn_cast<User>(V);
695  if (!U) return Align;
696
697  switch (Operator::getOpcode(U)) {
698  default: break;
699  case Instruction::BitCast:
700    return enforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
701  case Instruction::GetElementPtr: {
702    // If all indexes are zero, it is just the alignment of the base pointer.
703    bool AllZeroOperands = true;
704    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
705      if (!isa<Constant>(*i) ||
706          !cast<Constant>(*i)->isNullValue()) {
707        AllZeroOperands = false;
708        break;
709      }
710
711    if (AllZeroOperands) {
712      // Treat this like a bitcast.
713      return enforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
714    }
715    return Align;
716  }
717  case Instruction::Alloca: {
718    AllocaInst *AI = cast<AllocaInst>(V);
719    // If there is a requested alignment and if this is an alloca, round up.
720    if (AI->getAlignment() >= PrefAlign)
721      return AI->getAlignment();
722    AI->setAlignment(PrefAlign);
723    return PrefAlign;
724  }
725  }
726
727  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
728    // If there is a large requested alignment and we can, bump up the alignment
729    // of the global.
730    if (GV->isDeclaration()) return Align;
731
732    if (GV->getAlignment() >= PrefAlign)
733      return GV->getAlignment();
734    // We can only increase the alignment of the global if it has no alignment
735    // specified or if it is not assigned a section.  If it is assigned a
736    // section, the global could be densely packed with other objects in the
737    // section, increasing the alignment could cause padding issues.
738    if (!GV->hasSection() || GV->getAlignment() == 0)
739      GV->setAlignment(PrefAlign);
740    return GV->getAlignment();
741  }
742
743  return Align;
744}
745
746/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
747/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
748/// and it is more than the alignment of the ultimate object, see if we can
749/// increase the alignment of the ultimate object, making this check succeed.
750unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
751                                          const TargetData *TD) {
752  assert(V->getType()->isPointerTy() &&
753         "getOrEnforceKnownAlignment expects a pointer!");
754  unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
755  APInt Mask = APInt::getAllOnesValue(BitWidth);
756  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
757  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
758  unsigned TrailZ = KnownZero.countTrailingOnes();
759
760  // Avoid trouble with rediculously large TrailZ values, such as
761  // those computed from a null pointer.
762  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
763
764  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
765
766  // LLVM doesn't support alignments larger than this currently.
767  Align = std::min(Align, +Value::MaximumAlignment);
768
769  if (PrefAlign > Align)
770    Align = enforceKnownAlignment(V, Align, PrefAlign);
771
772  // We don't need to make any adjustment.
773  return Align;
774}
775
776///===---------------------------------------------------------------------===//
777///  Dbg Intrinsic utilities
778///
779
780/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
781/// that has an associated llvm.dbg.decl intrinsic.
782bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
783                                           StoreInst *SI, DIBuilder &Builder) {
784  DIVariable DIVar(DDI->getVariable());
785  if (!DIVar.Verify())
786    return false;
787
788  Instruction *DbgVal = NULL;
789  // If an argument is zero extended then use argument directly. The ZExt
790  // may be zapped by an optimization pass in future.
791  Argument *ExtendedArg = NULL;
792  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
793    ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
794  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
795    ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
796  if (ExtendedArg)
797    DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
798  else
799    DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
800
801  // Propagate any debug metadata from the store onto the dbg.value.
802  DebugLoc SIDL = SI->getDebugLoc();
803  if (!SIDL.isUnknown())
804    DbgVal->setDebugLoc(SIDL);
805  // Otherwise propagate debug metadata from dbg.declare.
806  else
807    DbgVal->setDebugLoc(DDI->getDebugLoc());
808  return true;
809}
810
811/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
812/// that has an associated llvm.dbg.decl intrinsic.
813bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
814                                           LoadInst *LI, DIBuilder &Builder) {
815  DIVariable DIVar(DDI->getVariable());
816  if (!DIVar.Verify())
817    return false;
818
819  Instruction *DbgVal =
820    Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
821                                    DIVar, LI);
822
823  // Propagate any debug metadata from the store onto the dbg.value.
824  DebugLoc LIDL = LI->getDebugLoc();
825  if (!LIDL.isUnknown())
826    DbgVal->setDebugLoc(LIDL);
827  // Otherwise propagate debug metadata from dbg.declare.
828  else
829    DbgVal->setDebugLoc(DDI->getDebugLoc());
830  return true;
831}
832
833/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
834/// of llvm.dbg.value intrinsics.
835bool llvm::LowerDbgDeclare(Function &F) {
836  DIBuilder DIB(*F.getParent());
837  SmallVector<DbgDeclareInst *, 4> Dbgs;
838  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
839    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
840      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
841        Dbgs.push_back(DDI);
842    }
843  if (Dbgs.empty())
844    return false;
845
846  for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
847         E = Dbgs.end(); I != E; ++I) {
848    DbgDeclareInst *DDI = *I;
849    if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
850      bool RemoveDDI = true;
851      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
852           UI != E; ++UI)
853        if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
854          ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
855        else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
856          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
857        else
858          RemoveDDI = false;
859      if (RemoveDDI)
860        DDI->eraseFromParent();
861    }
862  }
863  return true;
864}
865