Local.cpp revision 5649ba70fb39f2fda4791d255ae8bb373071874f
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Operator.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/Analysis/DebugInfo.h"
27#include "llvm/Analysis/DIBuilder.h"
28#include "llvm/Analysis/Dominators.h"
29#include "llvm/Analysis/ConstantFolding.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/ProfileInfo.h"
32#include "llvm/Analysis/ValueTracking.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
37#include "llvm/Support/IRBuilder.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/ValueHandle.h"
40#include "llvm/Support/raw_ostream.h"
41using namespace llvm;
42
43//===----------------------------------------------------------------------===//
44//  Local constant propagation.
45//
46
47/// ConstantFoldTerminator - If a terminator instruction is predicated on a
48/// constant value, convert it into an unconditional branch to the constant
49/// destination.  This is a nontrivial operation because the successors of this
50/// basic block must have their PHI nodes updated.
51/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
52/// conditions and indirectbr addresses this might make dead if
53/// DeleteDeadConditions is true.
54bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) {
55  TerminatorInst *T = BB->getTerminator();
56  IRBuilder<> Builder(T);
57
58  // Branch - See if we are conditional jumping on constant
59  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
60    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
61    BasicBlock *Dest1 = BI->getSuccessor(0);
62    BasicBlock *Dest2 = BI->getSuccessor(1);
63
64    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
65      // Are we branching on constant?
66      // YES.  Change to unconditional branch...
67      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
68      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
69
70      //cerr << "Function: " << T->getParent()->getParent()
71      //     << "\nRemoving branch from " << T->getParent()
72      //     << "\n\nTo: " << OldDest << endl;
73
74      // Let the basic block know that we are letting go of it.  Based on this,
75      // it will adjust it's PHI nodes.
76      OldDest->removePredecessor(BB);
77
78      // Replace the conditional branch with an unconditional one.
79      Builder.CreateBr(Destination);
80      BI->eraseFromParent();
81      return true;
82    }
83
84    if (Dest2 == Dest1) {       // Conditional branch to same location?
85      // This branch matches something like this:
86      //     br bool %cond, label %Dest, label %Dest
87      // and changes it into:  br label %Dest
88
89      // Let the basic block know that we are letting go of one copy of it.
90      assert(BI->getParent() && "Terminator not inserted in block!");
91      Dest1->removePredecessor(BI->getParent());
92
93      // Replace the conditional branch with an unconditional one.
94      Builder.CreateBr(Dest1);
95      Value *Cond = BI->getCondition();
96      BI->eraseFromParent();
97      if (DeleteDeadConditions)
98        RecursivelyDeleteTriviallyDeadInstructions(Cond);
99      return true;
100    }
101    return false;
102  }
103
104  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
105    // If we are switching on a constant, we can convert the switch into a
106    // single branch instruction!
107    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
108    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
109    BasicBlock *DefaultDest = TheOnlyDest;
110    assert(TheOnlyDest == SI->getDefaultDest() &&
111           "Default destination is not successor #0?");
112
113    // Figure out which case it goes to.
114    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
115      // Found case matching a constant operand?
116      if (SI->getSuccessorValue(i) == CI) {
117        TheOnlyDest = SI->getSuccessor(i);
118        break;
119      }
120
121      // Check to see if this branch is going to the same place as the default
122      // dest.  If so, eliminate it as an explicit compare.
123      if (SI->getSuccessor(i) == DefaultDest) {
124        // Remove this entry.
125        DefaultDest->removePredecessor(SI->getParent());
126        SI->removeCase(i);
127        --i; --e;  // Don't skip an entry...
128        continue;
129      }
130
131      // Otherwise, check to see if the switch only branches to one destination.
132      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
133      // destinations.
134      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
135    }
136
137    if (CI && !TheOnlyDest) {
138      // Branching on a constant, but not any of the cases, go to the default
139      // successor.
140      TheOnlyDest = SI->getDefaultDest();
141    }
142
143    // If we found a single destination that we can fold the switch into, do so
144    // now.
145    if (TheOnlyDest) {
146      // Insert the new branch.
147      Builder.CreateBr(TheOnlyDest);
148      BasicBlock *BB = SI->getParent();
149
150      // Remove entries from PHI nodes which we no longer branch to...
151      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
152        // Found case matching a constant operand?
153        BasicBlock *Succ = SI->getSuccessor(i);
154        if (Succ == TheOnlyDest)
155          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
156        else
157          Succ->removePredecessor(BB);
158      }
159
160      // Delete the old switch.
161      Value *Cond = SI->getCondition();
162      SI->eraseFromParent();
163      if (DeleteDeadConditions)
164        RecursivelyDeleteTriviallyDeadInstructions(Cond);
165      return true;
166    }
167
168    if (SI->getNumSuccessors() == 2) {
169      // Otherwise, we can fold this switch into a conditional branch
170      // instruction if it has only one non-default destination.
171      Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
172                                         SI->getSuccessorValue(1), "cond");
173
174      // Insert the new branch.
175      Builder.CreateCondBr(Cond, SI->getSuccessor(1), SI->getSuccessor(0));
176
177      // Delete the old switch.
178      SI->eraseFromParent();
179      return true;
180    }
181    return false;
182  }
183
184  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
185    // indirectbr blockaddress(@F, @BB) -> br label @BB
186    if (BlockAddress *BA =
187          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
188      BasicBlock *TheOnlyDest = BA->getBasicBlock();
189      // Insert the new branch.
190      Builder.CreateBr(TheOnlyDest);
191
192      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
193        if (IBI->getDestination(i) == TheOnlyDest)
194          TheOnlyDest = 0;
195        else
196          IBI->getDestination(i)->removePredecessor(IBI->getParent());
197      }
198      Value *Address = IBI->getAddress();
199      IBI->eraseFromParent();
200      if (DeleteDeadConditions)
201        RecursivelyDeleteTriviallyDeadInstructions(Address);
202
203      // If we didn't find our destination in the IBI successor list, then we
204      // have undefined behavior.  Replace the unconditional branch with an
205      // 'unreachable' instruction.
206      if (TheOnlyDest) {
207        BB->getTerminator()->eraseFromParent();
208        new UnreachableInst(BB->getContext(), BB);
209      }
210
211      return true;
212    }
213  }
214
215  return false;
216}
217
218
219//===----------------------------------------------------------------------===//
220//  Local dead code elimination.
221//
222
223/// isInstructionTriviallyDead - Return true if the result produced by the
224/// instruction is not used, and the instruction has no side effects.
225///
226bool llvm::isInstructionTriviallyDead(Instruction *I) {
227  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
228
229  // We don't want debug info removed by anything this general, unless
230  // debug info is empty.
231  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
232    if (DDI->getAddress())
233      return false;
234    return true;
235  }
236  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
237    if (DVI->getValue())
238      return false;
239    return true;
240  }
241
242  if (!I->mayHaveSideEffects()) return true;
243
244  // Special case intrinsics that "may have side effects" but can be deleted
245  // when dead.
246  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
247    // Safe to delete llvm.stacksave if dead.
248    if (II->getIntrinsicID() == Intrinsic::stacksave)
249      return true;
250  return false;
251}
252
253/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
254/// trivially dead instruction, delete it.  If that makes any of its operands
255/// trivially dead, delete them too, recursively.  Return true if any
256/// instructions were deleted.
257bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
258  Instruction *I = dyn_cast<Instruction>(V);
259  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
260    return false;
261
262  SmallVector<Instruction*, 16> DeadInsts;
263  DeadInsts.push_back(I);
264
265  do {
266    I = DeadInsts.pop_back_val();
267
268    // Null out all of the instruction's operands to see if any operand becomes
269    // dead as we go.
270    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
271      Value *OpV = I->getOperand(i);
272      I->setOperand(i, 0);
273
274      if (!OpV->use_empty()) continue;
275
276      // If the operand is an instruction that became dead as we nulled out the
277      // operand, and if it is 'trivially' dead, delete it in a future loop
278      // iteration.
279      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
280        if (isInstructionTriviallyDead(OpI))
281          DeadInsts.push_back(OpI);
282    }
283
284    I->eraseFromParent();
285  } while (!DeadInsts.empty());
286
287  return true;
288}
289
290/// areAllUsesEqual - Check whether the uses of a value are all the same.
291/// This is similar to Instruction::hasOneUse() except this will also return
292/// true when there are no uses or multiple uses that all refer to the same
293/// value.
294static bool areAllUsesEqual(Instruction *I) {
295  Value::use_iterator UI = I->use_begin();
296  Value::use_iterator UE = I->use_end();
297  if (UI == UE)
298    return true;
299
300  User *TheUse = *UI;
301  for (++UI; UI != UE; ++UI) {
302    if (*UI != TheUse)
303      return false;
304  }
305  return true;
306}
307
308/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
309/// dead PHI node, due to being a def-use chain of single-use nodes that
310/// either forms a cycle or is terminated by a trivially dead instruction,
311/// delete it.  If that makes any of its operands trivially dead, delete them
312/// too, recursively.  Return true if a change was made.
313bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
314  SmallPtrSet<Instruction*, 4> Visited;
315  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
316       I = cast<Instruction>(*I->use_begin())) {
317    if (I->use_empty())
318      return RecursivelyDeleteTriviallyDeadInstructions(I);
319
320    // If we find an instruction more than once, we're on a cycle that
321    // won't prove fruitful.
322    if (!Visited.insert(I)) {
323      // Break the cycle and delete the instruction and its operands.
324      I->replaceAllUsesWith(UndefValue::get(I->getType()));
325      (void)RecursivelyDeleteTriviallyDeadInstructions(I);
326      return true;
327    }
328  }
329  return false;
330}
331
332/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
333/// simplify any instructions in it and recursively delete dead instructions.
334///
335/// This returns true if it changed the code, note that it can delete
336/// instructions in other blocks as well in this block.
337bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
338  bool MadeChange = false;
339  for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
340    Instruction *Inst = BI++;
341
342    if (Value *V = SimplifyInstruction(Inst, TD)) {
343      WeakVH BIHandle(BI);
344      ReplaceAndSimplifyAllUses(Inst, V, TD);
345      MadeChange = true;
346      if (BIHandle != BI)
347        BI = BB->begin();
348      continue;
349    }
350
351    if (Inst->isTerminator())
352      break;
353
354    WeakVH BIHandle(BI);
355    MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
356    if (BIHandle != BI)
357      BI = BB->begin();
358  }
359  return MadeChange;
360}
361
362//===----------------------------------------------------------------------===//
363//  Control Flow Graph Restructuring.
364//
365
366
367/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
368/// method is called when we're about to delete Pred as a predecessor of BB.  If
369/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
370///
371/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
372/// nodes that collapse into identity values.  For example, if we have:
373///   x = phi(1, 0, 0, 0)
374///   y = and x, z
375///
376/// .. and delete the predecessor corresponding to the '1', this will attempt to
377/// recursively fold the and to 0.
378void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
379                                        TargetData *TD) {
380  // This only adjusts blocks with PHI nodes.
381  if (!isa<PHINode>(BB->begin()))
382    return;
383
384  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
385  // them down.  This will leave us with single entry phi nodes and other phis
386  // that can be removed.
387  BB->removePredecessor(Pred, true);
388
389  WeakVH PhiIt = &BB->front();
390  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
391    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
392
393    Value *PNV = SimplifyInstruction(PN, TD);
394    if (PNV == 0) continue;
395
396    // If we're able to simplify the phi to a single value, substitute the new
397    // value into all of its uses.
398    assert(PNV != PN && "SimplifyInstruction broken!");
399
400    Value *OldPhiIt = PhiIt;
401    ReplaceAndSimplifyAllUses(PN, PNV, TD);
402
403    // If recursive simplification ended up deleting the next PHI node we would
404    // iterate to, then our iterator is invalid, restart scanning from the top
405    // of the block.
406    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
407  }
408}
409
410
411/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
412/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
413/// between them, moving the instructions in the predecessor into DestBB and
414/// deleting the predecessor block.
415///
416void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
417  // If BB has single-entry PHI nodes, fold them.
418  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
419    Value *NewVal = PN->getIncomingValue(0);
420    // Replace self referencing PHI with undef, it must be dead.
421    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
422    PN->replaceAllUsesWith(NewVal);
423    PN->eraseFromParent();
424  }
425
426  BasicBlock *PredBB = DestBB->getSinglePredecessor();
427  assert(PredBB && "Block doesn't have a single predecessor!");
428
429  // Splice all the instructions from PredBB to DestBB.
430  PredBB->getTerminator()->eraseFromParent();
431  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
432
433  // Zap anything that took the address of DestBB.  Not doing this will give the
434  // address an invalid value.
435  if (DestBB->hasAddressTaken()) {
436    BlockAddress *BA = BlockAddress::get(DestBB);
437    Constant *Replacement =
438      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
439    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
440                                                     BA->getType()));
441    BA->destroyConstant();
442  }
443
444  // Anything that branched to PredBB now branches to DestBB.
445  PredBB->replaceAllUsesWith(DestBB);
446
447  if (P) {
448    DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
449    if (DT) {
450      BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
451      DT->changeImmediateDominator(DestBB, PredBBIDom);
452      DT->eraseNode(PredBB);
453    }
454    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
455    if (PI) {
456      PI->replaceAllUses(PredBB, DestBB);
457      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
458    }
459  }
460  // Nuke BB.
461  PredBB->eraseFromParent();
462}
463
464/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
465/// almost-empty BB ending in an unconditional branch to Succ, into succ.
466///
467/// Assumption: Succ is the single successor for BB.
468///
469static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
470  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
471
472  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
473        << Succ->getName() << "\n");
474  // Shortcut, if there is only a single predecessor it must be BB and merging
475  // is always safe
476  if (Succ->getSinglePredecessor()) return true;
477
478  // Make a list of the predecessors of BB
479  typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
480  BlockSet BBPreds(pred_begin(BB), pred_end(BB));
481
482  // Use that list to make another list of common predecessors of BB and Succ
483  BlockSet CommonPreds;
484  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
485       PI != PE; ++PI) {
486    BasicBlock *P = *PI;
487    if (BBPreds.count(P))
488      CommonPreds.insert(P);
489  }
490
491  // Shortcut, if there are no common predecessors, merging is always safe
492  if (CommonPreds.empty())
493    return true;
494
495  // Look at all the phi nodes in Succ, to see if they present a conflict when
496  // merging these blocks
497  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
498    PHINode *PN = cast<PHINode>(I);
499
500    // If the incoming value from BB is again a PHINode in
501    // BB which has the same incoming value for *PI as PN does, we can
502    // merge the phi nodes and then the blocks can still be merged
503    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
504    if (BBPN && BBPN->getParent() == BB) {
505      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
506            PI != PE; PI++) {
507        if (BBPN->getIncomingValueForBlock(*PI)
508              != PN->getIncomingValueForBlock(*PI)) {
509          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
510                << Succ->getName() << " is conflicting with "
511                << BBPN->getName() << " with regard to common predecessor "
512                << (*PI)->getName() << "\n");
513          return false;
514        }
515      }
516    } else {
517      Value* Val = PN->getIncomingValueForBlock(BB);
518      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
519            PI != PE; PI++) {
520        // See if the incoming value for the common predecessor is equal to the
521        // one for BB, in which case this phi node will not prevent the merging
522        // of the block.
523        if (Val != PN->getIncomingValueForBlock(*PI)) {
524          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
525                << Succ->getName() << " is conflicting with regard to common "
526                << "predecessor " << (*PI)->getName() << "\n");
527          return false;
528        }
529      }
530    }
531  }
532
533  return true;
534}
535
536/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
537/// unconditional branch, and contains no instructions other than PHI nodes,
538/// potential debug intrinsics and the branch.  If possible, eliminate BB by
539/// rewriting all the predecessors to branch to the successor block and return
540/// true.  If we can't transform, return false.
541bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
542  assert(BB != &BB->getParent()->getEntryBlock() &&
543         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
544
545  // We can't eliminate infinite loops.
546  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
547  if (BB == Succ) return false;
548
549  // Check to see if merging these blocks would cause conflicts for any of the
550  // phi nodes in BB or Succ. If not, we can safely merge.
551  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
552
553  // Check for cases where Succ has multiple predecessors and a PHI node in BB
554  // has uses which will not disappear when the PHI nodes are merged.  It is
555  // possible to handle such cases, but difficult: it requires checking whether
556  // BB dominates Succ, which is non-trivial to calculate in the case where
557  // Succ has multiple predecessors.  Also, it requires checking whether
558  // constructing the necessary self-referential PHI node doesn't intoduce any
559  // conflicts; this isn't too difficult, but the previous code for doing this
560  // was incorrect.
561  //
562  // Note that if this check finds a live use, BB dominates Succ, so BB is
563  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
564  // folding the branch isn't profitable in that case anyway.
565  if (!Succ->getSinglePredecessor()) {
566    BasicBlock::iterator BBI = BB->begin();
567    while (isa<PHINode>(*BBI)) {
568      for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
569           UI != E; ++UI) {
570        if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
571          if (PN->getIncomingBlock(UI) != BB)
572            return false;
573        } else {
574          return false;
575        }
576      }
577      ++BBI;
578    }
579  }
580
581  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
582
583  if (isa<PHINode>(Succ->begin())) {
584    // If there is more than one pred of succ, and there are PHI nodes in
585    // the successor, then we need to add incoming edges for the PHI nodes
586    //
587    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
588
589    // Loop over all of the PHI nodes in the successor of BB.
590    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
591      PHINode *PN = cast<PHINode>(I);
592      Value *OldVal = PN->removeIncomingValue(BB, false);
593      assert(OldVal && "No entry in PHI for Pred BB!");
594
595      // If this incoming value is one of the PHI nodes in BB, the new entries
596      // in the PHI node are the entries from the old PHI.
597      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
598        PHINode *OldValPN = cast<PHINode>(OldVal);
599        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
600          // Note that, since we are merging phi nodes and BB and Succ might
601          // have common predecessors, we could end up with a phi node with
602          // identical incoming branches. This will be cleaned up later (and
603          // will trigger asserts if we try to clean it up now, without also
604          // simplifying the corresponding conditional branch).
605          PN->addIncoming(OldValPN->getIncomingValue(i),
606                          OldValPN->getIncomingBlock(i));
607      } else {
608        // Add an incoming value for each of the new incoming values.
609        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
610          PN->addIncoming(OldVal, BBPreds[i]);
611      }
612    }
613  }
614
615  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
616    if (Succ->getSinglePredecessor()) {
617      // BB is the only predecessor of Succ, so Succ will end up with exactly
618      // the same predecessors BB had.
619      Succ->getInstList().splice(Succ->begin(),
620                                 BB->getInstList(), BB->begin());
621    } else {
622      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
623      assert(PN->use_empty() && "There shouldn't be any uses here!");
624      PN->eraseFromParent();
625    }
626  }
627
628  // Everything that jumped to BB now goes to Succ.
629  BB->replaceAllUsesWith(Succ);
630  if (!Succ->hasName()) Succ->takeName(BB);
631  BB->eraseFromParent();              // Delete the old basic block.
632  return true;
633}
634
635/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
636/// nodes in this block. This doesn't try to be clever about PHI nodes
637/// which differ only in the order of the incoming values, but instcombine
638/// orders them so it usually won't matter.
639///
640bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
641  bool Changed = false;
642
643  // This implementation doesn't currently consider undef operands
644  // specially. Theroetically, two phis which are identical except for
645  // one having an undef where the other doesn't could be collapsed.
646
647  // Map from PHI hash values to PHI nodes. If multiple PHIs have
648  // the same hash value, the element is the first PHI in the
649  // linked list in CollisionMap.
650  DenseMap<uintptr_t, PHINode *> HashMap;
651
652  // Maintain linked lists of PHI nodes with common hash values.
653  DenseMap<PHINode *, PHINode *> CollisionMap;
654
655  // Examine each PHI.
656  for (BasicBlock::iterator I = BB->begin();
657       PHINode *PN = dyn_cast<PHINode>(I++); ) {
658    // Compute a hash value on the operands. Instcombine will likely have sorted
659    // them, which helps expose duplicates, but we have to check all the
660    // operands to be safe in case instcombine hasn't run.
661    uintptr_t Hash = 0;
662    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
663      // This hash algorithm is quite weak as hash functions go, but it seems
664      // to do a good enough job for this particular purpose, and is very quick.
665      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
666      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
667    }
668    // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
669    Hash >>= 1;
670    // If we've never seen this hash value before, it's a unique PHI.
671    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
672      HashMap.insert(std::make_pair(Hash, PN));
673    if (Pair.second) continue;
674    // Otherwise it's either a duplicate or a hash collision.
675    for (PHINode *OtherPN = Pair.first->second; ; ) {
676      if (OtherPN->isIdenticalTo(PN)) {
677        // A duplicate. Replace this PHI with its duplicate.
678        PN->replaceAllUsesWith(OtherPN);
679        PN->eraseFromParent();
680        Changed = true;
681        break;
682      }
683      // A non-duplicate hash collision.
684      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
685      if (I == CollisionMap.end()) {
686        // Set this PHI to be the head of the linked list of colliding PHIs.
687        PHINode *Old = Pair.first->second;
688        Pair.first->second = PN;
689        CollisionMap[PN] = Old;
690        break;
691      }
692      // Procede to the next PHI in the list.
693      OtherPN = I->second;
694    }
695  }
696
697  return Changed;
698}
699
700/// enforceKnownAlignment - If the specified pointer points to an object that
701/// we control, modify the object's alignment to PrefAlign. This isn't
702/// often possible though. If alignment is important, a more reliable approach
703/// is to simply align all global variables and allocation instructions to
704/// their preferred alignment from the beginning.
705///
706static unsigned enforceKnownAlignment(Value *V, unsigned Align,
707                                      unsigned PrefAlign) {
708
709  User *U = dyn_cast<User>(V);
710  if (!U) return Align;
711
712  switch (Operator::getOpcode(U)) {
713  default: break;
714  case Instruction::BitCast:
715    return enforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
716  case Instruction::GetElementPtr: {
717    // If all indexes are zero, it is just the alignment of the base pointer.
718    bool AllZeroOperands = true;
719    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
720      if (!isa<Constant>(*i) ||
721          !cast<Constant>(*i)->isNullValue()) {
722        AllZeroOperands = false;
723        break;
724      }
725
726    if (AllZeroOperands) {
727      // Treat this like a bitcast.
728      return enforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
729    }
730    return Align;
731  }
732  case Instruction::Alloca: {
733    AllocaInst *AI = cast<AllocaInst>(V);
734    // If there is a requested alignment and if this is an alloca, round up.
735    if (AI->getAlignment() >= PrefAlign)
736      return AI->getAlignment();
737    AI->setAlignment(PrefAlign);
738    return PrefAlign;
739  }
740  }
741
742  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
743    // If there is a large requested alignment and we can, bump up the alignment
744    // of the global.
745    if (GV->isDeclaration()) return Align;
746
747    if (GV->getAlignment() >= PrefAlign)
748      return GV->getAlignment();
749    // We can only increase the alignment of the global if it has no alignment
750    // specified or if it is not assigned a section.  If it is assigned a
751    // section, the global could be densely packed with other objects in the
752    // section, increasing the alignment could cause padding issues.
753    if (!GV->hasSection() || GV->getAlignment() == 0)
754      GV->setAlignment(PrefAlign);
755    return GV->getAlignment();
756  }
757
758  return Align;
759}
760
761/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
762/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
763/// and it is more than the alignment of the ultimate object, see if we can
764/// increase the alignment of the ultimate object, making this check succeed.
765unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
766                                          const TargetData *TD) {
767  assert(V->getType()->isPointerTy() &&
768         "getOrEnforceKnownAlignment expects a pointer!");
769  unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
770  APInt Mask = APInt::getAllOnesValue(BitWidth);
771  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
772  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
773  unsigned TrailZ = KnownZero.countTrailingOnes();
774
775  // Avoid trouble with rediculously large TrailZ values, such as
776  // those computed from a null pointer.
777  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
778
779  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
780
781  // LLVM doesn't support alignments larger than this currently.
782  Align = std::min(Align, +Value::MaximumAlignment);
783
784  if (PrefAlign > Align)
785    Align = enforceKnownAlignment(V, Align, PrefAlign);
786
787  // We don't need to make any adjustment.
788  return Align;
789}
790
791///===---------------------------------------------------------------------===//
792///  Dbg Intrinsic utilities
793///
794
795/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
796/// that has an associated llvm.dbg.decl intrinsic.
797bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
798                                           StoreInst *SI, DIBuilder &Builder) {
799  DIVariable DIVar(DDI->getVariable());
800  if (!DIVar.Verify())
801    return false;
802
803  Instruction *DbgVal = NULL;
804  // If an argument is zero extended then use argument directly. The ZExt
805  // may be zapped by an optimization pass in future.
806  Argument *ExtendedArg = NULL;
807  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
808    ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
809  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
810    ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
811  if (ExtendedArg)
812    DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
813  else
814    DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
815
816  // Propagate any debug metadata from the store onto the dbg.value.
817  DebugLoc SIDL = SI->getDebugLoc();
818  if (!SIDL.isUnknown())
819    DbgVal->setDebugLoc(SIDL);
820  // Otherwise propagate debug metadata from dbg.declare.
821  else
822    DbgVal->setDebugLoc(DDI->getDebugLoc());
823  return true;
824}
825
826/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
827/// that has an associated llvm.dbg.decl intrinsic.
828bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
829                                           LoadInst *LI, DIBuilder &Builder) {
830  DIVariable DIVar(DDI->getVariable());
831  if (!DIVar.Verify())
832    return false;
833
834  Instruction *DbgVal =
835    Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
836                                    DIVar, LI);
837
838  // Propagate any debug metadata from the store onto the dbg.value.
839  DebugLoc LIDL = LI->getDebugLoc();
840  if (!LIDL.isUnknown())
841    DbgVal->setDebugLoc(LIDL);
842  // Otherwise propagate debug metadata from dbg.declare.
843  else
844    DbgVal->setDebugLoc(DDI->getDebugLoc());
845  return true;
846}
847
848/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
849/// of llvm.dbg.value intrinsics.
850bool llvm::LowerDbgDeclare(Function &F) {
851  DIBuilder DIB(*F.getParent());
852  SmallVector<DbgDeclareInst *, 4> Dbgs;
853  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
854    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
855      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
856        Dbgs.push_back(DDI);
857    }
858  if (Dbgs.empty())
859    return false;
860
861  for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
862         E = Dbgs.end(); I != E; ++I) {
863    DbgDeclareInst *DDI = *I;
864    if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
865      bool RemoveDDI = true;
866      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
867           UI != E; ++UI)
868        if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
869          ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
870        else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
871          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
872        else
873          RemoveDDI = false;
874      if (RemoveDDI)
875        DDI->eraseFromParent();
876    }
877  }
878  return true;
879}
880