Local.cpp revision 6cc8a93c486f889c5767278508bc655942ba408e
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/DebugInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/MathExtras.h"
29using namespace llvm;
30
31//===----------------------------------------------------------------------===//
32//  Local analysis.
33//
34
35/// isSafeToLoadUnconditionally - Return true if we know that executing a load
36/// from this value cannot trap.  If it is not obviously safe to load from the
37/// specified pointer, we do a quick local scan of the basic block containing
38/// ScanFrom, to determine if the address is already accessed.
39bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
40  // If it is an alloca it is always safe to load from.
41  if (isa<AllocaInst>(V)) return true;
42
43  // If it is a global variable it is mostly safe to load from.
44  if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
45    // Don't try to evaluate aliases.  External weak GV can be null.
46    return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
47
48  // Otherwise, be a little bit agressive by scanning the local block where we
49  // want to check to see if the pointer is already being loaded or stored
50  // from/to.  If so, the previous load or store would have already trapped,
51  // so there is no harm doing an extra load (also, CSE will later eliminate
52  // the load entirely).
53  BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
54
55  while (BBI != E) {
56    --BBI;
57
58    // If we see a free or a call which may write to memory (i.e. which might do
59    // a free) the pointer could be marked invalid.
60    if (isa<FreeInst>(BBI) ||
61        (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
62         !isa<DbgInfoIntrinsic>(BBI)))
63      return false;
64
65    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
66      if (LI->getOperand(0) == V) return true;
67    } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
68      if (SI->getOperand(1) == V) return true;
69    }
70  }
71  return false;
72}
73
74
75//===----------------------------------------------------------------------===//
76//  Local constant propagation.
77//
78
79// ConstantFoldTerminator - If a terminator instruction is predicated on a
80// constant value, convert it into an unconditional branch to the constant
81// destination.
82//
83bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
84  TerminatorInst *T = BB->getTerminator();
85
86  // Branch - See if we are conditional jumping on constant
87  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
88    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
89    BasicBlock *Dest1 = BI->getSuccessor(0);
90    BasicBlock *Dest2 = BI->getSuccessor(1);
91
92    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
93      // Are we branching on constant?
94      // YES.  Change to unconditional branch...
95      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
96      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
97
98      //cerr << "Function: " << T->getParent()->getParent()
99      //     << "\nRemoving branch from " << T->getParent()
100      //     << "\n\nTo: " << OldDest << endl;
101
102      // Let the basic block know that we are letting go of it.  Based on this,
103      // it will adjust it's PHI nodes.
104      assert(BI->getParent() && "Terminator not inserted in block!");
105      OldDest->removePredecessor(BI->getParent());
106
107      // Set the unconditional destination, and change the insn to be an
108      // unconditional branch.
109      BI->setUnconditionalDest(Destination);
110      return true;
111    } else if (Dest2 == Dest1) {       // Conditional branch to same location?
112      // This branch matches something like this:
113      //     br bool %cond, label %Dest, label %Dest
114      // and changes it into:  br label %Dest
115
116      // Let the basic block know that we are letting go of one copy of it.
117      assert(BI->getParent() && "Terminator not inserted in block!");
118      Dest1->removePredecessor(BI->getParent());
119
120      // Change a conditional branch to unconditional.
121      BI->setUnconditionalDest(Dest1);
122      return true;
123    }
124  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
125    // If we are switching on a constant, we can convert the switch into a
126    // single branch instruction!
127    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
128    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
129    BasicBlock *DefaultDest = TheOnlyDest;
130    assert(TheOnlyDest == SI->getDefaultDest() &&
131           "Default destination is not successor #0?");
132
133    // Figure out which case it goes to...
134    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
135      // Found case matching a constant operand?
136      if (SI->getSuccessorValue(i) == CI) {
137        TheOnlyDest = SI->getSuccessor(i);
138        break;
139      }
140
141      // Check to see if this branch is going to the same place as the default
142      // dest.  If so, eliminate it as an explicit compare.
143      if (SI->getSuccessor(i) == DefaultDest) {
144        // Remove this entry...
145        DefaultDest->removePredecessor(SI->getParent());
146        SI->removeCase(i);
147        --i; --e;  // Don't skip an entry...
148        continue;
149      }
150
151      // Otherwise, check to see if the switch only branches to one destination.
152      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
153      // destinations.
154      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
155    }
156
157    if (CI && !TheOnlyDest) {
158      // Branching on a constant, but not any of the cases, go to the default
159      // successor.
160      TheOnlyDest = SI->getDefaultDest();
161    }
162
163    // If we found a single destination that we can fold the switch into, do so
164    // now.
165    if (TheOnlyDest) {
166      // Insert the new branch..
167      BranchInst::Create(TheOnlyDest, SI);
168      BasicBlock *BB = SI->getParent();
169
170      // Remove entries from PHI nodes which we no longer branch to...
171      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
172        // Found case matching a constant operand?
173        BasicBlock *Succ = SI->getSuccessor(i);
174        if (Succ == TheOnlyDest)
175          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
176        else
177          Succ->removePredecessor(BB);
178      }
179
180      // Delete the old switch...
181      BB->getInstList().erase(SI);
182      return true;
183    } else if (SI->getNumSuccessors() == 2) {
184      // Otherwise, we can fold this switch into a conditional branch
185      // instruction if it has only one non-default destination.
186      Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, SI->getCondition(),
187                                 SI->getSuccessorValue(1), "cond", SI);
188      // Insert the new branch...
189      BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
190
191      // Delete the old switch...
192      SI->eraseFromParent();
193      return true;
194    }
195  }
196  return false;
197}
198
199
200//===----------------------------------------------------------------------===//
201//  Local dead code elimination...
202//
203
204/// isInstructionTriviallyDead - Return true if the result produced by the
205/// instruction is not used, and the instruction has no side effects.
206///
207bool llvm::isInstructionTriviallyDead(Instruction *I) {
208  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
209
210  // We don't want debug info removed by anything this general.
211  if (isa<DbgInfoIntrinsic>(I)) return false;
212
213  if (!I->mayHaveSideEffects()) return true;
214
215  // Special case intrinsics that "may have side effects" but can be deleted
216  // when dead.
217  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
218    // Safe to delete llvm.stacksave if dead.
219    if (II->getIntrinsicID() == Intrinsic::stacksave)
220      return true;
221  return false;
222}
223
224/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
225/// trivially dead instruction, delete it.  If that makes any of its operands
226/// trivially dead, delete them too, recursively.
227void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
228  Instruction *I = dyn_cast<Instruction>(V);
229  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
230    return;
231
232  SmallVector<Instruction*, 16> DeadInsts;
233  DeadInsts.push_back(I);
234
235  while (!DeadInsts.empty()) {
236    I = DeadInsts.pop_back_val();
237
238    // Null out all of the instruction's operands to see if any operand becomes
239    // dead as we go.
240    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
241      Value *OpV = I->getOperand(i);
242      I->setOperand(i, 0);
243
244      if (!OpV->use_empty()) continue;
245
246      // If the operand is an instruction that became dead as we nulled out the
247      // operand, and if it is 'trivially' dead, delete it in a future loop
248      // iteration.
249      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
250        if (isInstructionTriviallyDead(OpI))
251          DeadInsts.push_back(OpI);
252    }
253
254    I->eraseFromParent();
255  }
256}
257
258/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
259/// dead PHI node, due to being a def-use chain of single-use nodes that
260/// either forms a cycle or is terminated by a trivially dead instruction,
261/// delete it.  If that makes any of its operands trivially dead, delete them
262/// too, recursively.
263void
264llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
265
266  // We can remove a PHI if it is on a cycle in the def-use graph
267  // where each node in the cycle has degree one, i.e. only one use,
268  // and is an instruction with no side effects.
269  if (!PN->hasOneUse())
270    return;
271
272  SmallPtrSet<PHINode *, 4> PHIs;
273  PHIs.insert(PN);
274  for (Instruction *J = cast<Instruction>(*PN->use_begin());
275       J->hasOneUse() && !J->mayHaveSideEffects();
276       J = cast<Instruction>(*J->use_begin()))
277    // If we find a PHI more than once, we're on a cycle that
278    // won't prove fruitful.
279    if (PHINode *JP = dyn_cast<PHINode>(J))
280      if (!PHIs.insert(cast<PHINode>(JP))) {
281        // Break the cycle and delete the PHI and its operands.
282        JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
283        RecursivelyDeleteTriviallyDeadInstructions(JP);
284        break;
285      }
286}
287
288//===----------------------------------------------------------------------===//
289//  Control Flow Graph Restructuring...
290//
291
292/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
293/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
294/// between them, moving the instructions in the predecessor into DestBB and
295/// deleting the predecessor block.
296///
297void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB) {
298  // If BB has single-entry PHI nodes, fold them.
299  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
300    Value *NewVal = PN->getIncomingValue(0);
301    // Replace self referencing PHI with undef, it must be dead.
302    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
303    PN->replaceAllUsesWith(NewVal);
304    PN->eraseFromParent();
305  }
306
307  BasicBlock *PredBB = DestBB->getSinglePredecessor();
308  assert(PredBB && "Block doesn't have a single predecessor!");
309
310  // Splice all the instructions from PredBB to DestBB.
311  PredBB->getTerminator()->eraseFromParent();
312  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
313
314  // Anything that branched to PredBB now branches to DestBB.
315  PredBB->replaceAllUsesWith(DestBB);
316
317  // Nuke BB.
318  PredBB->eraseFromParent();
319}
320
321/// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
322/// by DbgIntrinsics. If DbgInUses is specified then the vector is filled
323/// with the DbgInfoIntrinsic that use the instruction I.
324bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I,
325                               SmallVectorImpl<DbgInfoIntrinsic *> *DbgInUses) {
326  if (DbgInUses)
327    DbgInUses->clear();
328
329  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
330       ++UI) {
331    if (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(*UI)) {
332      if (DbgInUses)
333        DbgInUses->push_back(DI);
334    } else {
335      if (DbgInUses)
336        DbgInUses->clear();
337      return false;
338    }
339  }
340  return true;
341}
342
343/// UserIsDebugInfo - Return true if U is a constant expr used by
344/// llvm.dbg.variable or llvm.dbg.global_variable
345bool llvm::UserIsDebugInfo(User *U) {
346  ConstantExpr *CE = dyn_cast<ConstantExpr>(U);
347
348  if (!CE || CE->getNumUses() != 1)
349    return false;
350
351  Constant *Init = dyn_cast<Constant>(CE->use_back());
352  if (!Init || Init->getNumUses() != 1)
353    return false;
354
355  GlobalVariable *GV = dyn_cast<GlobalVariable>(Init->use_back());
356  if (!GV || !GV->hasInitializer() || GV->getInitializer() != Init)
357    return false;
358
359  DIVariable DV(GV);
360  if (!DV.isNull())
361    return true; // User is llvm.dbg.variable
362
363  DIGlobalVariable DGV(GV);
364  if (!DGV.isNull())
365    return true; // User is llvm.dbg.global_variable
366
367  return false;
368}
369
370/// RemoveDbgInfoUser - Remove an User which is representing debug info.
371void llvm::RemoveDbgInfoUser(User *U) {
372  assert (UserIsDebugInfo(U) && "Unexpected User!");
373  ConstantExpr *CE = cast<ConstantExpr>(U);
374  while (!CE->use_empty()) {
375    Constant *C = cast<Constant>(CE->use_back());
376    while (!C->use_empty()) {
377      GlobalVariable *GV = cast<GlobalVariable>(C->use_back());
378      GV->eraseFromParent();
379    }
380    C->destroyConstant();
381  }
382  CE->destroyConstant();
383}
384