Local.cpp revision 8dfe5705b16eeebec701f725351cc5a6102e0dfd
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include <cerrno>
19#include <cmath>
20using namespace llvm;
21
22//===----------------------------------------------------------------------===//
23//  Local constant propagation...
24//
25
26/// doConstantPropagation - If an instruction references constants, try to fold
27/// them together...
28///
29bool llvm::doConstantPropagation(BasicBlock::iterator &II) {
30  if (Constant *C = ConstantFoldInstruction(II)) {
31    // Replaces all of the uses of a variable with uses of the constant.
32    II->replaceAllUsesWith(C);
33
34    // Remove the instruction from the basic block...
35    II = II->getParent()->getInstList().erase(II);
36    return true;
37  }
38
39  return false;
40}
41
42/// ConstantFoldInstruction - Attempt to constant fold the specified
43/// instruction.  If successful, the constant result is returned, if not, null
44/// is returned.  Note that this function can only fail when attempting to fold
45/// instructions like loads and stores, which have no constant expression form.
46///
47Constant *llvm::ConstantFoldInstruction(Instruction *I) {
48  if (PHINode *PN = dyn_cast<PHINode>(I)) {
49    if (PN->getNumIncomingValues() == 0)
50      return Constant::getNullValue(PN->getType());
51
52    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
53    if (Result == 0) return 0;
54
55    // Handle PHI nodes specially here...
56    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
57      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
58        return 0;   // Not all the same incoming constants...
59
60    // If we reach here, all incoming values are the same constant.
61    return Result;
62  } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
63    if (Function *F = CI->getCalledFunction())
64      if (canConstantFoldCallTo(F)) {
65        std::vector<Constant*> Args;
66        for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
67          if (Constant *Op = dyn_cast<Constant>(CI->getOperand(i)))
68            Args.push_back(Op);
69          else
70            return 0;
71        return ConstantFoldCall(F, Args);
72      }
73    return 0;
74  }
75
76  Constant *Op0 = 0, *Op1 = 0;
77  switch (I->getNumOperands()) {
78  default:
79  case 2:
80    Op1 = dyn_cast<Constant>(I->getOperand(1));
81    if (Op1 == 0) return 0;        // Not a constant?, can't fold
82  case 1:
83    Op0 = dyn_cast<Constant>(I->getOperand(0));
84    if (Op0 == 0) return 0;        // Not a constant?, can't fold
85    break;
86  case 0: return 0;
87  }
88
89  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
90    return ConstantExpr::get(I->getOpcode(), Op0, Op1);
91
92  switch (I->getOpcode()) {
93  default: return 0;
94  case Instruction::Cast:
95    return ConstantExpr::getCast(Op0, I->getType());
96  case Instruction::Select:
97    if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(2)))
98      return ConstantExpr::getSelect(Op0, Op1, Op2);
99    return 0;
100  case Instruction::GetElementPtr:
101    std::vector<Constant*> IdxList;
102    IdxList.reserve(I->getNumOperands()-1);
103    if (Op1) IdxList.push_back(Op1);
104    for (unsigned i = 2, e = I->getNumOperands(); i != e; ++i)
105      if (Constant *C = dyn_cast<Constant>(I->getOperand(i)))
106        IdxList.push_back(C);
107      else
108        return 0;  // Non-constant operand
109    return ConstantExpr::getGetElementPtr(Op0, IdxList);
110  }
111}
112
113// ConstantFoldTerminator - If a terminator instruction is predicated on a
114// constant value, convert it into an unconditional branch to the constant
115// destination.
116//
117bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
118  TerminatorInst *T = BB->getTerminator();
119
120  // Branch - See if we are conditional jumping on constant
121  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
122    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
123    BasicBlock *Dest1 = cast<BasicBlock>(BI->getOperand(0));
124    BasicBlock *Dest2 = cast<BasicBlock>(BI->getOperand(1));
125
126    if (ConstantBool *Cond = dyn_cast<ConstantBool>(BI->getCondition())) {
127      // Are we branching on constant?
128      // YES.  Change to unconditional branch...
129      BasicBlock *Destination = Cond->getValue() ? Dest1 : Dest2;
130      BasicBlock *OldDest     = Cond->getValue() ? Dest2 : Dest1;
131
132      //cerr << "Function: " << T->getParent()->getParent()
133      //     << "\nRemoving branch from " << T->getParent()
134      //     << "\n\nTo: " << OldDest << endl;
135
136      // Let the basic block know that we are letting go of it.  Based on this,
137      // it will adjust it's PHI nodes.
138      assert(BI->getParent() && "Terminator not inserted in block!");
139      OldDest->removePredecessor(BI->getParent());
140
141      // Set the unconditional destination, and change the insn to be an
142      // unconditional branch.
143      BI->setUnconditionalDest(Destination);
144      return true;
145    } else if (Dest2 == Dest1) {       // Conditional branch to same location?
146      // This branch matches something like this:
147      //     br bool %cond, label %Dest, label %Dest
148      // and changes it into:  br label %Dest
149
150      // Let the basic block know that we are letting go of one copy of it.
151      assert(BI->getParent() && "Terminator not inserted in block!");
152      Dest1->removePredecessor(BI->getParent());
153
154      // Change a conditional branch to unconditional.
155      BI->setUnconditionalDest(Dest1);
156      return true;
157    }
158  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
159    // If we are switching on a constant, we can convert the switch into a
160    // single branch instruction!
161    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
162    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
163    BasicBlock *DefaultDest = TheOnlyDest;
164    assert(TheOnlyDest == SI->getDefaultDest() &&
165           "Default destination is not successor #0?");
166
167    // Figure out which case it goes to...
168    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
169      // Found case matching a constant operand?
170      if (SI->getSuccessorValue(i) == CI) {
171        TheOnlyDest = SI->getSuccessor(i);
172        break;
173      }
174
175      // Check to see if this branch is going to the same place as the default
176      // dest.  If so, eliminate it as an explicit compare.
177      if (SI->getSuccessor(i) == DefaultDest) {
178        // Remove this entry...
179        DefaultDest->removePredecessor(SI->getParent());
180        SI->removeCase(i);
181        --i; --e;  // Don't skip an entry...
182        continue;
183      }
184
185      // Otherwise, check to see if the switch only branches to one destination.
186      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
187      // destinations.
188      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
189    }
190
191    if (CI && !TheOnlyDest) {
192      // Branching on a constant, but not any of the cases, go to the default
193      // successor.
194      TheOnlyDest = SI->getDefaultDest();
195    }
196
197    // If we found a single destination that we can fold the switch into, do so
198    // now.
199    if (TheOnlyDest) {
200      // Insert the new branch..
201      new BranchInst(TheOnlyDest, SI);
202      BasicBlock *BB = SI->getParent();
203
204      // Remove entries from PHI nodes which we no longer branch to...
205      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
206        // Found case matching a constant operand?
207        BasicBlock *Succ = SI->getSuccessor(i);
208        if (Succ == TheOnlyDest)
209          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
210        else
211          Succ->removePredecessor(BB);
212      }
213
214      // Delete the old switch...
215      BB->getInstList().erase(SI);
216      return true;
217    } else if (SI->getNumSuccessors() == 2) {
218      // Otherwise, we can fold this switch into a conditional branch
219      // instruction if it has only one non-default destination.
220      Value *Cond = new SetCondInst(Instruction::SetEQ, SI->getCondition(),
221                                    SI->getSuccessorValue(1), "cond", SI);
222      // Insert the new branch...
223      new BranchInst(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
224
225      // Delete the old switch...
226      SI->getParent()->getInstList().erase(SI);
227      return true;
228    }
229  }
230  return false;
231}
232
233/// canConstantFoldCallTo - Return true if its even possible to fold a call to
234/// the specified function.
235bool llvm::canConstantFoldCallTo(Function *F) {
236  const std::string &Name = F->getName();
237  return Name == "sin" || Name == "cos" || Name == "tan" || Name == "sqrt" ||
238         Name == "log" || Name == "log10" || Name == "exp" || Name == "pow" ||
239         Name == "acos" || Name == "asin" || Name == "atan" || Name == "fmod";
240}
241
242static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
243                                const Type *Ty) {
244  errno = 0;
245  V = NativeFP(V);
246  if (errno == 0)
247    return ConstantFP::get(Ty, V);
248  return 0;
249}
250
251/// ConstantFoldCall - Attempt to constant fold a call to the specified function
252/// with the specified arguments, returning null if unsuccessful.
253Constant *llvm::ConstantFoldCall(Function *F,
254                                 const std::vector<Constant*> &Operands) {
255  const std::string &Name = F->getName();
256  const Type *Ty = F->getReturnType();
257
258  if (Operands.size() == 1) {
259    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
260      double V = Op->getValue();
261      if (Name == "sin")
262        return ConstantFP::get(Ty, sin(V));
263      else if (Name == "cos")
264        return ConstantFP::get(Ty, cos(V));
265      else if (Name == "tan")
266        return ConstantFP::get(Ty, tan(V));
267      else if (Name == "sqrt" && V >= 0)
268        return ConstantFP::get(Ty, sqrt(V));
269      else if (Name == "exp")
270        return ConstantFP::get(Ty, exp(V));
271      else if (Name == "log" && V > 0)
272        return ConstantFP::get(Ty, log(V));
273      else if (Name == "log10")
274        return ConstantFoldFP(log10, V, Ty);
275      else if (Name == "acos")
276        return ConstantFoldFP(acos, V, Ty);
277      else if (Name == "asin")
278        return ConstantFoldFP(asin, V, Ty);
279      else if (Name == "atan")
280        return ConstantFP::get(Ty, atan(V));
281    }
282  } else if (Operands.size() == 2) {
283    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0]))
284      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
285        double Op1V = Op1->getValue(), Op2V = Op2->getValue();
286
287        if (Name == "pow") {
288          errno = 0;
289          double V = pow(Op1V, Op2V);
290          if (errno == 0)
291            return ConstantFP::get(Ty, V);
292        } else if (Name == "fmod") {
293          errno = 0;
294          double V = fmod(Op1V, Op2V);
295          if (errno == 0)
296            return ConstantFP::get(Ty, V);
297        }
298      }
299  }
300  return 0;
301}
302
303
304
305
306//===----------------------------------------------------------------------===//
307//  Local dead code elimination...
308//
309
310bool llvm::isInstructionTriviallyDead(Instruction *I) {
311  return I->use_empty() && !I->mayWriteToMemory() && !isa<TerminatorInst>(I);
312}
313
314// dceInstruction - Inspect the instruction at *BBI and figure out if it's
315// [trivially] dead.  If so, remove the instruction and update the iterator
316// to point to the instruction that immediately succeeded the original
317// instruction.
318//
319bool llvm::dceInstruction(BasicBlock::iterator &BBI) {
320  // Look for un"used" definitions...
321  if (isInstructionTriviallyDead(BBI)) {
322    BBI = BBI->getParent()->getInstList().erase(BBI);   // Bye bye
323    return true;
324  }
325  return false;
326}
327
328//===----------------------------------------------------------------------===//
329//  PHI Instruction Simplification
330//
331
332/// hasConstantValue - If the specified PHI node always merges together the same
333/// value, return the value, otherwise return null.
334///
335Value *llvm::hasConstantValue(PHINode *PN) {
336  // If the PHI node only has one incoming value, eliminate the PHI node...
337  if (PN->getNumIncomingValues() == 1)
338    return PN->getIncomingValue(0);
339
340  // Otherwise if all of the incoming values are the same for the PHI, replace
341  // the PHI node with the incoming value.
342  //
343  Value *InVal = 0;
344  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
345    if (PN->getIncomingValue(i) != PN)  // Not the PHI node itself...
346      if (InVal && PN->getIncomingValue(i) != InVal)
347        return 0;  // Not the same, bail out.
348      else
349        InVal = PN->getIncomingValue(i);
350
351  // The only case that could cause InVal to be null is if we have a PHI node
352  // that only has entries for itself.  In this case, there is no entry into the
353  // loop, so kill the PHI.
354  //
355  if (InVal == 0) InVal = Constant::getNullValue(PN->getType());
356
357  // All of the incoming values are the same, return the value now.
358  return InVal;
359}
360