Local.cpp revision 9e9a0d5fc26878e51a58a8b57900fcbf952c2691
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Analysis/DebugInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Support/GetElementPtrTypeIterator.h"
29#include "llvm/Support/MathExtras.h"
30using namespace llvm;
31
32//===----------------------------------------------------------------------===//
33//  Local analysis.
34//
35
36/// isSafeToLoadUnconditionally - Return true if we know that executing a load
37/// from this value cannot trap.  If it is not obviously safe to load from the
38/// specified pointer, we do a quick local scan of the basic block containing
39/// ScanFrom, to determine if the address is already accessed.
40bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
41  // If it is an alloca it is always safe to load from.
42  if (isa<AllocaInst>(V)) return true;
43
44  // If it is a global variable it is mostly safe to load from.
45  if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
46    // Don't try to evaluate aliases.  External weak GV can be null.
47    return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
48
49  // Otherwise, be a little bit agressive by scanning the local block where we
50  // want to check to see if the pointer is already being loaded or stored
51  // from/to.  If so, the previous load or store would have already trapped,
52  // so there is no harm doing an extra load (also, CSE will later eliminate
53  // the load entirely).
54  BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
55
56  while (BBI != E) {
57    --BBI;
58
59    // If we see a free or a call which may write to memory (i.e. which might do
60    // a free) the pointer could be marked invalid.
61    if (isa<FreeInst>(BBI) ||
62        (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
63         !isa<DbgInfoIntrinsic>(BBI)))
64      return false;
65
66    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
67      if (LI->getOperand(0) == V) return true;
68    } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
69      if (SI->getOperand(1) == V) return true;
70    }
71  }
72  return false;
73}
74
75
76//===----------------------------------------------------------------------===//
77//  Local constant propagation.
78//
79
80// ConstantFoldTerminator - If a terminator instruction is predicated on a
81// constant value, convert it into an unconditional branch to the constant
82// destination.
83//
84bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
85  TerminatorInst *T = BB->getTerminator();
86
87  // Branch - See if we are conditional jumping on constant
88  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
89    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
90    BasicBlock *Dest1 = BI->getSuccessor(0);
91    BasicBlock *Dest2 = BI->getSuccessor(1);
92
93    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
94      // Are we branching on constant?
95      // YES.  Change to unconditional branch...
96      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
97      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
98
99      //cerr << "Function: " << T->getParent()->getParent()
100      //     << "\nRemoving branch from " << T->getParent()
101      //     << "\n\nTo: " << OldDest << endl;
102
103      // Let the basic block know that we are letting go of it.  Based on this,
104      // it will adjust it's PHI nodes.
105      assert(BI->getParent() && "Terminator not inserted in block!");
106      OldDest->removePredecessor(BI->getParent());
107
108      // Set the unconditional destination, and change the insn to be an
109      // unconditional branch.
110      BI->setUnconditionalDest(Destination);
111      return true;
112    } else if (Dest2 == Dest1) {       // Conditional branch to same location?
113      // This branch matches something like this:
114      //     br bool %cond, label %Dest, label %Dest
115      // and changes it into:  br label %Dest
116
117      // Let the basic block know that we are letting go of one copy of it.
118      assert(BI->getParent() && "Terminator not inserted in block!");
119      Dest1->removePredecessor(BI->getParent());
120
121      // Change a conditional branch to unconditional.
122      BI->setUnconditionalDest(Dest1);
123      return true;
124    }
125  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
126    // If we are switching on a constant, we can convert the switch into a
127    // single branch instruction!
128    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
129    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
130    BasicBlock *DefaultDest = TheOnlyDest;
131    assert(TheOnlyDest == SI->getDefaultDest() &&
132           "Default destination is not successor #0?");
133
134    // Figure out which case it goes to...
135    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
136      // Found case matching a constant operand?
137      if (SI->getSuccessorValue(i) == CI) {
138        TheOnlyDest = SI->getSuccessor(i);
139        break;
140      }
141
142      // Check to see if this branch is going to the same place as the default
143      // dest.  If so, eliminate it as an explicit compare.
144      if (SI->getSuccessor(i) == DefaultDest) {
145        // Remove this entry...
146        DefaultDest->removePredecessor(SI->getParent());
147        SI->removeCase(i);
148        --i; --e;  // Don't skip an entry...
149        continue;
150      }
151
152      // Otherwise, check to see if the switch only branches to one destination.
153      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
154      // destinations.
155      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
156    }
157
158    if (CI && !TheOnlyDest) {
159      // Branching on a constant, but not any of the cases, go to the default
160      // successor.
161      TheOnlyDest = SI->getDefaultDest();
162    }
163
164    // If we found a single destination that we can fold the switch into, do so
165    // now.
166    if (TheOnlyDest) {
167      // Insert the new branch..
168      BranchInst::Create(TheOnlyDest, SI);
169      BasicBlock *BB = SI->getParent();
170
171      // Remove entries from PHI nodes which we no longer branch to...
172      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
173        // Found case matching a constant operand?
174        BasicBlock *Succ = SI->getSuccessor(i);
175        if (Succ == TheOnlyDest)
176          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
177        else
178          Succ->removePredecessor(BB);
179      }
180
181      // Delete the old switch...
182      BB->getInstList().erase(SI);
183      return true;
184    } else if (SI->getNumSuccessors() == 2) {
185      // Otherwise, we can fold this switch into a conditional branch
186      // instruction if it has only one non-default destination.
187      Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
188                                 SI->getSuccessorValue(1), "cond");
189      // Insert the new branch...
190      BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
191
192      // Delete the old switch...
193      SI->eraseFromParent();
194      return true;
195    }
196  }
197  return false;
198}
199
200
201//===----------------------------------------------------------------------===//
202//  Local dead code elimination...
203//
204
205/// isInstructionTriviallyDead - Return true if the result produced by the
206/// instruction is not used, and the instruction has no side effects.
207///
208bool llvm::isInstructionTriviallyDead(Instruction *I) {
209  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
210
211  // We don't want debug info removed by anything this general.
212  if (isa<DbgInfoIntrinsic>(I)) return false;
213
214  if (!I->mayHaveSideEffects()) return true;
215
216  // Special case intrinsics that "may have side effects" but can be deleted
217  // when dead.
218  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
219    // Safe to delete llvm.stacksave if dead.
220    if (II->getIntrinsicID() == Intrinsic::stacksave)
221      return true;
222  return false;
223}
224
225/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
226/// trivially dead instruction, delete it.  If that makes any of its operands
227/// trivially dead, delete them too, recursively.
228void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
229  Instruction *I = dyn_cast<Instruction>(V);
230  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
231    return;
232
233  SmallVector<Instruction*, 16> DeadInsts;
234  DeadInsts.push_back(I);
235
236  while (!DeadInsts.empty()) {
237    I = DeadInsts.pop_back_val();
238
239    // Null out all of the instruction's operands to see if any operand becomes
240    // dead as we go.
241    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
242      Value *OpV = I->getOperand(i);
243      I->setOperand(i, 0);
244
245      if (!OpV->use_empty()) continue;
246
247      // If the operand is an instruction that became dead as we nulled out the
248      // operand, and if it is 'trivially' dead, delete it in a future loop
249      // iteration.
250      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
251        if (isInstructionTriviallyDead(OpI))
252          DeadInsts.push_back(OpI);
253    }
254
255    I->eraseFromParent();
256  }
257}
258
259/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
260/// dead PHI node, due to being a def-use chain of single-use nodes that
261/// either forms a cycle or is terminated by a trivially dead instruction,
262/// delete it.  If that makes any of its operands trivially dead, delete them
263/// too, recursively.
264void
265llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
266  // We can remove a PHI if it is on a cycle in the def-use graph
267  // where each node in the cycle has degree one, i.e. only one use,
268  // and is an instruction with no side effects.
269  if (!PN->hasOneUse())
270    return;
271
272  SmallPtrSet<PHINode *, 4> PHIs;
273  PHIs.insert(PN);
274  for (Instruction *J = cast<Instruction>(*PN->use_begin());
275       J->hasOneUse() && !J->mayHaveSideEffects();
276       J = cast<Instruction>(*J->use_begin()))
277    // If we find a PHI more than once, we're on a cycle that
278    // won't prove fruitful.
279    if (PHINode *JP = dyn_cast<PHINode>(J))
280      if (!PHIs.insert(cast<PHINode>(JP))) {
281        // Break the cycle and delete the PHI and its operands.
282        JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
283        RecursivelyDeleteTriviallyDeadInstructions(JP);
284        break;
285      }
286}
287
288//===----------------------------------------------------------------------===//
289//  Control Flow Graph Restructuring...
290//
291
292/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
293/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
294/// between them, moving the instructions in the predecessor into DestBB and
295/// deleting the predecessor block.
296///
297void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB) {
298  // If BB has single-entry PHI nodes, fold them.
299  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
300    Value *NewVal = PN->getIncomingValue(0);
301    // Replace self referencing PHI with undef, it must be dead.
302    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
303    PN->replaceAllUsesWith(NewVal);
304    PN->eraseFromParent();
305  }
306
307  BasicBlock *PredBB = DestBB->getSinglePredecessor();
308  assert(PredBB && "Block doesn't have a single predecessor!");
309
310  // Splice all the instructions from PredBB to DestBB.
311  PredBB->getTerminator()->eraseFromParent();
312  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
313
314  // Anything that branched to PredBB now branches to DestBB.
315  PredBB->replaceAllUsesWith(DestBB);
316
317  // Nuke BB.
318  PredBB->eraseFromParent();
319}
320
321/// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
322/// by DbgIntrinsics. If DbgInUses is specified then the vector is filled
323/// with the DbgInfoIntrinsic that use the instruction I.
324bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I,
325                               SmallVectorImpl<DbgInfoIntrinsic *> *DbgInUses) {
326  if (DbgInUses)
327    DbgInUses->clear();
328
329  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
330       ++UI) {
331    if (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(*UI)) {
332      if (DbgInUses)
333        DbgInUses->push_back(DI);
334    } else {
335      if (DbgInUses)
336        DbgInUses->clear();
337      return false;
338    }
339  }
340  return true;
341}
342
343