Local.cpp revision a04c0c417b335d15b6a6efa8092f8f3bb3a7ce16
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Instructions.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/MathExtras.h"
23#include <cerrno>
24#include <cmath>
25using namespace llvm;
26
27//===----------------------------------------------------------------------===//
28//  Local constant propagation...
29//
30
31/// doConstantPropagation - If an instruction references constants, try to fold
32/// them together...
33///
34bool llvm::doConstantPropagation(BasicBlock::iterator &II) {
35  if (Constant *C = ConstantFoldInstruction(II)) {
36    // Replaces all of the uses of a variable with uses of the constant.
37    II->replaceAllUsesWith(C);
38
39    // Remove the instruction from the basic block...
40    II = II->getParent()->getInstList().erase(II);
41    return true;
42  }
43
44  return false;
45}
46
47/// ConstantFoldInstruction - Attempt to constant fold the specified
48/// instruction.  If successful, the constant result is returned, if not, null
49/// is returned.  Note that this function can only fail when attempting to fold
50/// instructions like loads and stores, which have no constant expression form.
51///
52Constant *llvm::ConstantFoldInstruction(Instruction *I) {
53  if (PHINode *PN = dyn_cast<PHINode>(I)) {
54    if (PN->getNumIncomingValues() == 0)
55      return Constant::getNullValue(PN->getType());
56
57    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
58    if (Result == 0) return 0;
59
60    // Handle PHI nodes specially here...
61    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
62      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
63        return 0;   // Not all the same incoming constants...
64
65    // If we reach here, all incoming values are the same constant.
66    return Result;
67  } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
68    if (Function *F = CI->getCalledFunction())
69      if (canConstantFoldCallTo(F)) {
70        std::vector<Constant*> Args;
71        for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
72          if (Constant *Op = dyn_cast<Constant>(CI->getOperand(i)))
73            Args.push_back(Op);
74          else
75            return 0;
76        return ConstantFoldCall(F, Args);
77      }
78    return 0;
79  }
80
81  Constant *Op0 = 0, *Op1 = 0;
82  switch (I->getNumOperands()) {
83  default:
84  case 2:
85    Op1 = dyn_cast<Constant>(I->getOperand(1));
86    if (Op1 == 0) return 0;        // Not a constant?, can't fold
87  case 1:
88    Op0 = dyn_cast<Constant>(I->getOperand(0));
89    if (Op0 == 0) return 0;        // Not a constant?, can't fold
90    break;
91  case 0: return 0;
92  }
93
94  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
95    return ConstantExpr::get(I->getOpcode(), Op0, Op1);
96
97  switch (I->getOpcode()) {
98  default: return 0;
99  case Instruction::Cast:
100    return ConstantExpr::getCast(Op0, I->getType());
101  case Instruction::Select:
102    if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(2)))
103      return ConstantExpr::getSelect(Op0, Op1, Op2);
104    return 0;
105  case Instruction::ExtractElement:
106    return ConstantExpr::getExtractElement(Op0, Op1);
107  case Instruction::InsertElement:
108    if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(2)))
109      return ConstantExpr::getInsertElement(Op0, Op1, Op2);
110    return 0;
111  case Instruction::ShuffleVector:
112    if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(2)))
113      return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
114    return 0;
115  case Instruction::GetElementPtr:
116    std::vector<Constant*> IdxList;
117    IdxList.reserve(I->getNumOperands()-1);
118    if (Op1) IdxList.push_back(Op1);
119    for (unsigned i = 2, e = I->getNumOperands(); i != e; ++i)
120      if (Constant *C = dyn_cast<Constant>(I->getOperand(i)))
121        IdxList.push_back(C);
122      else
123        return 0;  // Non-constant operand
124    return ConstantExpr::getGetElementPtr(Op0, IdxList);
125  }
126}
127
128// ConstantFoldTerminator - If a terminator instruction is predicated on a
129// constant value, convert it into an unconditional branch to the constant
130// destination.
131//
132bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
133  TerminatorInst *T = BB->getTerminator();
134
135  // Branch - See if we are conditional jumping on constant
136  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
137    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
138    BasicBlock *Dest1 = cast<BasicBlock>(BI->getOperand(0));
139    BasicBlock *Dest2 = cast<BasicBlock>(BI->getOperand(1));
140
141    if (ConstantBool *Cond = dyn_cast<ConstantBool>(BI->getCondition())) {
142      // Are we branching on constant?
143      // YES.  Change to unconditional branch...
144      BasicBlock *Destination = Cond->getValue() ? Dest1 : Dest2;
145      BasicBlock *OldDest     = Cond->getValue() ? Dest2 : Dest1;
146
147      //cerr << "Function: " << T->getParent()->getParent()
148      //     << "\nRemoving branch from " << T->getParent()
149      //     << "\n\nTo: " << OldDest << endl;
150
151      // Let the basic block know that we are letting go of it.  Based on this,
152      // it will adjust it's PHI nodes.
153      assert(BI->getParent() && "Terminator not inserted in block!");
154      OldDest->removePredecessor(BI->getParent());
155
156      // Set the unconditional destination, and change the insn to be an
157      // unconditional branch.
158      BI->setUnconditionalDest(Destination);
159      return true;
160    } else if (Dest2 == Dest1) {       // Conditional branch to same location?
161      // This branch matches something like this:
162      //     br bool %cond, label %Dest, label %Dest
163      // and changes it into:  br label %Dest
164
165      // Let the basic block know that we are letting go of one copy of it.
166      assert(BI->getParent() && "Terminator not inserted in block!");
167      Dest1->removePredecessor(BI->getParent());
168
169      // Change a conditional branch to unconditional.
170      BI->setUnconditionalDest(Dest1);
171      return true;
172    }
173  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
174    // If we are switching on a constant, we can convert the switch into a
175    // single branch instruction!
176    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
177    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
178    BasicBlock *DefaultDest = TheOnlyDest;
179    assert(TheOnlyDest == SI->getDefaultDest() &&
180           "Default destination is not successor #0?");
181
182    // Figure out which case it goes to...
183    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
184      // Found case matching a constant operand?
185      if (SI->getSuccessorValue(i) == CI) {
186        TheOnlyDest = SI->getSuccessor(i);
187        break;
188      }
189
190      // Check to see if this branch is going to the same place as the default
191      // dest.  If so, eliminate it as an explicit compare.
192      if (SI->getSuccessor(i) == DefaultDest) {
193        // Remove this entry...
194        DefaultDest->removePredecessor(SI->getParent());
195        SI->removeCase(i);
196        --i; --e;  // Don't skip an entry...
197        continue;
198      }
199
200      // Otherwise, check to see if the switch only branches to one destination.
201      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
202      // destinations.
203      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
204    }
205
206    if (CI && !TheOnlyDest) {
207      // Branching on a constant, but not any of the cases, go to the default
208      // successor.
209      TheOnlyDest = SI->getDefaultDest();
210    }
211
212    // If we found a single destination that we can fold the switch into, do so
213    // now.
214    if (TheOnlyDest) {
215      // Insert the new branch..
216      new BranchInst(TheOnlyDest, SI);
217      BasicBlock *BB = SI->getParent();
218
219      // Remove entries from PHI nodes which we no longer branch to...
220      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
221        // Found case matching a constant operand?
222        BasicBlock *Succ = SI->getSuccessor(i);
223        if (Succ == TheOnlyDest)
224          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
225        else
226          Succ->removePredecessor(BB);
227      }
228
229      // Delete the old switch...
230      BB->getInstList().erase(SI);
231      return true;
232    } else if (SI->getNumSuccessors() == 2) {
233      // Otherwise, we can fold this switch into a conditional branch
234      // instruction if it has only one non-default destination.
235      Value *Cond = new SetCondInst(Instruction::SetEQ, SI->getCondition(),
236                                    SI->getSuccessorValue(1), "cond", SI);
237      // Insert the new branch...
238      new BranchInst(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
239
240      // Delete the old switch...
241      SI->getParent()->getInstList().erase(SI);
242      return true;
243    }
244  }
245  return false;
246}
247
248/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
249/// getelementptr constantexpr, return the constant value being addressed by the
250/// constant expression, or null if something is funny and we can't decide.
251Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
252                                                       ConstantExpr *CE) {
253  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
254    return 0;  // Do not allow stepping over the value!
255
256  // Loop over all of the operands, tracking down which value we are
257  // addressing...
258  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
259  for (++I; I != E; ++I)
260    if (const StructType *STy = dyn_cast<StructType>(*I)) {
261      ConstantUInt *CU = cast<ConstantUInt>(I.getOperand());
262      assert(CU->getValue() < STy->getNumElements() &&
263             "Struct index out of range!");
264      unsigned El = (unsigned)CU->getValue();
265      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
266        C = CS->getOperand(El);
267      } else if (isa<ConstantAggregateZero>(C)) {
268        C = Constant::getNullValue(STy->getElementType(El));
269      } else if (isa<UndefValue>(C)) {
270        C = UndefValue::get(STy->getElementType(El));
271      } else {
272        return 0;
273      }
274    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
275      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
276        if ((uint64_t)CI->getRawValue() >= ATy->getNumElements())
277          C = UndefValue::get(ATy->getElementType());
278        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
279          C = CA->getOperand((unsigned)CI->getRawValue());
280        else if (isa<ConstantAggregateZero>(C))
281          C = Constant::getNullValue(ATy->getElementType());
282        else if (isa<UndefValue>(C))
283          C = UndefValue::get(ATy->getElementType());
284        else
285          return 0;
286      } else if (const PackedType *PTy = dyn_cast<PackedType>(*I)) {
287        if ((uint64_t)CI->getRawValue() >= PTy->getNumElements())
288          C = UndefValue::get(PTy->getElementType());
289        if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C))
290          C = CP->getOperand((unsigned)CI->getRawValue());
291        else if (isa<ConstantAggregateZero>(C))
292          C = Constant::getNullValue(PTy->getElementType());
293        else if (isa<UndefValue>(C))
294          C = UndefValue::get(PTy->getElementType());
295        else
296          return 0;
297      } else {
298        return 0;
299      }
300    } else {
301      return 0;
302    }
303  return C;
304}
305
306
307//===----------------------------------------------------------------------===//
308//  Local dead code elimination...
309//
310
311bool llvm::isInstructionTriviallyDead(Instruction *I) {
312  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
313
314  if (!I->mayWriteToMemory()) return true;
315
316  if (CallInst *CI = dyn_cast<CallInst>(I))
317    if (Function *F = CI->getCalledFunction()) {
318      unsigned IntrinsicID = F->getIntrinsicID();
319#define GET_SIDE_EFFECT_INFO
320#include "llvm/Intrinsics.gen"
321#undef GET_SIDE_EFFECT_INFO
322    }
323  return false;
324}
325
326// dceInstruction - Inspect the instruction at *BBI and figure out if it's
327// [trivially] dead.  If so, remove the instruction and update the iterator
328// to point to the instruction that immediately succeeded the original
329// instruction.
330//
331bool llvm::dceInstruction(BasicBlock::iterator &BBI) {
332  // Look for un"used" definitions...
333  if (isInstructionTriviallyDead(BBI)) {
334    BBI = BBI->getParent()->getInstList().erase(BBI);   // Bye bye
335    return true;
336  }
337  return false;
338}
339