Local.cpp revision ad80981a106c9d0ec83351e63ee3ac75ed646bf4
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Analysis/DebugInfo.h"
27#include "llvm/Analysis/ProfileInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Support/GetElementPtrTypeIterator.h"
30#include "llvm/Support/MathExtras.h"
31using namespace llvm;
32
33//===----------------------------------------------------------------------===//
34//  Local analysis.
35//
36
37/// isSafeToLoadUnconditionally - Return true if we know that executing a load
38/// from this value cannot trap.  If it is not obviously safe to load from the
39/// specified pointer, we do a quick local scan of the basic block containing
40/// ScanFrom, to determine if the address is already accessed.
41bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
42  // If it is an alloca it is always safe to load from.
43  if (isa<AllocaInst>(V)) return true;
44
45  // If it is a global variable it is mostly safe to load from.
46  if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
47    // Don't try to evaluate aliases.  External weak GV can be null.
48    return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
49
50  // Otherwise, be a little bit agressive by scanning the local block where we
51  // want to check to see if the pointer is already being loaded or stored
52  // from/to.  If so, the previous load or store would have already trapped,
53  // so there is no harm doing an extra load (also, CSE will later eliminate
54  // the load entirely).
55  BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
56
57  while (BBI != E) {
58    --BBI;
59
60    // If we see a free or a call which may write to memory (i.e. which might do
61    // a free) the pointer could be marked invalid.
62    if (isa<FreeInst>(BBI) ||
63        (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
64         !isa<DbgInfoIntrinsic>(BBI)))
65      return false;
66
67    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
68      if (LI->getOperand(0) == V) return true;
69    } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
70      if (SI->getOperand(1) == V) return true;
71    }
72  }
73  return false;
74}
75
76
77//===----------------------------------------------------------------------===//
78//  Local constant propagation.
79//
80
81// ConstantFoldTerminator - If a terminator instruction is predicated on a
82// constant value, convert it into an unconditional branch to the constant
83// destination.
84//
85bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
86  TerminatorInst *T = BB->getTerminator();
87
88  // Branch - See if we are conditional jumping on constant
89  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
90    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
91    BasicBlock *Dest1 = BI->getSuccessor(0);
92    BasicBlock *Dest2 = BI->getSuccessor(1);
93
94    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
95      // Are we branching on constant?
96      // YES.  Change to unconditional branch...
97      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
98      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
99
100      //cerr << "Function: " << T->getParent()->getParent()
101      //     << "\nRemoving branch from " << T->getParent()
102      //     << "\n\nTo: " << OldDest << endl;
103
104      // Let the basic block know that we are letting go of it.  Based on this,
105      // it will adjust it's PHI nodes.
106      assert(BI->getParent() && "Terminator not inserted in block!");
107      OldDest->removePredecessor(BI->getParent());
108
109      // Set the unconditional destination, and change the insn to be an
110      // unconditional branch.
111      BI->setUnconditionalDest(Destination);
112      return true;
113    } else if (Dest2 == Dest1) {       // Conditional branch to same location?
114      // This branch matches something like this:
115      //     br bool %cond, label %Dest, label %Dest
116      // and changes it into:  br label %Dest
117
118      // Let the basic block know that we are letting go of one copy of it.
119      assert(BI->getParent() && "Terminator not inserted in block!");
120      Dest1->removePredecessor(BI->getParent());
121
122      // Change a conditional branch to unconditional.
123      BI->setUnconditionalDest(Dest1);
124      return true;
125    }
126  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
127    // If we are switching on a constant, we can convert the switch into a
128    // single branch instruction!
129    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
130    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
131    BasicBlock *DefaultDest = TheOnlyDest;
132    assert(TheOnlyDest == SI->getDefaultDest() &&
133           "Default destination is not successor #0?");
134
135    // Figure out which case it goes to...
136    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
137      // Found case matching a constant operand?
138      if (SI->getSuccessorValue(i) == CI) {
139        TheOnlyDest = SI->getSuccessor(i);
140        break;
141      }
142
143      // Check to see if this branch is going to the same place as the default
144      // dest.  If so, eliminate it as an explicit compare.
145      if (SI->getSuccessor(i) == DefaultDest) {
146        // Remove this entry...
147        DefaultDest->removePredecessor(SI->getParent());
148        SI->removeCase(i);
149        --i; --e;  // Don't skip an entry...
150        continue;
151      }
152
153      // Otherwise, check to see if the switch only branches to one destination.
154      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
155      // destinations.
156      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
157    }
158
159    if (CI && !TheOnlyDest) {
160      // Branching on a constant, but not any of the cases, go to the default
161      // successor.
162      TheOnlyDest = SI->getDefaultDest();
163    }
164
165    // If we found a single destination that we can fold the switch into, do so
166    // now.
167    if (TheOnlyDest) {
168      // Insert the new branch..
169      BranchInst::Create(TheOnlyDest, SI);
170      BasicBlock *BB = SI->getParent();
171
172      // Remove entries from PHI nodes which we no longer branch to...
173      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
174        // Found case matching a constant operand?
175        BasicBlock *Succ = SI->getSuccessor(i);
176        if (Succ == TheOnlyDest)
177          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
178        else
179          Succ->removePredecessor(BB);
180      }
181
182      // Delete the old switch...
183      BB->getInstList().erase(SI);
184      return true;
185    } else if (SI->getNumSuccessors() == 2) {
186      // Otherwise, we can fold this switch into a conditional branch
187      // instruction if it has only one non-default destination.
188      Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
189                                 SI->getSuccessorValue(1), "cond");
190      // Insert the new branch...
191      BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
192
193      // Delete the old switch...
194      SI->eraseFromParent();
195      return true;
196    }
197  }
198  return false;
199}
200
201
202//===----------------------------------------------------------------------===//
203//  Local dead code elimination...
204//
205
206/// isInstructionTriviallyDead - Return true if the result produced by the
207/// instruction is not used, and the instruction has no side effects.
208///
209bool llvm::isInstructionTriviallyDead(Instruction *I) {
210  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
211
212  // We don't want debug info removed by anything this general.
213  if (isa<DbgInfoIntrinsic>(I)) return false;
214
215  if (!I->mayHaveSideEffects()) return true;
216
217  // Special case intrinsics that "may have side effects" but can be deleted
218  // when dead.
219  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
220    // Safe to delete llvm.stacksave if dead.
221    if (II->getIntrinsicID() == Intrinsic::stacksave)
222      return true;
223  return false;
224}
225
226/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
227/// trivially dead instruction, delete it.  If that makes any of its operands
228/// trivially dead, delete them too, recursively.
229void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
230  Instruction *I = dyn_cast<Instruction>(V);
231  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
232    return;
233
234  SmallVector<Instruction*, 16> DeadInsts;
235  DeadInsts.push_back(I);
236
237  while (!DeadInsts.empty()) {
238    I = DeadInsts.pop_back_val();
239
240    // Null out all of the instruction's operands to see if any operand becomes
241    // dead as we go.
242    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
243      Value *OpV = I->getOperand(i);
244      I->setOperand(i, 0);
245
246      if (!OpV->use_empty()) continue;
247
248      // If the operand is an instruction that became dead as we nulled out the
249      // operand, and if it is 'trivially' dead, delete it in a future loop
250      // iteration.
251      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
252        if (isInstructionTriviallyDead(OpI))
253          DeadInsts.push_back(OpI);
254    }
255
256    I->eraseFromParent();
257  }
258}
259
260/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
261/// dead PHI node, due to being a def-use chain of single-use nodes that
262/// either forms a cycle or is terminated by a trivially dead instruction,
263/// delete it.  If that makes any of its operands trivially dead, delete them
264/// too, recursively.
265void
266llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
267  // We can remove a PHI if it is on a cycle in the def-use graph
268  // where each node in the cycle has degree one, i.e. only one use,
269  // and is an instruction with no side effects.
270  if (!PN->hasOneUse())
271    return;
272
273  SmallPtrSet<PHINode *, 4> PHIs;
274  PHIs.insert(PN);
275  for (Instruction *J = cast<Instruction>(*PN->use_begin());
276       J->hasOneUse() && !J->mayHaveSideEffects();
277       J = cast<Instruction>(*J->use_begin()))
278    // If we find a PHI more than once, we're on a cycle that
279    // won't prove fruitful.
280    if (PHINode *JP = dyn_cast<PHINode>(J))
281      if (!PHIs.insert(cast<PHINode>(JP))) {
282        // Break the cycle and delete the PHI and its operands.
283        JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
284        RecursivelyDeleteTriviallyDeadInstructions(JP);
285        break;
286      }
287}
288
289//===----------------------------------------------------------------------===//
290//  Control Flow Graph Restructuring...
291//
292
293/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
294/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
295/// between them, moving the instructions in the predecessor into DestBB and
296/// deleting the predecessor block.
297///
298void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
299  // If BB has single-entry PHI nodes, fold them.
300  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
301    Value *NewVal = PN->getIncomingValue(0);
302    // Replace self referencing PHI with undef, it must be dead.
303    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
304    PN->replaceAllUsesWith(NewVal);
305    PN->eraseFromParent();
306  }
307
308  BasicBlock *PredBB = DestBB->getSinglePredecessor();
309  assert(PredBB && "Block doesn't have a single predecessor!");
310
311  // Splice all the instructions from PredBB to DestBB.
312  PredBB->getTerminator()->eraseFromParent();
313  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
314
315  // Anything that branched to PredBB now branches to DestBB.
316  PredBB->replaceAllUsesWith(DestBB);
317
318  if (P) {
319    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
320    if (PI) {
321      PI->replaceAllUses(PredBB, DestBB);
322      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
323    }
324  }
325  // Nuke BB.
326  PredBB->eraseFromParent();
327}
328
329/// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
330/// by DbgIntrinsics. If DbgInUses is specified then the vector is filled
331/// with the DbgInfoIntrinsic that use the instruction I.
332bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I,
333                               SmallVectorImpl<DbgInfoIntrinsic *> *DbgInUses) {
334  if (DbgInUses)
335    DbgInUses->clear();
336
337  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
338       ++UI) {
339    if (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(*UI)) {
340      if (DbgInUses)
341        DbgInUses->push_back(DI);
342    } else {
343      if (DbgInUses)
344        DbgInUses->clear();
345      return false;
346    }
347  }
348  return true;
349}
350
351