1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures. It also emits a matcher for
12// custom operand parsing.
13//
14// Converting assembly operands into MCInst structures
15// ---------------------------------------------------
16//
17// The input to the target specific matcher is a list of literal tokens and
18// operands. The target specific parser should generally eliminate any syntax
19// which is not relevant for matching; for example, comma tokens should have
20// already been consumed and eliminated by the parser. Most instructions will
21// end up with a single literal token (the instruction name) and some number of
22// operands.
23//
24// Some example inputs, for X86:
25//   'addl' (immediate ...) (register ...)
26//   'add' (immediate ...) (memory ...)
27//   'call' '*' %epc
28//
29// The assembly matcher is responsible for converting this input into a precise
30// machine instruction (i.e., an instruction with a well defined encoding). This
31// mapping has several properties which complicate matching:
32//
33//  - It may be ambiguous; many architectures can legally encode particular
34//    variants of an instruction in different ways (for example, using a smaller
35//    encoding for small immediates). Such ambiguities should never be
36//    arbitrarily resolved by the assembler, the assembler is always responsible
37//    for choosing the "best" available instruction.
38//
39//  - It may depend on the subtarget or the assembler context. Instructions
40//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
41//    an SSE instruction in a file being assembled for i486) should be accepted
42//    and rejected by the assembler front end. However, if the proper encoding
43//    for an instruction is dependent on the assembler context then the matcher
44//    is responsible for selecting the correct machine instruction for the
45//    current mode.
46//
47// The core matching algorithm attempts to exploit the regularity in most
48// instruction sets to quickly determine the set of possibly matching
49// instructions, and the simplify the generated code. Additionally, this helps
50// to ensure that the ambiguities are intentionally resolved by the user.
51//
52// The matching is divided into two distinct phases:
53//
54//   1. Classification: Each operand is mapped to the unique set which (a)
55//      contains it, and (b) is the largest such subset for which a single
56//      instruction could match all members.
57//
58//      For register classes, we can generate these subgroups automatically. For
59//      arbitrary operands, we expect the user to define the classes and their
60//      relations to one another (for example, 8-bit signed immediates as a
61//      subset of 32-bit immediates).
62//
63//      By partitioning the operands in this way, we guarantee that for any
64//      tuple of classes, any single instruction must match either all or none
65//      of the sets of operands which could classify to that tuple.
66//
67//      In addition, the subset relation amongst classes induces a partial order
68//      on such tuples, which we use to resolve ambiguities.
69//
70//   2. The input can now be treated as a tuple of classes (static tokens are
71//      simple singleton sets). Each such tuple should generally map to a single
72//      instruction (we currently ignore cases where this isn't true, whee!!!),
73//      which we can emit a simple matcher for.
74//
75// Custom Operand Parsing
76// ----------------------
77//
78//  Some targets need a custom way to parse operands, some specific instructions
79//  can contain arguments that can represent processor flags and other kinds of
80//  identifiers that need to be mapped to specific values in the final encoded
81//  instructions. The target specific custom operand parsing works in the
82//  following way:
83//
84//   1. A operand match table is built, each entry contains a mnemonic, an
85//      operand class, a mask for all operand positions for that same
86//      class/mnemonic and target features to be checked while trying to match.
87//
88//   2. The operand matcher will try every possible entry with the same
89//      mnemonic and will check if the target feature for this mnemonic also
90//      matches. After that, if the operand to be matched has its index
91//      present in the mask, a successful match occurs. Otherwise, fallback
92//      to the regular operand parsing.
93//
94//   3. For a match success, each operand class that has a 'ParserMethod'
95//      becomes part of a switch from where the custom method is called.
96//
97//===----------------------------------------------------------------------===//
98
99#include "CodeGenTarget.h"
100#include "StringToOffsetTable.h"
101#include "llvm/ADT/OwningPtr.h"
102#include "llvm/ADT/PointerUnion.h"
103#include "llvm/ADT/STLExtras.h"
104#include "llvm/ADT/SmallPtrSet.h"
105#include "llvm/ADT/SmallVector.h"
106#include "llvm/ADT/StringExtras.h"
107#include "llvm/Support/CommandLine.h"
108#include "llvm/Support/Debug.h"
109#include "llvm/Support/ErrorHandling.h"
110#include "llvm/TableGen/Error.h"
111#include "llvm/TableGen/Record.h"
112#include "llvm/TableGen/StringMatcher.h"
113#include "llvm/TableGen/TableGenBackend.h"
114#include <cassert>
115#include <map>
116#include <set>
117#include <sstream>
118using namespace llvm;
119
120static cl::opt<std::string>
121MatchPrefix("match-prefix", cl::init(""),
122            cl::desc("Only match instructions with the given prefix"));
123
124namespace {
125class AsmMatcherInfo;
126struct SubtargetFeatureInfo;
127
128class AsmMatcherEmitter {
129  RecordKeeper &Records;
130public:
131  AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
132
133  void run(raw_ostream &o);
134};
135
136/// ClassInfo - Helper class for storing the information about a particular
137/// class of operands which can be matched.
138struct ClassInfo {
139  enum ClassInfoKind {
140    /// Invalid kind, for use as a sentinel value.
141    Invalid = 0,
142
143    /// The class for a particular token.
144    Token,
145
146    /// The (first) register class, subsequent register classes are
147    /// RegisterClass0+1, and so on.
148    RegisterClass0,
149
150    /// The (first) user defined class, subsequent user defined classes are
151    /// UserClass0+1, and so on.
152    UserClass0 = 1<<16
153  };
154
155  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
156  /// N) for the Nth user defined class.
157  unsigned Kind;
158
159  /// SuperClasses - The super classes of this class. Note that for simplicities
160  /// sake user operands only record their immediate super class, while register
161  /// operands include all superclasses.
162  std::vector<ClassInfo*> SuperClasses;
163
164  /// Name - The full class name, suitable for use in an enum.
165  std::string Name;
166
167  /// ClassName - The unadorned generic name for this class (e.g., Token).
168  std::string ClassName;
169
170  /// ValueName - The name of the value this class represents; for a token this
171  /// is the literal token string, for an operand it is the TableGen class (or
172  /// empty if this is a derived class).
173  std::string ValueName;
174
175  /// PredicateMethod - The name of the operand method to test whether the
176  /// operand matches this class; this is not valid for Token or register kinds.
177  std::string PredicateMethod;
178
179  /// RenderMethod - The name of the operand method to add this operand to an
180  /// MCInst; this is not valid for Token or register kinds.
181  std::string RenderMethod;
182
183  /// ParserMethod - The name of the operand method to do a target specific
184  /// parsing on the operand.
185  std::string ParserMethod;
186
187  /// For register classes, the records for all the registers in this class.
188  std::set<Record*> Registers;
189
190  /// For custom match classes, he diagnostic kind for when the predicate fails.
191  std::string DiagnosticType;
192public:
193  /// isRegisterClass() - Check if this is a register class.
194  bool isRegisterClass() const {
195    return Kind >= RegisterClass0 && Kind < UserClass0;
196  }
197
198  /// isUserClass() - Check if this is a user defined class.
199  bool isUserClass() const {
200    return Kind >= UserClass0;
201  }
202
203  /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
204  /// are related if they are in the same class hierarchy.
205  bool isRelatedTo(const ClassInfo &RHS) const {
206    // Tokens are only related to tokens.
207    if (Kind == Token || RHS.Kind == Token)
208      return Kind == Token && RHS.Kind == Token;
209
210    // Registers classes are only related to registers classes, and only if
211    // their intersection is non-empty.
212    if (isRegisterClass() || RHS.isRegisterClass()) {
213      if (!isRegisterClass() || !RHS.isRegisterClass())
214        return false;
215
216      std::set<Record*> Tmp;
217      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
218      std::set_intersection(Registers.begin(), Registers.end(),
219                            RHS.Registers.begin(), RHS.Registers.end(),
220                            II);
221
222      return !Tmp.empty();
223    }
224
225    // Otherwise we have two users operands; they are related if they are in the
226    // same class hierarchy.
227    //
228    // FIXME: This is an oversimplification, they should only be related if they
229    // intersect, however we don't have that information.
230    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
231    const ClassInfo *Root = this;
232    while (!Root->SuperClasses.empty())
233      Root = Root->SuperClasses.front();
234
235    const ClassInfo *RHSRoot = &RHS;
236    while (!RHSRoot->SuperClasses.empty())
237      RHSRoot = RHSRoot->SuperClasses.front();
238
239    return Root == RHSRoot;
240  }
241
242  /// isSubsetOf - Test whether this class is a subset of \p RHS.
243  bool isSubsetOf(const ClassInfo &RHS) const {
244    // This is a subset of RHS if it is the same class...
245    if (this == &RHS)
246      return true;
247
248    // ... or if any of its super classes are a subset of RHS.
249    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
250           ie = SuperClasses.end(); it != ie; ++it)
251      if ((*it)->isSubsetOf(RHS))
252        return true;
253
254    return false;
255  }
256
257  /// operator< - Compare two classes.
258  bool operator<(const ClassInfo &RHS) const {
259    if (this == &RHS)
260      return false;
261
262    // Unrelated classes can be ordered by kind.
263    if (!isRelatedTo(RHS))
264      return Kind < RHS.Kind;
265
266    switch (Kind) {
267    case Invalid:
268      llvm_unreachable("Invalid kind!");
269
270    default:
271      // This class precedes the RHS if it is a proper subset of the RHS.
272      if (isSubsetOf(RHS))
273        return true;
274      if (RHS.isSubsetOf(*this))
275        return false;
276
277      // Otherwise, order by name to ensure we have a total ordering.
278      return ValueName < RHS.ValueName;
279    }
280  }
281};
282
283namespace {
284/// Sort ClassInfo pointers independently of pointer value.
285struct LessClassInfoPtr {
286  bool operator()(const ClassInfo *LHS, const ClassInfo *RHS) const {
287    return *LHS < *RHS;
288  }
289};
290}
291
292/// MatchableInfo - Helper class for storing the necessary information for an
293/// instruction or alias which is capable of being matched.
294struct MatchableInfo {
295  struct AsmOperand {
296    /// Token - This is the token that the operand came from.
297    StringRef Token;
298
299    /// The unique class instance this operand should match.
300    ClassInfo *Class;
301
302    /// The operand name this is, if anything.
303    StringRef SrcOpName;
304
305    /// The suboperand index within SrcOpName, or -1 for the entire operand.
306    int SubOpIdx;
307
308    /// Register record if this token is singleton register.
309    Record *SingletonReg;
310
311    explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1),
312                                       SingletonReg(0) {}
313  };
314
315  /// ResOperand - This represents a single operand in the result instruction
316  /// generated by the match.  In cases (like addressing modes) where a single
317  /// assembler operand expands to multiple MCOperands, this represents the
318  /// single assembler operand, not the MCOperand.
319  struct ResOperand {
320    enum {
321      /// RenderAsmOperand - This represents an operand result that is
322      /// generated by calling the render method on the assembly operand.  The
323      /// corresponding AsmOperand is specified by AsmOperandNum.
324      RenderAsmOperand,
325
326      /// TiedOperand - This represents a result operand that is a duplicate of
327      /// a previous result operand.
328      TiedOperand,
329
330      /// ImmOperand - This represents an immediate value that is dumped into
331      /// the operand.
332      ImmOperand,
333
334      /// RegOperand - This represents a fixed register that is dumped in.
335      RegOperand
336    } Kind;
337
338    union {
339      /// This is the operand # in the AsmOperands list that this should be
340      /// copied from.
341      unsigned AsmOperandNum;
342
343      /// TiedOperandNum - This is the (earlier) result operand that should be
344      /// copied from.
345      unsigned TiedOperandNum;
346
347      /// ImmVal - This is the immediate value added to the instruction.
348      int64_t ImmVal;
349
350      /// Register - This is the register record.
351      Record *Register;
352    };
353
354    /// MINumOperands - The number of MCInst operands populated by this
355    /// operand.
356    unsigned MINumOperands;
357
358    static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
359      ResOperand X;
360      X.Kind = RenderAsmOperand;
361      X.AsmOperandNum = AsmOpNum;
362      X.MINumOperands = NumOperands;
363      return X;
364    }
365
366    static ResOperand getTiedOp(unsigned TiedOperandNum) {
367      ResOperand X;
368      X.Kind = TiedOperand;
369      X.TiedOperandNum = TiedOperandNum;
370      X.MINumOperands = 1;
371      return X;
372    }
373
374    static ResOperand getImmOp(int64_t Val) {
375      ResOperand X;
376      X.Kind = ImmOperand;
377      X.ImmVal = Val;
378      X.MINumOperands = 1;
379      return X;
380    }
381
382    static ResOperand getRegOp(Record *Reg) {
383      ResOperand X;
384      X.Kind = RegOperand;
385      X.Register = Reg;
386      X.MINumOperands = 1;
387      return X;
388    }
389  };
390
391  /// AsmVariantID - Target's assembly syntax variant no.
392  int AsmVariantID;
393
394  /// TheDef - This is the definition of the instruction or InstAlias that this
395  /// matchable came from.
396  Record *const TheDef;
397
398  /// DefRec - This is the definition that it came from.
399  PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
400
401  const CodeGenInstruction *getResultInst() const {
402    if (DefRec.is<const CodeGenInstruction*>())
403      return DefRec.get<const CodeGenInstruction*>();
404    return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
405  }
406
407  /// ResOperands - This is the operand list that should be built for the result
408  /// MCInst.
409  SmallVector<ResOperand, 8> ResOperands;
410
411  /// AsmString - The assembly string for this instruction (with variants
412  /// removed), e.g. "movsx $src, $dst".
413  std::string AsmString;
414
415  /// Mnemonic - This is the first token of the matched instruction, its
416  /// mnemonic.
417  StringRef Mnemonic;
418
419  /// AsmOperands - The textual operands that this instruction matches,
420  /// annotated with a class and where in the OperandList they were defined.
421  /// This directly corresponds to the tokenized AsmString after the mnemonic is
422  /// removed.
423  SmallVector<AsmOperand, 8> AsmOperands;
424
425  /// Predicates - The required subtarget features to match this instruction.
426  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
427
428  /// ConversionFnKind - The enum value which is passed to the generated
429  /// convertToMCInst to convert parsed operands into an MCInst for this
430  /// function.
431  std::string ConversionFnKind;
432
433  MatchableInfo(const CodeGenInstruction &CGI)
434    : AsmVariantID(0), TheDef(CGI.TheDef), DefRec(&CGI),
435      AsmString(CGI.AsmString) {
436  }
437
438  MatchableInfo(const CodeGenInstAlias *Alias)
439    : AsmVariantID(0), TheDef(Alias->TheDef), DefRec(Alias),
440      AsmString(Alias->AsmString) {
441  }
442
443  // Two-operand aliases clone from the main matchable, but mark the second
444  // operand as a tied operand of the first for purposes of the assembler.
445  void formTwoOperandAlias(StringRef Constraint);
446
447  void initialize(const AsmMatcherInfo &Info,
448                  SmallPtrSet<Record*, 16> &SingletonRegisters,
449                  int AsmVariantNo, std::string &RegisterPrefix);
450
451  /// validate - Return true if this matchable is a valid thing to match against
452  /// and perform a bunch of validity checking.
453  bool validate(StringRef CommentDelimiter, bool Hack) const;
454
455  /// extractSingletonRegisterForAsmOperand - Extract singleton register,
456  /// if present, from specified token.
457  void
458  extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
459                                        std::string &RegisterPrefix);
460
461  /// findAsmOperand - Find the AsmOperand with the specified name and
462  /// suboperand index.
463  int findAsmOperand(StringRef N, int SubOpIdx) const {
464    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
465      if (N == AsmOperands[i].SrcOpName &&
466          SubOpIdx == AsmOperands[i].SubOpIdx)
467        return i;
468    return -1;
469  }
470
471  /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
472  /// This does not check the suboperand index.
473  int findAsmOperandNamed(StringRef N) const {
474    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
475      if (N == AsmOperands[i].SrcOpName)
476        return i;
477    return -1;
478  }
479
480  void buildInstructionResultOperands();
481  void buildAliasResultOperands();
482
483  /// operator< - Compare two matchables.
484  bool operator<(const MatchableInfo &RHS) const {
485    // The primary comparator is the instruction mnemonic.
486    if (Mnemonic != RHS.Mnemonic)
487      return Mnemonic < RHS.Mnemonic;
488
489    if (AsmOperands.size() != RHS.AsmOperands.size())
490      return AsmOperands.size() < RHS.AsmOperands.size();
491
492    // Compare lexicographically by operand. The matcher validates that other
493    // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
494    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
495      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
496        return true;
497      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
498        return false;
499    }
500
501    // Give matches that require more features higher precedence. This is useful
502    // because we cannot define AssemblerPredicates with the negation of
503    // processor features. For example, ARM v6 "nop" may be either a HINT or
504    // MOV. With v6, we want to match HINT. The assembler has no way to
505    // predicate MOV under "NoV6", but HINT will always match first because it
506    // requires V6 while MOV does not.
507    if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
508      return RequiredFeatures.size() > RHS.RequiredFeatures.size();
509
510    return false;
511  }
512
513  /// couldMatchAmbiguouslyWith - Check whether this matchable could
514  /// ambiguously match the same set of operands as \p RHS (without being a
515  /// strictly superior match).
516  bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
517    // The primary comparator is the instruction mnemonic.
518    if (Mnemonic != RHS.Mnemonic)
519      return false;
520
521    // The number of operands is unambiguous.
522    if (AsmOperands.size() != RHS.AsmOperands.size())
523      return false;
524
525    // Otherwise, make sure the ordering of the two instructions is unambiguous
526    // by checking that either (a) a token or operand kind discriminates them,
527    // or (b) the ordering among equivalent kinds is consistent.
528
529    // Tokens and operand kinds are unambiguous (assuming a correct target
530    // specific parser).
531    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
532      if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
533          AsmOperands[i].Class->Kind == ClassInfo::Token)
534        if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
535            *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
536          return false;
537
538    // Otherwise, this operand could commute if all operands are equivalent, or
539    // there is a pair of operands that compare less than and a pair that
540    // compare greater than.
541    bool HasLT = false, HasGT = false;
542    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
543      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
544        HasLT = true;
545      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
546        HasGT = true;
547    }
548
549    return !(HasLT ^ HasGT);
550  }
551
552  void dump();
553
554private:
555  void tokenizeAsmString(const AsmMatcherInfo &Info);
556};
557
558/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
559/// feature which participates in instruction matching.
560struct SubtargetFeatureInfo {
561  /// \brief The predicate record for this feature.
562  Record *TheDef;
563
564  /// \brief An unique index assigned to represent this feature.
565  unsigned Index;
566
567  SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
568
569  /// \brief The name of the enumerated constant identifying this feature.
570  std::string getEnumName() const {
571    return "Feature_" + TheDef->getName();
572  }
573};
574
575struct OperandMatchEntry {
576  unsigned OperandMask;
577  MatchableInfo* MI;
578  ClassInfo *CI;
579
580  static OperandMatchEntry create(MatchableInfo* mi, ClassInfo *ci,
581                                  unsigned opMask) {
582    OperandMatchEntry X;
583    X.OperandMask = opMask;
584    X.CI = ci;
585    X.MI = mi;
586    return X;
587  }
588};
589
590
591class AsmMatcherInfo {
592public:
593  /// Tracked Records
594  RecordKeeper &Records;
595
596  /// The tablegen AsmParser record.
597  Record *AsmParser;
598
599  /// Target - The target information.
600  CodeGenTarget &Target;
601
602  /// The classes which are needed for matching.
603  std::vector<ClassInfo*> Classes;
604
605  /// The information on the matchables to match.
606  std::vector<MatchableInfo*> Matchables;
607
608  /// Info for custom matching operands by user defined methods.
609  std::vector<OperandMatchEntry> OperandMatchInfo;
610
611  /// Map of Register records to their class information.
612  typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
613  RegisterClassesTy RegisterClasses;
614
615  /// Map of Predicate records to their subtarget information.
616  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
617
618  /// Map of AsmOperandClass records to their class information.
619  std::map<Record*, ClassInfo*> AsmOperandClasses;
620
621private:
622  /// Map of token to class information which has already been constructed.
623  std::map<std::string, ClassInfo*> TokenClasses;
624
625  /// Map of RegisterClass records to their class information.
626  std::map<Record*, ClassInfo*> RegisterClassClasses;
627
628private:
629  /// getTokenClass - Lookup or create the class for the given token.
630  ClassInfo *getTokenClass(StringRef Token);
631
632  /// getOperandClass - Lookup or create the class for the given operand.
633  ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
634                             int SubOpIdx);
635  ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
636
637  /// buildRegisterClasses - Build the ClassInfo* instances for register
638  /// classes.
639  void buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
640
641  /// buildOperandClasses - Build the ClassInfo* instances for user defined
642  /// operand classes.
643  void buildOperandClasses();
644
645  void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
646                                        unsigned AsmOpIdx);
647  void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
648                                  MatchableInfo::AsmOperand &Op);
649
650public:
651  AsmMatcherInfo(Record *AsmParser,
652                 CodeGenTarget &Target,
653                 RecordKeeper &Records);
654
655  /// buildInfo - Construct the various tables used during matching.
656  void buildInfo();
657
658  /// buildOperandMatchInfo - Build the necessary information to handle user
659  /// defined operand parsing methods.
660  void buildOperandMatchInfo();
661
662  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
663  /// given operand.
664  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
665    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
666    std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
667      SubtargetFeatures.find(Def);
668    return I == SubtargetFeatures.end() ? 0 : I->second;
669  }
670
671  RecordKeeper &getRecords() const {
672    return Records;
673  }
674};
675
676} // End anonymous namespace
677
678void MatchableInfo::dump() {
679  errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
680
681  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
682    AsmOperand &Op = AsmOperands[i];
683    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
684    errs() << '\"' << Op.Token << "\"\n";
685  }
686}
687
688static std::pair<StringRef, StringRef>
689parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
690  // Split via the '='.
691  std::pair<StringRef, StringRef> Ops = S.split('=');
692  if (Ops.second == "")
693    PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
694  // Trim whitespace and the leading '$' on the operand names.
695  size_t start = Ops.first.find_first_of('$');
696  if (start == std::string::npos)
697    PrintFatalError(Loc, "expected '$' prefix on asm operand name");
698  Ops.first = Ops.first.slice(start + 1, std::string::npos);
699  size_t end = Ops.first.find_last_of(" \t");
700  Ops.first = Ops.first.slice(0, end);
701  // Now the second operand.
702  start = Ops.second.find_first_of('$');
703  if (start == std::string::npos)
704    PrintFatalError(Loc, "expected '$' prefix on asm operand name");
705  Ops.second = Ops.second.slice(start + 1, std::string::npos);
706  end = Ops.second.find_last_of(" \t");
707  Ops.first = Ops.first.slice(0, end);
708  return Ops;
709}
710
711void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
712  // Figure out which operands are aliased and mark them as tied.
713  std::pair<StringRef, StringRef> Ops =
714    parseTwoOperandConstraint(Constraint, TheDef->getLoc());
715
716  // Find the AsmOperands that refer to the operands we're aliasing.
717  int SrcAsmOperand = findAsmOperandNamed(Ops.first);
718  int DstAsmOperand = findAsmOperandNamed(Ops.second);
719  if (SrcAsmOperand == -1)
720    PrintFatalError(TheDef->getLoc(),
721                  "unknown source two-operand alias operand '" +
722                  Ops.first.str() + "'.");
723  if (DstAsmOperand == -1)
724    PrintFatalError(TheDef->getLoc(),
725                  "unknown destination two-operand alias operand '" +
726                  Ops.second.str() + "'.");
727
728  // Find the ResOperand that refers to the operand we're aliasing away
729  // and update it to refer to the combined operand instead.
730  for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
731    ResOperand &Op = ResOperands[i];
732    if (Op.Kind == ResOperand::RenderAsmOperand &&
733        Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
734      Op.AsmOperandNum = DstAsmOperand;
735      break;
736    }
737  }
738  // Remove the AsmOperand for the alias operand.
739  AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
740  // Adjust the ResOperand references to any AsmOperands that followed
741  // the one we just deleted.
742  for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
743    ResOperand &Op = ResOperands[i];
744    switch(Op.Kind) {
745    default:
746      // Nothing to do for operands that don't reference AsmOperands.
747      break;
748    case ResOperand::RenderAsmOperand:
749      if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
750        --Op.AsmOperandNum;
751      break;
752    case ResOperand::TiedOperand:
753      if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
754        --Op.TiedOperandNum;
755      break;
756    }
757  }
758}
759
760void MatchableInfo::initialize(const AsmMatcherInfo &Info,
761                               SmallPtrSet<Record*, 16> &SingletonRegisters,
762                               int AsmVariantNo, std::string &RegisterPrefix) {
763  AsmVariantID = AsmVariantNo;
764  AsmString =
765    CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
766
767  tokenizeAsmString(Info);
768
769  // Compute the require features.
770  std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
771  for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
772    if (SubtargetFeatureInfo *Feature =
773        Info.getSubtargetFeature(Predicates[i]))
774      RequiredFeatures.push_back(Feature);
775
776  // Collect singleton registers, if used.
777  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
778    extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
779    if (Record *Reg = AsmOperands[i].SingletonReg)
780      SingletonRegisters.insert(Reg);
781  }
782}
783
784/// tokenizeAsmString - Tokenize a simplified assembly string.
785void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) {
786  StringRef String = AsmString;
787  unsigned Prev = 0;
788  bool InTok = true;
789  for (unsigned i = 0, e = String.size(); i != e; ++i) {
790    switch (String[i]) {
791    case '[':
792    case ']':
793    case '*':
794    case '!':
795    case ' ':
796    case '\t':
797    case ',':
798      if (InTok) {
799        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
800        InTok = false;
801      }
802      if (!isspace(String[i]) && String[i] != ',')
803        AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
804      Prev = i + 1;
805      break;
806
807    case '\\':
808      if (InTok) {
809        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
810        InTok = false;
811      }
812      ++i;
813      assert(i != String.size() && "Invalid quoted character");
814      AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
815      Prev = i + 1;
816      break;
817
818    case '$': {
819      if (InTok) {
820        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
821        InTok = false;
822      }
823
824      // If this isn't "${", treat like a normal token.
825      if (i + 1 == String.size() || String[i + 1] != '{') {
826        Prev = i;
827        break;
828      }
829
830      StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
831      assert(End != String.end() && "Missing brace in operand reference!");
832      size_t EndPos = End - String.begin();
833      AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
834      Prev = EndPos + 1;
835      i = EndPos;
836      break;
837    }
838
839    case '.':
840      if (!Info.AsmParser->getValueAsBit("MnemonicContainsDot")) {
841        if (InTok)
842          AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
843        Prev = i;
844      }
845      InTok = true;
846      break;
847
848    default:
849      InTok = true;
850    }
851  }
852  if (InTok && Prev != String.size())
853    AsmOperands.push_back(AsmOperand(String.substr(Prev)));
854
855  // The first token of the instruction is the mnemonic, which must be a
856  // simple string, not a $foo variable or a singleton register.
857  if (AsmOperands.empty())
858    PrintFatalError(TheDef->getLoc(),
859                  "Instruction '" + TheDef->getName() + "' has no tokens");
860  Mnemonic = AsmOperands[0].Token;
861  if (Mnemonic.empty())
862    PrintFatalError(TheDef->getLoc(),
863                  "Missing instruction mnemonic");
864  // FIXME : Check and raise an error if it is a register.
865  if (Mnemonic[0] == '$')
866    PrintFatalError(TheDef->getLoc(),
867                  "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
868
869  // Remove the first operand, it is tracked in the mnemonic field.
870  AsmOperands.erase(AsmOperands.begin());
871}
872
873bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
874  // Reject matchables with no .s string.
875  if (AsmString.empty())
876    PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
877
878  // Reject any matchables with a newline in them, they should be marked
879  // isCodeGenOnly if they are pseudo instructions.
880  if (AsmString.find('\n') != std::string::npos)
881    PrintFatalError(TheDef->getLoc(),
882                  "multiline instruction is not valid for the asmparser, "
883                  "mark it isCodeGenOnly");
884
885  // Remove comments from the asm string.  We know that the asmstring only
886  // has one line.
887  if (!CommentDelimiter.empty() &&
888      StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
889    PrintFatalError(TheDef->getLoc(),
890                  "asmstring for instruction has comment character in it, "
891                  "mark it isCodeGenOnly");
892
893  // Reject matchables with operand modifiers, these aren't something we can
894  // handle, the target should be refactored to use operands instead of
895  // modifiers.
896  //
897  // Also, check for instructions which reference the operand multiple times;
898  // this implies a constraint we would not honor.
899  std::set<std::string> OperandNames;
900  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
901    StringRef Tok = AsmOperands[i].Token;
902    if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
903      PrintFatalError(TheDef->getLoc(),
904                    "matchable with operand modifier '" + Tok.str() +
905                    "' not supported by asm matcher.  Mark isCodeGenOnly!");
906
907    // Verify that any operand is only mentioned once.
908    // We reject aliases and ignore instructions for now.
909    if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
910      if (!Hack)
911        PrintFatalError(TheDef->getLoc(),
912                      "ERROR: matchable with tied operand '" + Tok.str() +
913                      "' can never be matched!");
914      // FIXME: Should reject these.  The ARM backend hits this with $lane in a
915      // bunch of instructions.  It is unclear what the right answer is.
916      DEBUG({
917        errs() << "warning: '" << TheDef->getName() << "': "
918               << "ignoring instruction with tied operand '"
919               << Tok.str() << "'\n";
920      });
921      return false;
922    }
923  }
924
925  return true;
926}
927
928/// extractSingletonRegisterForAsmOperand - Extract singleton register,
929/// if present, from specified token.
930void MatchableInfo::
931extractSingletonRegisterForAsmOperand(unsigned OperandNo,
932                                      const AsmMatcherInfo &Info,
933                                      std::string &RegisterPrefix) {
934  StringRef Tok = AsmOperands[OperandNo].Token;
935  if (RegisterPrefix.empty()) {
936    std::string LoweredTok = Tok.lower();
937    if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
938      AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
939    return;
940  }
941
942  if (!Tok.startswith(RegisterPrefix))
943    return;
944
945  StringRef RegName = Tok.substr(RegisterPrefix.size());
946  if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
947    AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
948
949  // If there is no register prefix (i.e. "%" in "%eax"), then this may
950  // be some random non-register token, just ignore it.
951  return;
952}
953
954static std::string getEnumNameForToken(StringRef Str) {
955  std::string Res;
956
957  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
958    switch (*it) {
959    case '*': Res += "_STAR_"; break;
960    case '%': Res += "_PCT_"; break;
961    case ':': Res += "_COLON_"; break;
962    case '!': Res += "_EXCLAIM_"; break;
963    case '.': Res += "_DOT_"; break;
964    case '<': Res += "_LT_"; break;
965    case '>': Res += "_GT_"; break;
966    default:
967      if ((*it >= 'A' && *it <= 'Z') ||
968          (*it >= 'a' && *it <= 'z') ||
969          (*it >= '0' && *it <= '9'))
970        Res += *it;
971      else
972        Res += "_" + utostr((unsigned) *it) + "_";
973    }
974  }
975
976  return Res;
977}
978
979ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
980  ClassInfo *&Entry = TokenClasses[Token];
981
982  if (!Entry) {
983    Entry = new ClassInfo();
984    Entry->Kind = ClassInfo::Token;
985    Entry->ClassName = "Token";
986    Entry->Name = "MCK_" + getEnumNameForToken(Token);
987    Entry->ValueName = Token;
988    Entry->PredicateMethod = "<invalid>";
989    Entry->RenderMethod = "<invalid>";
990    Entry->ParserMethod = "";
991    Entry->DiagnosticType = "";
992    Classes.push_back(Entry);
993  }
994
995  return Entry;
996}
997
998ClassInfo *
999AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1000                                int SubOpIdx) {
1001  Record *Rec = OI.Rec;
1002  if (SubOpIdx != -1)
1003    Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1004  return getOperandClass(Rec, SubOpIdx);
1005}
1006
1007ClassInfo *
1008AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1009  if (Rec->isSubClassOf("RegisterOperand")) {
1010    // RegisterOperand may have an associated ParserMatchClass. If it does,
1011    // use it, else just fall back to the underlying register class.
1012    const RecordVal *R = Rec->getValue("ParserMatchClass");
1013    if (R == 0 || R->getValue() == 0)
1014      PrintFatalError("Record `" + Rec->getName() +
1015        "' does not have a ParserMatchClass!\n");
1016
1017    if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1018      Record *MatchClass = DI->getDef();
1019      if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1020        return CI;
1021    }
1022
1023    // No custom match class. Just use the register class.
1024    Record *ClassRec = Rec->getValueAsDef("RegClass");
1025    if (!ClassRec)
1026      PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1027                    "' has no associated register class!\n");
1028    if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1029      return CI;
1030    PrintFatalError(Rec->getLoc(), "register class has no class info!");
1031  }
1032
1033
1034  if (Rec->isSubClassOf("RegisterClass")) {
1035    if (ClassInfo *CI = RegisterClassClasses[Rec])
1036      return CI;
1037    PrintFatalError(Rec->getLoc(), "register class has no class info!");
1038  }
1039
1040  if (!Rec->isSubClassOf("Operand"))
1041    PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1042                  "' does not derive from class Operand!\n");
1043  Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1044  if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1045    return CI;
1046
1047  PrintFatalError(Rec->getLoc(), "operand has no match class!");
1048}
1049
1050void AsmMatcherInfo::
1051buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
1052  const std::vector<CodeGenRegister*> &Registers =
1053    Target.getRegBank().getRegisters();
1054  ArrayRef<CodeGenRegisterClass*> RegClassList =
1055    Target.getRegBank().getRegClasses();
1056
1057  // The register sets used for matching.
1058  std::set< std::set<Record*> > RegisterSets;
1059
1060  // Gather the defined sets.
1061  for (ArrayRef<CodeGenRegisterClass*>::const_iterator it =
1062       RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
1063    RegisterSets.insert(std::set<Record*>(
1064        (*it)->getOrder().begin(), (*it)->getOrder().end()));
1065
1066  // Add any required singleton sets.
1067  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
1068       ie = SingletonRegisters.end(); it != ie; ++it) {
1069    Record *Rec = *it;
1070    RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
1071  }
1072
1073  // Introduce derived sets where necessary (when a register does not determine
1074  // a unique register set class), and build the mapping of registers to the set
1075  // they should classify to.
1076  std::map<Record*, std::set<Record*> > RegisterMap;
1077  for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(),
1078         ie = Registers.end(); it != ie; ++it) {
1079    const CodeGenRegister &CGR = **it;
1080    // Compute the intersection of all sets containing this register.
1081    std::set<Record*> ContainingSet;
1082
1083    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
1084           ie = RegisterSets.end(); it != ie; ++it) {
1085      if (!it->count(CGR.TheDef))
1086        continue;
1087
1088      if (ContainingSet.empty()) {
1089        ContainingSet = *it;
1090        continue;
1091      }
1092
1093      std::set<Record*> Tmp;
1094      std::swap(Tmp, ContainingSet);
1095      std::insert_iterator< std::set<Record*> > II(ContainingSet,
1096                                                   ContainingSet.begin());
1097      std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
1098    }
1099
1100    if (!ContainingSet.empty()) {
1101      RegisterSets.insert(ContainingSet);
1102      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1103    }
1104  }
1105
1106  // Construct the register classes.
1107  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
1108  unsigned Index = 0;
1109  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
1110         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
1111    ClassInfo *CI = new ClassInfo();
1112    CI->Kind = ClassInfo::RegisterClass0 + Index;
1113    CI->ClassName = "Reg" + utostr(Index);
1114    CI->Name = "MCK_Reg" + utostr(Index);
1115    CI->ValueName = "";
1116    CI->PredicateMethod = ""; // unused
1117    CI->RenderMethod = "addRegOperands";
1118    CI->Registers = *it;
1119    // FIXME: diagnostic type.
1120    CI->DiagnosticType = "";
1121    Classes.push_back(CI);
1122    RegisterSetClasses.insert(std::make_pair(*it, CI));
1123  }
1124
1125  // Find the superclasses; we could compute only the subgroup lattice edges,
1126  // but there isn't really a point.
1127  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
1128         ie = RegisterSets.end(); it != ie; ++it) {
1129    ClassInfo *CI = RegisterSetClasses[*it];
1130    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
1131           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
1132      if (*it != *it2 &&
1133          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
1134        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
1135  }
1136
1137  // Name the register classes which correspond to a user defined RegisterClass.
1138  for (ArrayRef<CodeGenRegisterClass*>::const_iterator
1139       it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
1140    const CodeGenRegisterClass &RC = **it;
1141    // Def will be NULL for non-user defined register classes.
1142    Record *Def = RC.getDef();
1143    if (!Def)
1144      continue;
1145    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(RC.getOrder().begin(),
1146                                                         RC.getOrder().end())];
1147    if (CI->ValueName.empty()) {
1148      CI->ClassName = RC.getName();
1149      CI->Name = "MCK_" + RC.getName();
1150      CI->ValueName = RC.getName();
1151    } else
1152      CI->ValueName = CI->ValueName + "," + RC.getName();
1153
1154    RegisterClassClasses.insert(std::make_pair(Def, CI));
1155  }
1156
1157  // Populate the map for individual registers.
1158  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
1159         ie = RegisterMap.end(); it != ie; ++it)
1160    RegisterClasses[it->first] = RegisterSetClasses[it->second];
1161
1162  // Name the register classes which correspond to singleton registers.
1163  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
1164         ie = SingletonRegisters.end(); it != ie; ++it) {
1165    Record *Rec = *it;
1166    ClassInfo *CI = RegisterClasses[Rec];
1167    assert(CI && "Missing singleton register class info!");
1168
1169    if (CI->ValueName.empty()) {
1170      CI->ClassName = Rec->getName();
1171      CI->Name = "MCK_" + Rec->getName();
1172      CI->ValueName = Rec->getName();
1173    } else
1174      CI->ValueName = CI->ValueName + "," + Rec->getName();
1175  }
1176}
1177
1178void AsmMatcherInfo::buildOperandClasses() {
1179  std::vector<Record*> AsmOperands =
1180    Records.getAllDerivedDefinitions("AsmOperandClass");
1181
1182  // Pre-populate AsmOperandClasses map.
1183  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1184         ie = AsmOperands.end(); it != ie; ++it)
1185    AsmOperandClasses[*it] = new ClassInfo();
1186
1187  unsigned Index = 0;
1188  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1189         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
1190    ClassInfo *CI = AsmOperandClasses[*it];
1191    CI->Kind = ClassInfo::UserClass0 + Index;
1192
1193    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
1194    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
1195      DefInit *DI = dyn_cast<DefInit>(Supers->getElement(i));
1196      if (!DI) {
1197        PrintError((*it)->getLoc(), "Invalid super class reference!");
1198        continue;
1199      }
1200
1201      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1202      if (!SC)
1203        PrintError((*it)->getLoc(), "Invalid super class reference!");
1204      else
1205        CI->SuperClasses.push_back(SC);
1206    }
1207    CI->ClassName = (*it)->getValueAsString("Name");
1208    CI->Name = "MCK_" + CI->ClassName;
1209    CI->ValueName = (*it)->getName();
1210
1211    // Get or construct the predicate method name.
1212    Init *PMName = (*it)->getValueInit("PredicateMethod");
1213    if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1214      CI->PredicateMethod = SI->getValue();
1215    } else {
1216      assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1217      CI->PredicateMethod = "is" + CI->ClassName;
1218    }
1219
1220    // Get or construct the render method name.
1221    Init *RMName = (*it)->getValueInit("RenderMethod");
1222    if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1223      CI->RenderMethod = SI->getValue();
1224    } else {
1225      assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1226      CI->RenderMethod = "add" + CI->ClassName + "Operands";
1227    }
1228
1229    // Get the parse method name or leave it as empty.
1230    Init *PRMName = (*it)->getValueInit("ParserMethod");
1231    if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1232      CI->ParserMethod = SI->getValue();
1233
1234    // Get the diagnostic type or leave it as empty.
1235    // Get the parse method name or leave it as empty.
1236    Init *DiagnosticType = (*it)->getValueInit("DiagnosticType");
1237    if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1238      CI->DiagnosticType = SI->getValue();
1239
1240    AsmOperandClasses[*it] = CI;
1241    Classes.push_back(CI);
1242  }
1243}
1244
1245AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1246                               CodeGenTarget &target,
1247                               RecordKeeper &records)
1248  : Records(records), AsmParser(asmParser), Target(target) {
1249}
1250
1251/// buildOperandMatchInfo - Build the necessary information to handle user
1252/// defined operand parsing methods.
1253void AsmMatcherInfo::buildOperandMatchInfo() {
1254
1255  /// Map containing a mask with all operands indices that can be found for
1256  /// that class inside a instruction.
1257  typedef std::map<ClassInfo*, unsigned, LessClassInfoPtr> OpClassMaskTy;
1258  OpClassMaskTy OpClassMask;
1259
1260  for (std::vector<MatchableInfo*>::const_iterator it =
1261       Matchables.begin(), ie = Matchables.end();
1262       it != ie; ++it) {
1263    MatchableInfo &II = **it;
1264    OpClassMask.clear();
1265
1266    // Keep track of all operands of this instructions which belong to the
1267    // same class.
1268    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
1269      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
1270      if (Op.Class->ParserMethod.empty())
1271        continue;
1272      unsigned &OperandMask = OpClassMask[Op.Class];
1273      OperandMask |= (1 << i);
1274    }
1275
1276    // Generate operand match info for each mnemonic/operand class pair.
1277    for (OpClassMaskTy::iterator iit = OpClassMask.begin(),
1278         iie = OpClassMask.end(); iit != iie; ++iit) {
1279      unsigned OpMask = iit->second;
1280      ClassInfo *CI = iit->first;
1281      OperandMatchInfo.push_back(OperandMatchEntry::create(&II, CI, OpMask));
1282    }
1283  }
1284}
1285
1286void AsmMatcherInfo::buildInfo() {
1287  // Build information about all of the AssemblerPredicates.
1288  std::vector<Record*> AllPredicates =
1289    Records.getAllDerivedDefinitions("Predicate");
1290  for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
1291    Record *Pred = AllPredicates[i];
1292    // Ignore predicates that are not intended for the assembler.
1293    if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1294      continue;
1295
1296    if (Pred->getName().empty())
1297      PrintFatalError(Pred->getLoc(), "Predicate has no name!");
1298
1299    unsigned FeatureNo = SubtargetFeatures.size();
1300    SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
1301    assert(FeatureNo < 32 && "Too many subtarget features!");
1302  }
1303
1304  // Parse the instructions; we need to do this first so that we can gather the
1305  // singleton register classes.
1306  SmallPtrSet<Record*, 16> SingletonRegisters;
1307  unsigned VariantCount = Target.getAsmParserVariantCount();
1308  for (unsigned VC = 0; VC != VariantCount; ++VC) {
1309    Record *AsmVariant = Target.getAsmParserVariant(VC);
1310    std::string CommentDelimiter =
1311      AsmVariant->getValueAsString("CommentDelimiter");
1312    std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1313    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1314
1315    for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
1316           E = Target.inst_end(); I != E; ++I) {
1317      const CodeGenInstruction &CGI = **I;
1318
1319      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1320      // filter the set of instructions we consider.
1321      if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
1322        continue;
1323
1324      // Ignore "codegen only" instructions.
1325      if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
1326        continue;
1327
1328      OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
1329
1330      II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1331
1332      // Ignore instructions which shouldn't be matched and diagnose invalid
1333      // instruction definitions with an error.
1334      if (!II->validate(CommentDelimiter, true))
1335        continue;
1336
1337      // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
1338      //
1339      // FIXME: This is a total hack.
1340      if (StringRef(II->TheDef->getName()).startswith("Int_") ||
1341          StringRef(II->TheDef->getName()).endswith("_Int"))
1342        continue;
1343
1344      Matchables.push_back(II.take());
1345    }
1346
1347    // Parse all of the InstAlias definitions and stick them in the list of
1348    // matchables.
1349    std::vector<Record*> AllInstAliases =
1350      Records.getAllDerivedDefinitions("InstAlias");
1351    for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1352      CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
1353
1354      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1355      // filter the set of instruction aliases we consider, based on the target
1356      // instruction.
1357      if (!StringRef(Alias->ResultInst->TheDef->getName())
1358            .startswith( MatchPrefix))
1359        continue;
1360
1361      OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
1362
1363      II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1364
1365      // Validate the alias definitions.
1366      II->validate(CommentDelimiter, false);
1367
1368      Matchables.push_back(II.take());
1369    }
1370  }
1371
1372  // Build info for the register classes.
1373  buildRegisterClasses(SingletonRegisters);
1374
1375  // Build info for the user defined assembly operand classes.
1376  buildOperandClasses();
1377
1378  // Build the information about matchables, now that we have fully formed
1379  // classes.
1380  std::vector<MatchableInfo*> NewMatchables;
1381  for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
1382         ie = Matchables.end(); it != ie; ++it) {
1383    MatchableInfo *II = *it;
1384
1385    // Parse the tokens after the mnemonic.
1386    // Note: buildInstructionOperandReference may insert new AsmOperands, so
1387    // don't precompute the loop bound.
1388    for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1389      MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1390      StringRef Token = Op.Token;
1391
1392      // Check for singleton registers.
1393      if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
1394        Op.Class = RegisterClasses[RegRecord];
1395        assert(Op.Class && Op.Class->Registers.size() == 1 &&
1396               "Unexpected class for singleton register");
1397        continue;
1398      }
1399
1400      // Check for simple tokens.
1401      if (Token[0] != '$') {
1402        Op.Class = getTokenClass(Token);
1403        continue;
1404      }
1405
1406      if (Token.size() > 1 && isdigit(Token[1])) {
1407        Op.Class = getTokenClass(Token);
1408        continue;
1409      }
1410
1411      // Otherwise this is an operand reference.
1412      StringRef OperandName;
1413      if (Token[1] == '{')
1414        OperandName = Token.substr(2, Token.size() - 3);
1415      else
1416        OperandName = Token.substr(1);
1417
1418      if (II->DefRec.is<const CodeGenInstruction*>())
1419        buildInstructionOperandReference(II, OperandName, i);
1420      else
1421        buildAliasOperandReference(II, OperandName, Op);
1422    }
1423
1424    if (II->DefRec.is<const CodeGenInstruction*>()) {
1425      II->buildInstructionResultOperands();
1426      // If the instruction has a two-operand alias, build up the
1427      // matchable here. We'll add them in bulk at the end to avoid
1428      // confusing this loop.
1429      std::string Constraint =
1430        II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1431      if (Constraint != "") {
1432        // Start by making a copy of the original matchable.
1433        OwningPtr<MatchableInfo> AliasII(new MatchableInfo(*II));
1434
1435        // Adjust it to be a two-operand alias.
1436        AliasII->formTwoOperandAlias(Constraint);
1437
1438        // Add the alias to the matchables list.
1439        NewMatchables.push_back(AliasII.take());
1440      }
1441    } else
1442      II->buildAliasResultOperands();
1443  }
1444  if (!NewMatchables.empty())
1445    Matchables.insert(Matchables.end(), NewMatchables.begin(),
1446                      NewMatchables.end());
1447
1448  // Process token alias definitions and set up the associated superclass
1449  // information.
1450  std::vector<Record*> AllTokenAliases =
1451    Records.getAllDerivedDefinitions("TokenAlias");
1452  for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
1453    Record *Rec = AllTokenAliases[i];
1454    ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1455    ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1456    if (FromClass == ToClass)
1457      PrintFatalError(Rec->getLoc(),
1458                    "error: Destination value identical to source value.");
1459    FromClass->SuperClasses.push_back(ToClass);
1460  }
1461
1462  // Reorder classes so that classes precede super classes.
1463  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
1464}
1465
1466/// buildInstructionOperandReference - The specified operand is a reference to a
1467/// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1468void AsmMatcherInfo::
1469buildInstructionOperandReference(MatchableInfo *II,
1470                                 StringRef OperandName,
1471                                 unsigned AsmOpIdx) {
1472  const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1473  const CGIOperandList &Operands = CGI.Operands;
1474  MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1475
1476  // Map this token to an operand.
1477  unsigned Idx;
1478  if (!Operands.hasOperandNamed(OperandName, Idx))
1479    PrintFatalError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1480                  OperandName.str() + "'");
1481
1482  // If the instruction operand has multiple suboperands, but the parser
1483  // match class for the asm operand is still the default "ImmAsmOperand",
1484  // then handle each suboperand separately.
1485  if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1486    Record *Rec = Operands[Idx].Rec;
1487    assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1488    Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1489    if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1490      // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1491      StringRef Token = Op->Token; // save this in case Op gets moved
1492      for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1493        MatchableInfo::AsmOperand NewAsmOp(Token);
1494        NewAsmOp.SubOpIdx = SI;
1495        II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1496      }
1497      // Replace Op with first suboperand.
1498      Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1499      Op->SubOpIdx = 0;
1500    }
1501  }
1502
1503  // Set up the operand class.
1504  Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1505
1506  // If the named operand is tied, canonicalize it to the untied operand.
1507  // For example, something like:
1508  //   (outs GPR:$dst), (ins GPR:$src)
1509  // with an asmstring of
1510  //   "inc $src"
1511  // we want to canonicalize to:
1512  //   "inc $dst"
1513  // so that we know how to provide the $dst operand when filling in the result.
1514  int OITied = -1;
1515  if (Operands[Idx].MINumOperands == 1)
1516    OITied = Operands[Idx].getTiedRegister();
1517  if (OITied != -1) {
1518    // The tied operand index is an MIOperand index, find the operand that
1519    // contains it.
1520    std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1521    OperandName = Operands[Idx.first].Name;
1522    Op->SubOpIdx = Idx.second;
1523  }
1524
1525  Op->SrcOpName = OperandName;
1526}
1527
1528/// buildAliasOperandReference - When parsing an operand reference out of the
1529/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1530/// operand reference is by looking it up in the result pattern definition.
1531void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1532                                                StringRef OperandName,
1533                                                MatchableInfo::AsmOperand &Op) {
1534  const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1535
1536  // Set up the operand class.
1537  for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1538    if (CGA.ResultOperands[i].isRecord() &&
1539        CGA.ResultOperands[i].getName() == OperandName) {
1540      // It's safe to go with the first one we find, because CodeGenInstAlias
1541      // validates that all operands with the same name have the same record.
1542      Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1543      // Use the match class from the Alias definition, not the
1544      // destination instruction, as we may have an immediate that's
1545      // being munged by the match class.
1546      Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1547                                 Op.SubOpIdx);
1548      Op.SrcOpName = OperandName;
1549      return;
1550    }
1551
1552  PrintFatalError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1553                OperandName.str() + "'");
1554}
1555
1556void MatchableInfo::buildInstructionResultOperands() {
1557  const CodeGenInstruction *ResultInst = getResultInst();
1558
1559  // Loop over all operands of the result instruction, determining how to
1560  // populate them.
1561  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1562    const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
1563
1564    // If this is a tied operand, just copy from the previously handled operand.
1565    int TiedOp = -1;
1566    if (OpInfo.MINumOperands == 1)
1567      TiedOp = OpInfo.getTiedRegister();
1568    if (TiedOp != -1) {
1569      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1570      continue;
1571    }
1572
1573    // Find out what operand from the asmparser this MCInst operand comes from.
1574    int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1575    if (OpInfo.Name.empty() || SrcOperand == -1) {
1576      // This may happen for operands that are tied to a suboperand of a
1577      // complex operand.  Simply use a dummy value here; nobody should
1578      // use this operand slot.
1579      // FIXME: The long term goal is for the MCOperand list to not contain
1580      // tied operands at all.
1581      ResOperands.push_back(ResOperand::getImmOp(0));
1582      continue;
1583    }
1584
1585    // Check if the one AsmOperand populates the entire operand.
1586    unsigned NumOperands = OpInfo.MINumOperands;
1587    if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1588      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1589      continue;
1590    }
1591
1592    // Add a separate ResOperand for each suboperand.
1593    for (unsigned AI = 0; AI < NumOperands; ++AI) {
1594      assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1595             AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1596             "unexpected AsmOperands for suboperands");
1597      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1598    }
1599  }
1600}
1601
1602void MatchableInfo::buildAliasResultOperands() {
1603  const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1604  const CodeGenInstruction *ResultInst = getResultInst();
1605
1606  // Loop over all operands of the result instruction, determining how to
1607  // populate them.
1608  unsigned AliasOpNo = 0;
1609  unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1610  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1611    const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1612
1613    // If this is a tied operand, just copy from the previously handled operand.
1614    int TiedOp = -1;
1615    if (OpInfo->MINumOperands == 1)
1616      TiedOp = OpInfo->getTiedRegister();
1617    if (TiedOp != -1) {
1618      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1619      continue;
1620    }
1621
1622    // Handle all the suboperands for this operand.
1623    const std::string &OpName = OpInfo->Name;
1624    for ( ; AliasOpNo <  LastOpNo &&
1625            CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1626      int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1627
1628      // Find out what operand from the asmparser that this MCInst operand
1629      // comes from.
1630      switch (CGA.ResultOperands[AliasOpNo].Kind) {
1631      case CodeGenInstAlias::ResultOperand::K_Record: {
1632        StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1633        int SrcOperand = findAsmOperand(Name, SubIdx);
1634        if (SrcOperand == -1)
1635          PrintFatalError(TheDef->getLoc(), "Instruction '" +
1636                        TheDef->getName() + "' has operand '" + OpName +
1637                        "' that doesn't appear in asm string!");
1638        unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1639        ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1640                                                        NumOperands));
1641        break;
1642      }
1643      case CodeGenInstAlias::ResultOperand::K_Imm: {
1644        int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1645        ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1646        break;
1647      }
1648      case CodeGenInstAlias::ResultOperand::K_Reg: {
1649        Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1650        ResOperands.push_back(ResOperand::getRegOp(Reg));
1651        break;
1652      }
1653      }
1654    }
1655  }
1656}
1657
1658static unsigned getConverterOperandID(const std::string &Name,
1659                                      SetVector<std::string> &Table,
1660                                      bool &IsNew) {
1661  IsNew = Table.insert(Name);
1662
1663  unsigned ID = IsNew ? Table.size() - 1 :
1664    std::find(Table.begin(), Table.end(), Name) - Table.begin();
1665
1666  assert(ID < Table.size());
1667
1668  return ID;
1669}
1670
1671
1672static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1673                             std::vector<MatchableInfo*> &Infos,
1674                             raw_ostream &OS) {
1675  SetVector<std::string> OperandConversionKinds;
1676  SetVector<std::string> InstructionConversionKinds;
1677  std::vector<std::vector<uint8_t> > ConversionTable;
1678  size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1679
1680  // TargetOperandClass - This is the target's operand class, like X86Operand.
1681  std::string TargetOperandClass = Target.getName() + "Operand";
1682
1683  // Write the convert function to a separate stream, so we can drop it after
1684  // the enum. We'll build up the conversion handlers for the individual
1685  // operand types opportunistically as we encounter them.
1686  std::string ConvertFnBody;
1687  raw_string_ostream CvtOS(ConvertFnBody);
1688  // Start the unified conversion function.
1689  CvtOS << "void " << Target.getName() << ClassName << "::\n"
1690        << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1691        << "unsigned Opcode,\n"
1692        << "                const SmallVectorImpl<MCParsedAsmOperand*"
1693        << "> &Operands) {\n"
1694        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1695        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
1696        << "  Inst.setOpcode(Opcode);\n"
1697        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1698        << "    switch (*p) {\n"
1699        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1700        << "    case CVT_Reg:\n"
1701        << "      static_cast<" << TargetOperandClass
1702        << "*>(Operands[*(p + 1)])->addRegOperands(Inst, 1);\n"
1703        << "      break;\n"
1704        << "    case CVT_Tied:\n"
1705        << "      Inst.addOperand(Inst.getOperand(*(p + 1)));\n"
1706        << "      break;\n";
1707
1708  std::string OperandFnBody;
1709  raw_string_ostream OpOS(OperandFnBody);
1710  // Start the operand number lookup function.
1711  OpOS << "void " << Target.getName() << ClassName << "::\n"
1712       << "convertToMapAndConstraints(unsigned Kind,\n";
1713  OpOS.indent(27);
1714  OpOS << "const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {\n"
1715       << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1716       << "  unsigned NumMCOperands = 0;\n"
1717       << "  const uint8_t *Converter = ConversionTable[Kind];\n"
1718       << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1719       << "    switch (*p) {\n"
1720       << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1721       << "    case CVT_Reg:\n"
1722       << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1723       << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
1724       << "      ++NumMCOperands;\n"
1725       << "      break;\n"
1726       << "    case CVT_Tied:\n"
1727       << "      ++NumMCOperands;\n"
1728       << "      break;\n";
1729
1730  // Pre-populate the operand conversion kinds with the standard always
1731  // available entries.
1732  OperandConversionKinds.insert("CVT_Done");
1733  OperandConversionKinds.insert("CVT_Reg");
1734  OperandConversionKinds.insert("CVT_Tied");
1735  enum { CVT_Done, CVT_Reg, CVT_Tied };
1736
1737  for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
1738         ie = Infos.end(); it != ie; ++it) {
1739    MatchableInfo &II = **it;
1740
1741    // Check if we have a custom match function.
1742    std::string AsmMatchConverter =
1743      II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
1744    if (!AsmMatchConverter.empty()) {
1745      std::string Signature = "ConvertCustom_" + AsmMatchConverter;
1746      II.ConversionFnKind = Signature;
1747
1748      // Check if we have already generated this signature.
1749      if (!InstructionConversionKinds.insert(Signature))
1750        continue;
1751
1752      // Remember this converter for the kind enum.
1753      unsigned KindID = OperandConversionKinds.size();
1754      OperandConversionKinds.insert("CVT_" +
1755                                    getEnumNameForToken(AsmMatchConverter));
1756
1757      // Add the converter row for this instruction.
1758      ConversionTable.push_back(std::vector<uint8_t>());
1759      ConversionTable.back().push_back(KindID);
1760      ConversionTable.back().push_back(CVT_Done);
1761
1762      // Add the handler to the conversion driver function.
1763      CvtOS << "    case CVT_"
1764            << getEnumNameForToken(AsmMatchConverter) << ":\n"
1765            << "      " << AsmMatchConverter << "(Inst, Operands);\n"
1766            << "      break;\n";
1767
1768      // FIXME: Handle the operand number lookup for custom match functions.
1769      continue;
1770    }
1771
1772    // Build the conversion function signature.
1773    std::string Signature = "Convert";
1774
1775    std::vector<uint8_t> ConversionRow;
1776
1777    // Compute the convert enum and the case body.
1778    MaxRowLength = std::max(MaxRowLength, II.ResOperands.size()*2 + 1 );
1779
1780    for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
1781      const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
1782
1783      // Generate code to populate each result operand.
1784      switch (OpInfo.Kind) {
1785      case MatchableInfo::ResOperand::RenderAsmOperand: {
1786        // This comes from something we parsed.
1787        MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
1788
1789        // Registers are always converted the same, don't duplicate the
1790        // conversion function based on them.
1791        Signature += "__";
1792        std::string Class;
1793        Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
1794        Signature += Class;
1795        Signature += utostr(OpInfo.MINumOperands);
1796        Signature += "_" + itostr(OpInfo.AsmOperandNum);
1797
1798        // Add the conversion kind, if necessary, and get the associated ID
1799        // the index of its entry in the vector).
1800        std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
1801                                     Op.Class->RenderMethod);
1802        Name = getEnumNameForToken(Name);
1803
1804        bool IsNewConverter = false;
1805        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1806                                            IsNewConverter);
1807
1808        // Add the operand entry to the instruction kind conversion row.
1809        ConversionRow.push_back(ID);
1810        ConversionRow.push_back(OpInfo.AsmOperandNum + 1);
1811
1812        if (!IsNewConverter)
1813          break;
1814
1815        // This is a new operand kind. Add a handler for it to the
1816        // converter driver.
1817        CvtOS << "    case " << Name << ":\n"
1818              << "      static_cast<" << TargetOperandClass
1819              << "*>(Operands[*(p + 1)])->"
1820              << Op.Class->RenderMethod << "(Inst, " << OpInfo.MINumOperands
1821              << ");\n"
1822              << "      break;\n";
1823
1824        // Add a handler for the operand number lookup.
1825        OpOS << "    case " << Name << ":\n"
1826             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
1827
1828        if (Op.Class->isRegisterClass())
1829          OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
1830        else
1831          OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
1832        OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
1833             << "      break;\n";
1834        break;
1835      }
1836      case MatchableInfo::ResOperand::TiedOperand: {
1837        // If this operand is tied to a previous one, just copy the MCInst
1838        // operand from the earlier one.We can only tie single MCOperand values.
1839        assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
1840        unsigned TiedOp = OpInfo.TiedOperandNum;
1841        assert(i > TiedOp && "Tied operand precedes its target!");
1842        Signature += "__Tie" + utostr(TiedOp);
1843        ConversionRow.push_back(CVT_Tied);
1844        ConversionRow.push_back(TiedOp);
1845        break;
1846      }
1847      case MatchableInfo::ResOperand::ImmOperand: {
1848        int64_t Val = OpInfo.ImmVal;
1849        std::string Ty = "imm_" + itostr(Val);
1850        Signature += "__" + Ty;
1851
1852        std::string Name = "CVT_" + Ty;
1853        bool IsNewConverter = false;
1854        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1855                                            IsNewConverter);
1856        // Add the operand entry to the instruction kind conversion row.
1857        ConversionRow.push_back(ID);
1858        ConversionRow.push_back(0);
1859
1860        if (!IsNewConverter)
1861          break;
1862
1863        CvtOS << "    case " << Name << ":\n"
1864              << "      Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"
1865              << "      break;\n";
1866
1867        OpOS << "    case " << Name << ":\n"
1868             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1869             << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
1870             << "      ++NumMCOperands;\n"
1871             << "      break;\n";
1872        break;
1873      }
1874      case MatchableInfo::ResOperand::RegOperand: {
1875        std::string Reg, Name;
1876        if (OpInfo.Register == 0) {
1877          Name = "reg0";
1878          Reg = "0";
1879        } else {
1880          Reg = getQualifiedName(OpInfo.Register);
1881          Name = "reg" + OpInfo.Register->getName();
1882        }
1883        Signature += "__" + Name;
1884        Name = "CVT_" + Name;
1885        bool IsNewConverter = false;
1886        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1887                                            IsNewConverter);
1888        // Add the operand entry to the instruction kind conversion row.
1889        ConversionRow.push_back(ID);
1890        ConversionRow.push_back(0);
1891
1892        if (!IsNewConverter)
1893          break;
1894        CvtOS << "    case " << Name << ":\n"
1895              << "      Inst.addOperand(MCOperand::CreateReg(" << Reg << "));\n"
1896              << "      break;\n";
1897
1898        OpOS << "    case " << Name << ":\n"
1899             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1900             << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
1901             << "      ++NumMCOperands;\n"
1902             << "      break;\n";
1903      }
1904      }
1905    }
1906
1907    // If there were no operands, add to the signature to that effect
1908    if (Signature == "Convert")
1909      Signature += "_NoOperands";
1910
1911    II.ConversionFnKind = Signature;
1912
1913    // Save the signature. If we already have it, don't add a new row
1914    // to the table.
1915    if (!InstructionConversionKinds.insert(Signature))
1916      continue;
1917
1918    // Add the row to the table.
1919    ConversionTable.push_back(ConversionRow);
1920  }
1921
1922  // Finish up the converter driver function.
1923  CvtOS << "    }\n  }\n}\n\n";
1924
1925  // Finish up the operand number lookup function.
1926  OpOS << "    }\n  }\n}\n\n";
1927
1928  OS << "namespace {\n";
1929
1930  // Output the operand conversion kind enum.
1931  OS << "enum OperatorConversionKind {\n";
1932  for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i)
1933    OS << "  " << OperandConversionKinds[i] << ",\n";
1934  OS << "  CVT_NUM_CONVERTERS\n";
1935  OS << "};\n\n";
1936
1937  // Output the instruction conversion kind enum.
1938  OS << "enum InstructionConversionKind {\n";
1939  for (SetVector<std::string>::const_iterator
1940         i = InstructionConversionKinds.begin(),
1941         e = InstructionConversionKinds.end(); i != e; ++i)
1942    OS << "  " << *i << ",\n";
1943  OS << "  CVT_NUM_SIGNATURES\n";
1944  OS << "};\n\n";
1945
1946
1947  OS << "} // end anonymous namespace\n\n";
1948
1949  // Output the conversion table.
1950  OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
1951     << MaxRowLength << "] = {\n";
1952
1953  for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
1954    assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
1955    OS << "  // " << InstructionConversionKinds[Row] << "\n";
1956    OS << "  { ";
1957    for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
1958      OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
1959         << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
1960    OS << "CVT_Done },\n";
1961  }
1962
1963  OS << "};\n\n";
1964
1965  // Spit out the conversion driver function.
1966  OS << CvtOS.str();
1967
1968  // Spit out the operand number lookup function.
1969  OS << OpOS.str();
1970}
1971
1972/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
1973static void emitMatchClassEnumeration(CodeGenTarget &Target,
1974                                      std::vector<ClassInfo*> &Infos,
1975                                      raw_ostream &OS) {
1976  OS << "namespace {\n\n";
1977
1978  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1979     << "/// instruction matching.\n";
1980  OS << "enum MatchClassKind {\n";
1981  OS << "  InvalidMatchClass = 0,\n";
1982  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1983         ie = Infos.end(); it != ie; ++it) {
1984    ClassInfo &CI = **it;
1985    OS << "  " << CI.Name << ", // ";
1986    if (CI.Kind == ClassInfo::Token) {
1987      OS << "'" << CI.ValueName << "'\n";
1988    } else if (CI.isRegisterClass()) {
1989      if (!CI.ValueName.empty())
1990        OS << "register class '" << CI.ValueName << "'\n";
1991      else
1992        OS << "derived register class\n";
1993    } else {
1994      OS << "user defined class '" << CI.ValueName << "'\n";
1995    }
1996  }
1997  OS << "  NumMatchClassKinds\n";
1998  OS << "};\n\n";
1999
2000  OS << "}\n\n";
2001}
2002
2003/// emitValidateOperandClass - Emit the function to validate an operand class.
2004static void emitValidateOperandClass(AsmMatcherInfo &Info,
2005                                     raw_ostream &OS) {
2006  OS << "static unsigned validateOperandClass(MCParsedAsmOperand *GOp, "
2007     << "MatchClassKind Kind) {\n";
2008  OS << "  " << Info.Target.getName() << "Operand &Operand = *("
2009     << Info.Target.getName() << "Operand*)GOp;\n";
2010
2011  // The InvalidMatchClass is not to match any operand.
2012  OS << "  if (Kind == InvalidMatchClass)\n";
2013  OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2014
2015  // Check for Token operands first.
2016  // FIXME: Use a more specific diagnostic type.
2017  OS << "  if (Operand.isToken())\n";
2018  OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2019     << "             MCTargetAsmParser::Match_Success :\n"
2020     << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2021
2022  // Check the user classes. We don't care what order since we're only
2023  // actually matching against one of them.
2024  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
2025         ie = Info.Classes.end(); it != ie; ++it) {
2026    ClassInfo &CI = **it;
2027
2028    if (!CI.isUserClass())
2029      continue;
2030
2031    OS << "  // '" << CI.ClassName << "' class\n";
2032    OS << "  if (Kind == " << CI.Name << ") {\n";
2033    OS << "    if (Operand." << CI.PredicateMethod << "())\n";
2034    OS << "      return MCTargetAsmParser::Match_Success;\n";
2035    if (!CI.DiagnosticType.empty())
2036      OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2037         << CI.DiagnosticType << ";\n";
2038    OS << "  }\n\n";
2039  }
2040
2041  // Check for register operands, including sub-classes.
2042  OS << "  if (Operand.isReg()) {\n";
2043  OS << "    MatchClassKind OpKind;\n";
2044  OS << "    switch (Operand.getReg()) {\n";
2045  OS << "    default: OpKind = InvalidMatchClass; break;\n";
2046  for (AsmMatcherInfo::RegisterClassesTy::iterator
2047         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
2048       it != ie; ++it)
2049    OS << "    case " << Info.Target.getName() << "::"
2050       << it->first->getName() << ": OpKind = " << it->second->Name
2051       << "; break;\n";
2052  OS << "    }\n";
2053  OS << "    return isSubclass(OpKind, Kind) ? "
2054     << "MCTargetAsmParser::Match_Success :\n                             "
2055     << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";
2056
2057  // Generic fallthrough match failure case for operands that don't have
2058  // specialized diagnostic types.
2059  OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2060  OS << "}\n\n";
2061}
2062
2063/// emitIsSubclass - Emit the subclass predicate function.
2064static void emitIsSubclass(CodeGenTarget &Target,
2065                           std::vector<ClassInfo*> &Infos,
2066                           raw_ostream &OS) {
2067  OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2068  OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2069  OS << "  if (A == B)\n";
2070  OS << "    return true;\n\n";
2071
2072  std::string OStr;
2073  raw_string_ostream SS(OStr);
2074  unsigned Count = 0;
2075  SS << "  switch (A) {\n";
2076  SS << "  default:\n";
2077  SS << "    return false;\n";
2078  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
2079         ie = Infos.end(); it != ie; ++it) {
2080    ClassInfo &A = **it;
2081
2082    std::vector<StringRef> SuperClasses;
2083    for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
2084         ie = Infos.end(); it != ie; ++it) {
2085      ClassInfo &B = **it;
2086
2087      if (&A != &B && A.isSubsetOf(B))
2088        SuperClasses.push_back(B.Name);
2089    }
2090
2091    if (SuperClasses.empty())
2092      continue;
2093    ++Count;
2094
2095    SS << "\n  case " << A.Name << ":\n";
2096
2097    if (SuperClasses.size() == 1) {
2098      SS << "    return B == " << SuperClasses.back().str() << ";\n";
2099      continue;
2100    }
2101
2102    if (!SuperClasses.empty()) {
2103      SS << "    switch (B) {\n";
2104      SS << "    default: return false;\n";
2105      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
2106        SS << "    case " << SuperClasses[i].str() << ": return true;\n";
2107      SS << "    }\n";
2108    } else {
2109      // No case statement to emit
2110      SS << "    return false;\n";
2111    }
2112  }
2113  SS << "  }\n";
2114
2115  // If there were case statements emitted into the string stream, write them
2116  // to the output stream, otherwise write the default.
2117  if (Count)
2118    OS << SS.str();
2119  else
2120    OS << "  return false;\n";
2121
2122  OS << "}\n\n";
2123}
2124
2125/// emitMatchTokenString - Emit the function to match a token string to the
2126/// appropriate match class value.
2127static void emitMatchTokenString(CodeGenTarget &Target,
2128                                 std::vector<ClassInfo*> &Infos,
2129                                 raw_ostream &OS) {
2130  // Construct the match list.
2131  std::vector<StringMatcher::StringPair> Matches;
2132  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
2133         ie = Infos.end(); it != ie; ++it) {
2134    ClassInfo &CI = **it;
2135
2136    if (CI.Kind == ClassInfo::Token)
2137      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
2138                                                  "return " + CI.Name + ";"));
2139  }
2140
2141  OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2142
2143  StringMatcher("Name", Matches, OS).Emit();
2144
2145  OS << "  return InvalidMatchClass;\n";
2146  OS << "}\n\n";
2147}
2148
2149/// emitMatchRegisterName - Emit the function to match a string to the target
2150/// specific register enum.
2151static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2152                                  raw_ostream &OS) {
2153  // Construct the match list.
2154  std::vector<StringMatcher::StringPair> Matches;
2155  const std::vector<CodeGenRegister*> &Regs =
2156    Target.getRegBank().getRegisters();
2157  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2158    const CodeGenRegister *Reg = Regs[i];
2159    if (Reg->TheDef->getValueAsString("AsmName").empty())
2160      continue;
2161
2162    Matches.push_back(StringMatcher::StringPair(
2163                                     Reg->TheDef->getValueAsString("AsmName"),
2164                                     "return " + utostr(Reg->EnumValue) + ";"));
2165  }
2166
2167  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2168
2169  StringMatcher("Name", Matches, OS).Emit();
2170
2171  OS << "  return 0;\n";
2172  OS << "}\n\n";
2173}
2174
2175/// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
2176/// definitions.
2177static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
2178                                                raw_ostream &OS) {
2179  OS << "// Flags for subtarget features that participate in "
2180     << "instruction matching.\n";
2181  OS << "enum SubtargetFeatureFlag {\n";
2182  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
2183         it = Info.SubtargetFeatures.begin(),
2184         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
2185    SubtargetFeatureInfo &SFI = *it->second;
2186    OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
2187  }
2188  OS << "  Feature_None = 0\n";
2189  OS << "};\n\n";
2190}
2191
2192/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2193static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2194  // Get the set of diagnostic types from all of the operand classes.
2195  std::set<StringRef> Types;
2196  for (std::map<Record*, ClassInfo*>::const_iterator
2197       I = Info.AsmOperandClasses.begin(),
2198       E = Info.AsmOperandClasses.end(); I != E; ++I) {
2199    if (!I->second->DiagnosticType.empty())
2200      Types.insert(I->second->DiagnosticType);
2201  }
2202
2203  if (Types.empty()) return;
2204
2205  // Now emit the enum entries.
2206  for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
2207       I != E; ++I)
2208    OS << "  Match_" << *I << ",\n";
2209  OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2210}
2211
2212/// emitGetSubtargetFeatureName - Emit the helper function to get the
2213/// user-level name for a subtarget feature.
2214static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2215  OS << "// User-level names for subtarget features that participate in\n"
2216     << "// instruction matching.\n"
2217     << "static const char *getSubtargetFeatureName(unsigned Val) {\n";
2218  if (!Info.SubtargetFeatures.empty()) {
2219    OS << "  switch(Val) {\n";
2220    for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
2221           it = Info.SubtargetFeatures.begin(),
2222           ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
2223      SubtargetFeatureInfo &SFI = *it->second;
2224      // FIXME: Totally just a placeholder name to get the algorithm working.
2225      OS << "  case " << SFI.getEnumName() << ": return \""
2226         << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2227    }
2228    OS << "  default: return \"(unknown)\";\n";
2229    OS << "  }\n";
2230  } else {
2231    // Nothing to emit, so skip the switch
2232    OS << "  return \"(unknown)\";\n";
2233  }
2234  OS << "}\n\n";
2235}
2236
2237/// emitComputeAvailableFeatures - Emit the function to compute the list of
2238/// available features given a subtarget.
2239static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
2240                                         raw_ostream &OS) {
2241  std::string ClassName =
2242    Info.AsmParser->getValueAsString("AsmParserClassName");
2243
2244  OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
2245     << "ComputeAvailableFeatures(uint64_t FB) const {\n";
2246  OS << "  unsigned Features = 0;\n";
2247  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
2248         it = Info.SubtargetFeatures.begin(),
2249         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
2250    SubtargetFeatureInfo &SFI = *it->second;
2251
2252    OS << "  if (";
2253    std::string CondStorage =
2254      SFI.TheDef->getValueAsString("AssemblerCondString");
2255    StringRef Conds = CondStorage;
2256    std::pair<StringRef,StringRef> Comma = Conds.split(',');
2257    bool First = true;
2258    do {
2259      if (!First)
2260        OS << " && ";
2261
2262      bool Neg = false;
2263      StringRef Cond = Comma.first;
2264      if (Cond[0] == '!') {
2265        Neg = true;
2266        Cond = Cond.substr(1);
2267      }
2268
2269      OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
2270      if (Neg)
2271        OS << " == 0";
2272      else
2273        OS << " != 0";
2274      OS << ")";
2275
2276      if (Comma.second.empty())
2277        break;
2278
2279      First = false;
2280      Comma = Comma.second.split(',');
2281    } while (true);
2282
2283    OS << ")\n";
2284    OS << "    Features |= " << SFI.getEnumName() << ";\n";
2285  }
2286  OS << "  return Features;\n";
2287  OS << "}\n\n";
2288}
2289
2290static std::string GetAliasRequiredFeatures(Record *R,
2291                                            const AsmMatcherInfo &Info) {
2292  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2293  std::string Result;
2294  unsigned NumFeatures = 0;
2295  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2296    SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2297
2298    if (F == 0)
2299      PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2300                    "' is not marked as an AssemblerPredicate!");
2301
2302    if (NumFeatures)
2303      Result += '|';
2304
2305    Result += F->getEnumName();
2306    ++NumFeatures;
2307  }
2308
2309  if (NumFeatures > 1)
2310    Result = '(' + Result + ')';
2311  return Result;
2312}
2313
2314static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2315                                     std::vector<Record*> &Aliases,
2316                                     unsigned Indent = 0,
2317                                  StringRef AsmParserVariantName = StringRef()){
2318  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2319  // iteration order of the map is stable.
2320  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2321
2322  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
2323    Record *R = Aliases[i];
2324    // FIXME: Allow AssemblerVariantName to be a comma separated list.
2325    std::string AsmVariantName = R->getValueAsString("AsmVariantName");
2326    if (AsmVariantName != AsmParserVariantName)
2327      continue;
2328    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2329  }
2330  if (AliasesFromMnemonic.empty())
2331    return;
2332
2333  // Process each alias a "from" mnemonic at a time, building the code executed
2334  // by the string remapper.
2335  std::vector<StringMatcher::StringPair> Cases;
2336  for (std::map<std::string, std::vector<Record*> >::iterator
2337       I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
2338       I != E; ++I) {
2339    const std::vector<Record*> &ToVec = I->second;
2340
2341    // Loop through each alias and emit code that handles each case.  If there
2342    // are two instructions without predicates, emit an error.  If there is one,
2343    // emit it last.
2344    std::string MatchCode;
2345    int AliasWithNoPredicate = -1;
2346
2347    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2348      Record *R = ToVec[i];
2349      std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2350
2351      // If this unconditionally matches, remember it for later and diagnose
2352      // duplicates.
2353      if (FeatureMask.empty()) {
2354        if (AliasWithNoPredicate != -1) {
2355          // We can't have two aliases from the same mnemonic with no predicate.
2356          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2357                     "two MnemonicAliases with the same 'from' mnemonic!");
2358          PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2359        }
2360
2361        AliasWithNoPredicate = i;
2362        continue;
2363      }
2364      if (R->getValueAsString("ToMnemonic") == I->first)
2365        PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2366
2367      if (!MatchCode.empty())
2368        MatchCode += "else ";
2369      MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
2370      MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
2371    }
2372
2373    if (AliasWithNoPredicate != -1) {
2374      Record *R = ToVec[AliasWithNoPredicate];
2375      if (!MatchCode.empty())
2376        MatchCode += "else\n  ";
2377      MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
2378    }
2379
2380    MatchCode += "return;";
2381
2382    Cases.push_back(std::make_pair(I->first, MatchCode));
2383  }
2384  StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2385}
2386
2387/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2388/// emit a function for them and return true, otherwise return false.
2389static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2390                                CodeGenTarget &Target) {
2391  // Ignore aliases when match-prefix is set.
2392  if (!MatchPrefix.empty())
2393    return false;
2394
2395  std::vector<Record*> Aliases =
2396    Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2397  if (Aliases.empty()) return false;
2398
2399  OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2400    "unsigned Features, unsigned VariantID) {\n";
2401  OS << "  switch (VariantID) {\n";
2402  unsigned VariantCount = Target.getAsmParserVariantCount();
2403  for (unsigned VC = 0; VC != VariantCount; ++VC) {
2404    Record *AsmVariant = Target.getAsmParserVariant(VC);
2405    int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2406    std::string AsmParserVariantName = AsmVariant->getValueAsString("Name");
2407    OS << "    case " << AsmParserVariantNo << ":\n";
2408    emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2409                             AsmParserVariantName);
2410    OS << "    break;\n";
2411  }
2412  OS << "  }\n";
2413
2414  // Emit aliases that apply to all variants.
2415  emitMnemonicAliasVariant(OS, Info, Aliases);
2416
2417  OS << "}\n\n";
2418
2419  return true;
2420}
2421
2422static const char *getMinimalTypeForRange(uint64_t Range) {
2423  assert(Range < 0xFFFFFFFFULL && "Enum too large");
2424  if (Range > 0xFFFF)
2425    return "uint32_t";
2426  if (Range > 0xFF)
2427    return "uint16_t";
2428  return "uint8_t";
2429}
2430
2431static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2432                              const AsmMatcherInfo &Info, StringRef ClassName,
2433                              StringToOffsetTable &StringTable,
2434                              unsigned MaxMnemonicIndex) {
2435  unsigned MaxMask = 0;
2436  for (std::vector<OperandMatchEntry>::const_iterator it =
2437       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2438       it != ie; ++it) {
2439    MaxMask |= it->OperandMask;
2440  }
2441
2442  // Emit the static custom operand parsing table;
2443  OS << "namespace {\n";
2444  OS << "  struct OperandMatchEntry {\n";
2445  OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
2446               << " RequiredFeatures;\n";
2447  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2448               << " Mnemonic;\n";
2449  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
2450               << " Class;\n";
2451  OS << "    " << getMinimalTypeForRange(MaxMask)
2452               << " OperandMask;\n\n";
2453  OS << "    StringRef getMnemonic() const {\n";
2454  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2455  OS << "                       MnemonicTable[Mnemonic]);\n";
2456  OS << "    }\n";
2457  OS << "  };\n\n";
2458
2459  OS << "  // Predicate for searching for an opcode.\n";
2460  OS << "  struct LessOpcodeOperand {\n";
2461  OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2462  OS << "      return LHS.getMnemonic()  < RHS;\n";
2463  OS << "    }\n";
2464  OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2465  OS << "      return LHS < RHS.getMnemonic();\n";
2466  OS << "    }\n";
2467  OS << "    bool operator()(const OperandMatchEntry &LHS,";
2468  OS << " const OperandMatchEntry &RHS) {\n";
2469  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2470  OS << "    }\n";
2471  OS << "  };\n";
2472
2473  OS << "} // end anonymous namespace.\n\n";
2474
2475  OS << "static const OperandMatchEntry OperandMatchTable["
2476     << Info.OperandMatchInfo.size() << "] = {\n";
2477
2478  OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2479  for (std::vector<OperandMatchEntry>::const_iterator it =
2480       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2481       it != ie; ++it) {
2482    const OperandMatchEntry &OMI = *it;
2483    const MatchableInfo &II = *OMI.MI;
2484
2485    OS << "  { ";
2486
2487    // Write the required features mask.
2488    if (!II.RequiredFeatures.empty()) {
2489      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2490        if (i) OS << "|";
2491        OS << II.RequiredFeatures[i]->getEnumName();
2492      }
2493    } else
2494      OS << "0";
2495
2496    // Store a pascal-style length byte in the mnemonic.
2497    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2498    OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2499       << " /* " << II.Mnemonic << " */, ";
2500
2501    OS << OMI.CI->Name;
2502
2503    OS << ", " << OMI.OperandMask;
2504    OS << " /* ";
2505    bool printComma = false;
2506    for (int i = 0, e = 31; i !=e; ++i)
2507      if (OMI.OperandMask & (1 << i)) {
2508        if (printComma)
2509          OS << ", ";
2510        OS << i;
2511        printComma = true;
2512      }
2513    OS << " */";
2514
2515    OS << " },\n";
2516  }
2517  OS << "};\n\n";
2518
2519  // Emit the operand class switch to call the correct custom parser for
2520  // the found operand class.
2521  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2522     << Target.getName() << ClassName << "::\n"
2523     << "tryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>"
2524     << " &Operands,\n                      unsigned MCK) {\n\n"
2525     << "  switch(MCK) {\n";
2526
2527  for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
2528       ie = Info.Classes.end(); it != ie; ++it) {
2529    ClassInfo *CI = *it;
2530    if (CI->ParserMethod.empty())
2531      continue;
2532    OS << "  case " << CI->Name << ":\n"
2533       << "    return " << CI->ParserMethod << "(Operands);\n";
2534  }
2535
2536  OS << "  default:\n";
2537  OS << "    return MatchOperand_NoMatch;\n";
2538  OS << "  }\n";
2539  OS << "  return MatchOperand_NoMatch;\n";
2540  OS << "}\n\n";
2541
2542  // Emit the static custom operand parser. This code is very similar with
2543  // the other matcher. Also use MatchResultTy here just in case we go for
2544  // a better error handling.
2545  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2546     << Target.getName() << ClassName << "::\n"
2547     << "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>"
2548     << " &Operands,\n                       StringRef Mnemonic) {\n";
2549
2550  // Emit code to get the available features.
2551  OS << "  // Get the current feature set.\n";
2552  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2553
2554  OS << "  // Get the next operand index.\n";
2555  OS << "  unsigned NextOpNum = Operands.size()-1;\n";
2556
2557  // Emit code to search the table.
2558  OS << "  // Search the table.\n";
2559  OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
2560  OS << " MnemonicRange =\n";
2561  OS << "    std::equal_range(OperandMatchTable, OperandMatchTable+"
2562     << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
2563     << "                     LessOpcodeOperand());\n\n";
2564
2565  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2566  OS << "    return MatchOperand_NoMatch;\n\n";
2567
2568  OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2569     << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2570
2571  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2572  OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2573
2574  // Emit check that the required features are available.
2575  OS << "    // check if the available features match\n";
2576  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2577     << "!= it->RequiredFeatures) {\n";
2578  OS << "      continue;\n";
2579  OS << "    }\n\n";
2580
2581  // Emit check to ensure the operand number matches.
2582  OS << "    // check if the operand in question has a custom parser.\n";
2583  OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2584  OS << "      continue;\n\n";
2585
2586  // Emit call to the custom parser method
2587  OS << "    // call custom parse method to handle the operand\n";
2588  OS << "    OperandMatchResultTy Result = ";
2589  OS << "tryCustomParseOperand(Operands, it->Class);\n";
2590  OS << "    if (Result != MatchOperand_NoMatch)\n";
2591  OS << "      return Result;\n";
2592  OS << "  }\n\n";
2593
2594  OS << "  // Okay, we had no match.\n";
2595  OS << "  return MatchOperand_NoMatch;\n";
2596  OS << "}\n\n";
2597}
2598
2599void AsmMatcherEmitter::run(raw_ostream &OS) {
2600  CodeGenTarget Target(Records);
2601  Record *AsmParser = Target.getAsmParser();
2602  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
2603
2604  // Compute the information on the instructions to match.
2605  AsmMatcherInfo Info(AsmParser, Target, Records);
2606  Info.buildInfo();
2607
2608  // Sort the instruction table using the partial order on classes. We use
2609  // stable_sort to ensure that ambiguous instructions are still
2610  // deterministically ordered.
2611  std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
2612                   less_ptr<MatchableInfo>());
2613
2614  DEBUG_WITH_TYPE("instruction_info", {
2615      for (std::vector<MatchableInfo*>::iterator
2616             it = Info.Matchables.begin(), ie = Info.Matchables.end();
2617           it != ie; ++it)
2618        (*it)->dump();
2619    });
2620
2621  // Check for ambiguous matchables.
2622  DEBUG_WITH_TYPE("ambiguous_instrs", {
2623    unsigned NumAmbiguous = 0;
2624    for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
2625      for (unsigned j = i + 1; j != e; ++j) {
2626        MatchableInfo &A = *Info.Matchables[i];
2627        MatchableInfo &B = *Info.Matchables[j];
2628
2629        if (A.couldMatchAmbiguouslyWith(B)) {
2630          errs() << "warning: ambiguous matchables:\n";
2631          A.dump();
2632          errs() << "\nis incomparable with:\n";
2633          B.dump();
2634          errs() << "\n\n";
2635          ++NumAmbiguous;
2636        }
2637      }
2638    }
2639    if (NumAmbiguous)
2640      errs() << "warning: " << NumAmbiguous
2641             << " ambiguous matchables!\n";
2642  });
2643
2644  // Compute the information on the custom operand parsing.
2645  Info.buildOperandMatchInfo();
2646
2647  // Write the output.
2648
2649  // Information for the class declaration.
2650  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
2651  OS << "#undef GET_ASSEMBLER_HEADER\n";
2652  OS << "  // This should be included into the middle of the declaration of\n";
2653  OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
2654  OS << "  unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
2655  OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
2656     << "unsigned Opcode,\n"
2657     << "                       const SmallVectorImpl<MCParsedAsmOperand*> "
2658     << "&Operands);\n";
2659  OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
2660  OS << "           const SmallVectorImpl<MCParsedAsmOperand*> &Operands);\n";
2661  OS << "  bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID);\n";
2662  OS << "  unsigned MatchInstructionImpl(\n";
2663  OS.indent(27);
2664  OS << "const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n"
2665     << "                                MCInst &Inst,\n"
2666     << "                                unsigned &ErrorInfo,"
2667     << " bool matchingInlineAsm,\n"
2668     << "                                unsigned VariantID = 0);\n";
2669
2670  if (Info.OperandMatchInfo.size()) {
2671    OS << "\n  enum OperandMatchResultTy {\n";
2672    OS << "    MatchOperand_Success,    // operand matched successfully\n";
2673    OS << "    MatchOperand_NoMatch,    // operand did not match\n";
2674    OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
2675    OS << "  };\n";
2676    OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
2677    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2678    OS << "    StringRef Mnemonic);\n";
2679
2680    OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
2681    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2682    OS << "    unsigned MCK);\n\n";
2683  }
2684
2685  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
2686
2687  // Emit the operand match diagnostic enum names.
2688  OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
2689  OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2690  emitOperandDiagnosticTypes(Info, OS);
2691  OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2692
2693
2694  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
2695  OS << "#undef GET_REGISTER_MATCHER\n\n";
2696
2697  // Emit the subtarget feature enumeration.
2698  emitSubtargetFeatureFlagEnumeration(Info, OS);
2699
2700  // Emit the function to match a register name to number.
2701  // This should be omitted for Mips target
2702  if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
2703    emitMatchRegisterName(Target, AsmParser, OS);
2704
2705  OS << "#endif // GET_REGISTER_MATCHER\n\n";
2706
2707  OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
2708  OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
2709
2710  // Generate the helper function to get the names for subtarget features.
2711  emitGetSubtargetFeatureName(Info, OS);
2712
2713  OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
2714
2715  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
2716  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
2717
2718  // Generate the function that remaps for mnemonic aliases.
2719  bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
2720
2721  // Generate the convertToMCInst function to convert operands into an MCInst.
2722  // Also, generate the convertToMapAndConstraints function for MS-style inline
2723  // assembly.  The latter doesn't actually generate a MCInst.
2724  emitConvertFuncs(Target, ClassName, Info.Matchables, OS);
2725
2726  // Emit the enumeration for classes which participate in matching.
2727  emitMatchClassEnumeration(Target, Info.Classes, OS);
2728
2729  // Emit the routine to match token strings to their match class.
2730  emitMatchTokenString(Target, Info.Classes, OS);
2731
2732  // Emit the subclass predicate routine.
2733  emitIsSubclass(Target, Info.Classes, OS);
2734
2735  // Emit the routine to validate an operand against a match class.
2736  emitValidateOperandClass(Info, OS);
2737
2738  // Emit the available features compute function.
2739  emitComputeAvailableFeatures(Info, OS);
2740
2741
2742  StringToOffsetTable StringTable;
2743
2744  size_t MaxNumOperands = 0;
2745  unsigned MaxMnemonicIndex = 0;
2746  for (std::vector<MatchableInfo*>::const_iterator it =
2747         Info.Matchables.begin(), ie = Info.Matchables.end();
2748       it != ie; ++it) {
2749    MatchableInfo &II = **it;
2750    MaxNumOperands = std::max(MaxNumOperands, II.AsmOperands.size());
2751
2752    // Store a pascal-style length byte in the mnemonic.
2753    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2754    MaxMnemonicIndex = std::max(MaxMnemonicIndex,
2755                        StringTable.GetOrAddStringOffset(LenMnemonic, false));
2756  }
2757
2758  OS << "static const char *const MnemonicTable =\n";
2759  StringTable.EmitString(OS);
2760  OS << ";\n\n";
2761
2762  // Emit the static match table; unused classes get initalized to 0 which is
2763  // guaranteed to be InvalidMatchClass.
2764  //
2765  // FIXME: We can reduce the size of this table very easily. First, we change
2766  // it so that store the kinds in separate bit-fields for each index, which
2767  // only needs to be the max width used for classes at that index (we also need
2768  // to reject based on this during classification). If we then make sure to
2769  // order the match kinds appropriately (putting mnemonics last), then we
2770  // should only end up using a few bits for each class, especially the ones
2771  // following the mnemonic.
2772  OS << "namespace {\n";
2773  OS << "  struct MatchEntry {\n";
2774  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2775               << " Mnemonic;\n";
2776  OS << "    uint16_t Opcode;\n";
2777  OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
2778               << " ConvertFn;\n";
2779  OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
2780               << " RequiredFeatures;\n";
2781  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
2782               << " Classes[" << MaxNumOperands << "];\n";
2783  OS << "    StringRef getMnemonic() const {\n";
2784  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2785  OS << "                       MnemonicTable[Mnemonic]);\n";
2786  OS << "    }\n";
2787  OS << "  };\n\n";
2788
2789  OS << "  // Predicate for searching for an opcode.\n";
2790  OS << "  struct LessOpcode {\n";
2791  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
2792  OS << "      return LHS.getMnemonic() < RHS;\n";
2793  OS << "    }\n";
2794  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
2795  OS << "      return LHS < RHS.getMnemonic();\n";
2796  OS << "    }\n";
2797  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
2798  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2799  OS << "    }\n";
2800  OS << "  };\n";
2801
2802  OS << "} // end anonymous namespace.\n\n";
2803
2804  unsigned VariantCount = Target.getAsmParserVariantCount();
2805  for (unsigned VC = 0; VC != VariantCount; ++VC) {
2806    Record *AsmVariant = Target.getAsmParserVariant(VC);
2807    std::string CommentDelimiter =
2808      AsmVariant->getValueAsString("CommentDelimiter");
2809    std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
2810    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2811
2812    OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
2813
2814    for (std::vector<MatchableInfo*>::const_iterator it =
2815         Info.Matchables.begin(), ie = Info.Matchables.end();
2816         it != ie; ++it) {
2817      MatchableInfo &II = **it;
2818      if (II.AsmVariantID != AsmVariantNo)
2819        continue;
2820
2821      // Store a pascal-style length byte in the mnemonic.
2822      std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2823      OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2824         << " /* " << II.Mnemonic << " */, "
2825         << Target.getName() << "::"
2826         << II.getResultInst()->TheDef->getName() << ", "
2827         << II.ConversionFnKind << ", ";
2828
2829      // Write the required features mask.
2830      if (!II.RequiredFeatures.empty()) {
2831        for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2832          if (i) OS << "|";
2833          OS << II.RequiredFeatures[i]->getEnumName();
2834        }
2835      } else
2836        OS << "0";
2837
2838      OS << ", { ";
2839      for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
2840        MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
2841
2842        if (i) OS << ", ";
2843        OS << Op.Class->Name;
2844      }
2845      OS << " }, },\n";
2846    }
2847
2848    OS << "};\n\n";
2849  }
2850
2851  // A method to determine if a mnemonic is in the list.
2852  OS << "bool " << Target.getName() << ClassName << "::\n"
2853     << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n";
2854  OS << "  // Find the appropriate table for this asm variant.\n";
2855  OS << "  const MatchEntry *Start, *End;\n";
2856  OS << "  switch (VariantID) {\n";
2857  OS << "  default: // unreachable\n";
2858  for (unsigned VC = 0; VC != VariantCount; ++VC) {
2859    Record *AsmVariant = Target.getAsmParserVariant(VC);
2860    std::string CommentDelimiter =
2861      AsmVariant->getValueAsString("CommentDelimiter");
2862    std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
2863    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2864    OS << "  case " << AsmVariantNo << ": Start = MatchTable" << VC
2865       << "; End = array_endof(MatchTable" << VC << "); break;\n";
2866  }
2867  OS << "  }\n";
2868  OS << "  // Search the table.\n";
2869  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2870  OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n";
2871  OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
2872  OS << "}\n\n";
2873
2874  // Finally, build the match function.
2875  OS << "unsigned "
2876     << Target.getName() << ClassName << "::\n"
2877     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
2878     << " &Operands,\n";
2879  OS << "                     MCInst &Inst,\n"
2880     << "unsigned &ErrorInfo, bool matchingInlineAsm, unsigned VariantID) {\n";
2881
2882  OS << "  // Eliminate obvious mismatches.\n";
2883  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
2884  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
2885  OS << "    return Match_InvalidOperand;\n";
2886  OS << "  }\n\n";
2887
2888  // Emit code to get the available features.
2889  OS << "  // Get the current feature set.\n";
2890  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2891
2892  OS << "  // Get the instruction mnemonic, which is the first token.\n";
2893  OS << "  StringRef Mnemonic = ((" << Target.getName()
2894     << "Operand*)Operands[0])->getToken();\n\n";
2895
2896  if (HasMnemonicAliases) {
2897    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
2898    OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
2899  }
2900
2901  // Emit code to compute the class list for this operand vector.
2902  OS << "  // Some state to try to produce better error messages.\n";
2903  OS << "  bool HadMatchOtherThanFeatures = false;\n";
2904  OS << "  bool HadMatchOtherThanPredicate = false;\n";
2905  OS << "  unsigned RetCode = Match_InvalidOperand;\n";
2906  OS << "  unsigned MissingFeatures = ~0U;\n";
2907  OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
2908  OS << "  // wrong for all instances of the instruction.\n";
2909  OS << "  ErrorInfo = ~0U;\n";
2910
2911  // Emit code to search the table.
2912  OS << "  // Find the appropriate table for this asm variant.\n";
2913  OS << "  const MatchEntry *Start, *End;\n";
2914  OS << "  switch (VariantID) {\n";
2915  OS << "  default: // unreachable\n";
2916  for (unsigned VC = 0; VC != VariantCount; ++VC) {
2917    Record *AsmVariant = Target.getAsmParserVariant(VC);
2918    std::string CommentDelimiter =
2919      AsmVariant->getValueAsString("CommentDelimiter");
2920    std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
2921    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2922    OS << "  case " << AsmVariantNo << ": Start = MatchTable" << VC
2923       << "; End = array_endof(MatchTable" << VC << "); break;\n";
2924  }
2925  OS << "  }\n";
2926  OS << "  // Search the table.\n";
2927  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2928  OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
2929
2930  OS << "  // Return a more specific error code if no mnemonics match.\n";
2931  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2932  OS << "    return Match_MnemonicFail;\n\n";
2933
2934  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
2935     << "*ie = MnemonicRange.second;\n";
2936  OS << "       it != ie; ++it) {\n";
2937
2938  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2939  OS << "    assert(Mnemonic == it->getMnemonic());\n";
2940
2941  // Emit check that the subclasses match.
2942  OS << "    bool OperandsValid = true;\n";
2943  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
2944  OS << "      if (i + 1 >= Operands.size()) {\n";
2945  OS << "        OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
2946  OS << "        if (!OperandsValid) ErrorInfo = i + 1;\n";
2947  OS << "        break;\n";
2948  OS << "      }\n";
2949  OS << "      unsigned Diag = validateOperandClass(Operands[i+1],\n";
2950  OS.indent(43);
2951  OS << "(MatchClassKind)it->Classes[i]);\n";
2952  OS << "      if (Diag == Match_Success)\n";
2953  OS << "        continue;\n";
2954  OS << "      // If the generic handler indicates an invalid operand\n";
2955  OS << "      // failure, check for a special case.\n";
2956  OS << "      if (Diag == Match_InvalidOperand) {\n";
2957  OS << "        Diag = validateTargetOperandClass(Operands[i+1],\n";
2958  OS.indent(43);
2959  OS << "(MatchClassKind)it->Classes[i]);\n";
2960  OS << "        if (Diag == Match_Success)\n";
2961  OS << "          continue;\n";
2962  OS << "      }\n";
2963  OS << "      // If this operand is broken for all of the instances of this\n";
2964  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
2965  OS << "      // If we already had a match that only failed due to a\n";
2966  OS << "      // target predicate, that diagnostic is preferred.\n";
2967  OS << "      if (!HadMatchOtherThanPredicate &&\n";
2968  OS << "          (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n";
2969  OS << "        ErrorInfo = i+1;\n";
2970  OS << "        // InvalidOperand is the default. Prefer specificity.\n";
2971  OS << "        if (Diag != Match_InvalidOperand)\n";
2972  OS << "          RetCode = Diag;\n";
2973  OS << "      }\n";
2974  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
2975  OS << "      OperandsValid = false;\n";
2976  OS << "      break;\n";
2977  OS << "    }\n\n";
2978
2979  OS << "    if (!OperandsValid) continue;\n";
2980
2981  // Emit check that the required features are available.
2982  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2983     << "!= it->RequiredFeatures) {\n";
2984  OS << "      HadMatchOtherThanFeatures = true;\n";
2985  OS << "      unsigned NewMissingFeatures = it->RequiredFeatures & "
2986        "~AvailableFeatures;\n";
2987  OS << "      if (CountPopulation_32(NewMissingFeatures) <=\n"
2988        "          CountPopulation_32(MissingFeatures))\n";
2989  OS << "        MissingFeatures = NewMissingFeatures;\n";
2990  OS << "      continue;\n";
2991  OS << "    }\n";
2992  OS << "\n";
2993  OS << "    if (matchingInlineAsm) {\n";
2994  OS << "      Inst.setOpcode(it->Opcode);\n";
2995  OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
2996  OS << "      return Match_Success;\n";
2997  OS << "    }\n\n";
2998  OS << "    // We have selected a definite instruction, convert the parsed\n"
2999     << "    // operands into the appropriate MCInst.\n";
3000  OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
3001  OS << "\n";
3002
3003  // Verify the instruction with the target-specific match predicate function.
3004  OS << "    // We have a potential match. Check the target predicate to\n"
3005     << "    // handle any context sensitive constraints.\n"
3006     << "    unsigned MatchResult;\n"
3007     << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
3008     << " Match_Success) {\n"
3009     << "      Inst.clear();\n"
3010     << "      RetCode = MatchResult;\n"
3011     << "      HadMatchOtherThanPredicate = true;\n"
3012     << "      continue;\n"
3013     << "    }\n\n";
3014
3015  // Call the post-processing function, if used.
3016  std::string InsnCleanupFn =
3017    AsmParser->getValueAsString("AsmParserInstCleanup");
3018  if (!InsnCleanupFn.empty())
3019    OS << "    " << InsnCleanupFn << "(Inst);\n";
3020
3021  OS << "    return Match_Success;\n";
3022  OS << "  }\n\n";
3023
3024  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
3025  OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3026  OS << "    return RetCode;\n\n";
3027  OS << "  // Missing feature matches return which features were missing\n";
3028  OS << "  ErrorInfo = MissingFeatures;\n";
3029  OS << "  return Match_MissingFeature;\n";
3030  OS << "}\n\n";
3031
3032  if (Info.OperandMatchInfo.size())
3033    emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3034                             MaxMnemonicIndex);
3035
3036  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3037}
3038
3039namespace llvm {
3040
3041void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3042  emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3043  AsmMatcherEmitter(RK).run(OS);
3044}
3045
3046} // End llvm namespace
3047