list.h revision 29eebe9a9a0486f12e33e2818c192ef683fdfede
1/*
2 * Copyright © 2008, 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file list.h
26 * \brief Doubly-linked list abstract container type.
27 *
28 * Each doubly-linked list has a sentinel head and tail node.  These nodes
29 * contain no data.  The head sentinel can be identified by its \c prev
30 * pointer being \c NULL.  The tail sentinel can be identified by its
31 * \c next pointer being \c NULL.
32 *
33 * A list is empty if either the head sentinel's \c next pointer points to the
34 * tail sentinel or the tail sentinel's \c prev poiner points to the head
35 * sentinel.
36 *
37 * Instead of tracking two separate \c node structures and a \c list structure
38 * that points to them, the sentinel nodes are in a single structure.  Noting
39 * that each sentinel node always has one \c NULL pointer, the \c NULL
40 * pointers occupy the same memory location.  In the \c list structure
41 * contains a the following:
42 *
43 *   - A \c head pointer that represents the \c next pointer of the
44 *     head sentinel node.
45 *   - A \c tail pointer that represents the \c prev pointer of the head
46 *     sentinel node and the \c next pointer of the tail sentinel node.  This
47 *     pointer is \b always \c NULL.
48 *   - A \c tail_prev pointer that represents the \c prev pointer of the
49 *     tail sentinel node.
50 *
51 * Therefore, if \c head->next is \c NULL or \c tail_prev->prev is \c NULL,
52 * the list is empty.
53 *
54 * To anyone familiar with "exec lists" on the Amiga, this structure should
55 * be immediately recognizable.  See the following link for the original Amiga
56 * operating system documentation on the subject.
57 *
58 * http://www.natami.net/dev/Libraries_Manual_guide/node02D7.html
59 *
60 * \author Ian Romanick <ian.d.romanick@intel.com>
61 */
62
63#pragma once
64#ifndef LIST_CONTAINER_H
65#define LIST_CONTAINER_H
66
67#ifndef __cplusplus
68#include <stddef.h>
69#include <talloc.h>
70#else
71extern "C" {
72#include <talloc.h>
73}
74#endif
75
76#include <assert.h>
77
78struct exec_node {
79   struct exec_node *next;
80   struct exec_node *prev;
81
82#ifdef __cplusplus
83   /* Callers of this talloc-based new need not call delete. It's
84    * easier to just talloc_free 'ctx' (or any of its ancestors). */
85   static void* operator new(size_t size, void *ctx)
86   {
87      void *node;
88
89      node = talloc_size(ctx, size);
90      assert(node != NULL);
91
92      return node;
93   }
94
95   /* If the user *does* call delete, that's OK, we will just
96    * talloc_free in that case. */
97   static void operator delete(void *node)
98   {
99      talloc_free(node);
100   }
101
102   exec_node() : next(NULL), prev(NULL)
103   {
104      /* empty */
105   }
106
107   const exec_node *get_next() const
108   {
109      return next;
110   }
111
112   exec_node *get_next()
113   {
114      return next;
115   }
116
117   const exec_node *get_prev() const
118   {
119      return prev;
120   }
121
122   exec_node *get_prev()
123   {
124      return prev;
125   }
126
127   void remove()
128   {
129      next->prev = prev;
130      prev->next = next;
131      next = NULL;
132      prev = NULL;
133   }
134
135   /**
136    * Link a node with itself
137    *
138    * This creates a sort of degenerate list that is occasionally useful.
139    */
140   void self_link()
141   {
142      next = this;
143      prev = this;
144   }
145
146   /**
147    * Insert a node in the list after the current node
148    */
149   void insert_after(exec_node *after)
150   {
151      after->next = this->next;
152      after->prev = this;
153
154      this->next->prev = after;
155      this->next = after;
156   }
157   /**
158    * Insert a node in the list before the current node
159    */
160   void insert_before(exec_node *before)
161   {
162      before->next = this;
163      before->prev = this->prev;
164
165      this->prev->next = before;
166      this->prev = before;
167   }
168   /**
169    * Replace the current node with the given node.
170    */
171   void replace_with(exec_node *replacement)
172   {
173      replacement->prev = this->prev;
174      replacement->next = this->next;
175
176      this->prev->next = replacement;
177      this->next->prev = replacement;
178   }
179
180   /**
181    * Is this the sentinel at the tail of the list?
182    */
183   bool is_tail_sentinel() const
184   {
185      return this->next == NULL;
186   }
187
188   /**
189    * Is this the sentinel at the head of the list?
190    */
191   bool is_head_sentinel() const
192   {
193      return this->prev == NULL;
194   }
195#endif
196};
197
198
199#ifdef __cplusplus
200/* This macro will not work correctly if `t' uses virtual inheritance.  If you
201 * are using virtual inheritance, you deserve a slow and painful death.  Enjoy!
202 */
203#define exec_list_offsetof(t, f, p) \
204   (((char *) &((t *) p)->f) - ((char *) p))
205#else
206#define exec_list_offsetof(t, f, p) offsetof(t, f)
207#endif
208
209/**
210 * Get a pointer to the structure containing an exec_node
211 *
212 * Given a pointer to an \c exec_node embedded in a structure, get a pointer to
213 * the containing structure.
214 *
215 * \param type  Base type of the structure containing the node
216 * \param node  Pointer to the \c exec_node
217 * \param field Name of the field in \c type that is the embedded \c exec_node
218 */
219#define exec_node_data(type, node, field) \
220   ((type *) (((char *) node) - exec_list_offsetof(type, field, node)))
221
222#ifdef __cplusplus
223struct exec_node;
224
225class iterator {
226public:
227   void next()
228   {
229   }
230
231   void *get()
232   {
233      return NULL;
234   }
235
236   bool has_next() const
237   {
238      return false;
239   }
240};
241
242class exec_list_iterator : public iterator {
243public:
244   exec_list_iterator(exec_node *n) : node(n), _next(n->next)
245   {
246      /* empty */
247   }
248
249   void next()
250   {
251      node = _next;
252      _next = node->next;
253   }
254
255   void remove()
256   {
257      node->remove();
258   }
259
260   exec_node *get()
261   {
262      return node;
263   }
264
265   bool has_next() const
266   {
267      return _next != NULL;
268   }
269
270private:
271   exec_node *node;
272   exec_node *_next;
273};
274
275#define foreach_iter(iter_type, iter, container) \
276   for (iter_type iter = (container) . iterator(); iter.has_next(); iter.next())
277#endif
278
279
280struct exec_list {
281   struct exec_node *head;
282   struct exec_node *tail;
283   struct exec_node *tail_pred;
284
285#ifdef __cplusplus
286   /* Callers of this talloc-based new need not call delete. It's
287    * easier to just talloc_free 'ctx' (or any of its ancestors). */
288   static void* operator new(size_t size, void *ctx)
289   {
290      void *node;
291
292      node = talloc_size(ctx, size);
293      assert(node != NULL);
294
295      return node;
296   }
297
298   /* If the user *does* call delete, that's OK, we will just
299    * talloc_free in that case. */
300   static void operator delete(void *node)
301   {
302      talloc_free(node);
303   }
304
305   exec_list()
306   {
307      make_empty();
308   }
309
310   void make_empty()
311   {
312      head = (exec_node *) & tail;
313      tail = NULL;
314      tail_pred = (exec_node *) & head;
315   }
316
317   bool is_empty() const
318   {
319      /* There are three ways to test whether a list is empty or not.
320       *
321       * - Check to see if the \c head points to the \c tail.
322       * - Check to see if the \c tail_pred points to the \c head.
323       * - Check to see if the \c head is the sentinel node by test whether its
324       *   \c next pointer is \c NULL.
325       *
326       * The first two methods tend to generate better code on modern systems
327       * because they save a pointer dereference.
328       */
329      return head == (exec_node *) &tail;
330   }
331
332   const exec_node *get_head() const
333   {
334      return !is_empty() ? head : NULL;
335   }
336
337   exec_node *get_head()
338   {
339      return !is_empty() ? head : NULL;
340   }
341
342   const exec_node *get_tail() const
343   {
344      return !is_empty() ? tail_pred : NULL;
345   }
346
347   exec_node *get_tail()
348   {
349      return !is_empty() ? tail_pred : NULL;
350   }
351
352   void push_head(exec_node *n)
353   {
354      n->next = head;
355      n->prev = (exec_node *) &head;
356
357      n->next->prev = n;
358      head = n;
359   }
360
361   void push_tail(exec_node *n)
362   {
363      n->next = (exec_node *) &tail;
364      n->prev = tail_pred;
365
366      n->prev->next = n;
367      tail_pred = n;
368   }
369
370   void push_degenerate_list_at_head(exec_node *n)
371   {
372      assert(n->prev->next == n);
373
374      n->prev->next = head;
375      head->prev = n->prev;
376      n->prev = (exec_node *) &head;
377      head = n;
378   }
379
380   /**
381    * Remove the first node from a list and return it
382    *
383    * \return
384    * The first node in the list or \c NULL if the list is empty.
385    *
386    * \sa exec_list::get_head
387    */
388   exec_node *pop_head()
389   {
390      exec_node *const n = this->get_head();
391      if (n != NULL)
392	 n->remove();
393
394      return n;
395   }
396
397   /**
398    * Move all of the nodes from this list to the target list
399    */
400   void move_nodes_to(exec_list *target)
401   {
402      if (is_empty()) {
403	 target->make_empty();
404      } else {
405	 target->head = head;
406	 target->tail = NULL;
407	 target->tail_pred = tail_pred;
408
409	 target->head->prev = (exec_node *) &target->head;
410	 target->tail_pred->next = (exec_node *) &target->tail;
411
412	 make_empty();
413      }
414   }
415
416   /**
417    * Append all nodes from the source list to the target list
418    */
419   void
420   append_list(exec_list *source)
421   {
422      if (source->is_empty())
423	 return;
424
425      /* Link the first node of the source with the last node of the target list.
426       */
427      this->tail_pred->next = source->head;
428      source->head->prev = this->tail_pred;
429
430      /* Make the tail of the source list be the tail of the target list.
431       */
432      this->tail_pred = source->tail_pred;
433      this->tail_pred->next = (exec_node *) &this->tail;
434
435      /* Make the source list empty for good measure.
436       */
437      source->make_empty();
438   }
439
440   exec_list_iterator iterator()
441   {
442      return exec_list_iterator(head);
443   }
444
445   exec_list_iterator iterator() const
446   {
447      return exec_list_iterator((exec_node *) head);
448   }
449#endif
450};
451
452/**
453 * This version is safe even if the current node is removed.
454 */
455#define foreach_list_safe(__node, __list)			     \
456   for (exec_node * __node = (__list)->head, * __next = __node->next \
457	; __next != NULL					     \
458	; __node = __next, __next = __next->next)
459
460#define foreach_list(__node, __list)			\
461   for (exec_node * __node = (__list)->head		\
462	; (__node)->next != NULL 			\
463	; (__node) = (__node)->next)
464
465#define foreach_list_const(__node, __list)		\
466   for (const exec_node * __node = (__list)->head	\
467	; (__node)->next != NULL 			\
468	; (__node) = (__node)->next)
469
470#define foreach_list_typed(__type, __node, __field, __list)		\
471   for (__type * __node =						\
472	   exec_node_data(__type, (__list)->head, __field);		\
473	(__node)->__field.next != NULL; 				\
474	(__node) = exec_node_data(__type, (__node)->__field.next, __field))
475
476#define foreach_list_typed_const(__type, __node, __field, __list)	\
477   for (const __type * __node =						\
478	   exec_node_data(__type, (__list)->head, __field);		\
479	(__node)->__field.next != NULL; 				\
480	(__node) = exec_node_data(__type, (__node)->__field.next, __field))
481
482#endif /* LIST_CONTAINER_H */
483