brw_fs.cpp revision 3bf8774e9c293fcad654d1bd67d4b43247b82f97
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28extern "C" {
29
30#include <sys/types.h>
31
32#include "main/macros.h"
33#include "main/shaderobj.h"
34#include "main/uniforms.h"
35#include "program/prog_parameter.h"
36#include "program/prog_print.h"
37#include "program/prog_optimize.h"
38#include "program/register_allocate.h"
39#include "program/sampler.h"
40#include "program/hash_table.h"
41#include "brw_context.h"
42#include "brw_eu.h"
43#include "brw_wm.h"
44#include "talloc.h"
45}
46#include "../glsl/glsl_types.h"
47#include "../glsl/ir_optimization.h"
48#include "../glsl/ir_print_visitor.h"
49
50enum register_file {
51   ARF = BRW_ARCHITECTURE_REGISTER_FILE,
52   GRF = BRW_GENERAL_REGISTER_FILE,
53   MRF = BRW_MESSAGE_REGISTER_FILE,
54   IMM = BRW_IMMEDIATE_VALUE,
55   FIXED_HW_REG, /* a struct brw_reg */
56   UNIFORM, /* prog_data->params[hw_reg] */
57   BAD_FILE
58};
59
60enum fs_opcodes {
61   FS_OPCODE_FB_WRITE = 256,
62   FS_OPCODE_RCP,
63   FS_OPCODE_RSQ,
64   FS_OPCODE_SQRT,
65   FS_OPCODE_EXP2,
66   FS_OPCODE_LOG2,
67   FS_OPCODE_POW,
68   FS_OPCODE_SIN,
69   FS_OPCODE_COS,
70   FS_OPCODE_DDX,
71   FS_OPCODE_DDY,
72   FS_OPCODE_LINTERP,
73   FS_OPCODE_TEX,
74   FS_OPCODE_TXB,
75   FS_OPCODE_TXL,
76   FS_OPCODE_DISCARD,
77};
78
79static int using_new_fs = -1;
80static struct brw_reg brw_reg_from_fs_reg(class fs_reg *reg);
81
82struct gl_shader *
83brw_new_shader(GLcontext *ctx, GLuint name, GLuint type)
84{
85   struct brw_shader *shader;
86
87   shader = talloc_zero(NULL, struct brw_shader);
88   if (shader) {
89      shader->base.Type = type;
90      shader->base.Name = name;
91      _mesa_init_shader(ctx, &shader->base);
92   }
93
94   return &shader->base;
95}
96
97struct gl_shader_program *
98brw_new_shader_program(GLcontext *ctx, GLuint name)
99{
100   struct brw_shader_program *prog;
101   prog = talloc_zero(NULL, struct brw_shader_program);
102   if (prog) {
103      prog->base.Name = name;
104      _mesa_init_shader_program(ctx, &prog->base);
105   }
106   return &prog->base;
107}
108
109GLboolean
110brw_compile_shader(GLcontext *ctx, struct gl_shader *shader)
111{
112   if (!_mesa_ir_compile_shader(ctx, shader))
113      return GL_FALSE;
114
115   return GL_TRUE;
116}
117
118GLboolean
119brw_link_shader(GLcontext *ctx, struct gl_shader_program *prog)
120{
121   if (using_new_fs == -1)
122      using_new_fs = getenv("INTEL_NEW_FS") != NULL;
123
124   for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
125      struct brw_shader *shader = (struct brw_shader *)prog->_LinkedShaders[i];
126
127      if (using_new_fs && shader->base.Type == GL_FRAGMENT_SHADER) {
128	 void *mem_ctx = talloc_new(NULL);
129	 bool progress;
130
131	 if (shader->ir)
132	    talloc_free(shader->ir);
133	 shader->ir = new(shader) exec_list;
134	 clone_ir_list(mem_ctx, shader->ir, shader->base.ir);
135
136	 do_mat_op_to_vec(shader->ir);
137	 do_mod_to_fract(shader->ir);
138	 do_div_to_mul_rcp(shader->ir);
139	 do_sub_to_add_neg(shader->ir);
140	 do_explog_to_explog2(shader->ir);
141	 do_lower_texture_projection(shader->ir);
142
143	 do {
144	    progress = false;
145
146	    brw_do_channel_expressions(shader->ir);
147	    brw_do_vector_splitting(shader->ir);
148
149	    progress = do_lower_jumps(shader->ir, true, true,
150				      true, /* main return */
151				      false, /* continue */
152				      false /* loops */
153				      ) || progress;
154
155	    progress = do_common_optimization(shader->ir, true, 32) || progress;
156
157	    progress = lower_noise(shader->ir) || progress;
158	    progress =
159	       lower_variable_index_to_cond_assign(shader->ir,
160						   GL_TRUE, /* input */
161						   GL_TRUE, /* output */
162						   GL_TRUE, /* temp */
163						   GL_TRUE /* uniform */
164						   ) || progress;
165	 } while (progress);
166
167	 validate_ir_tree(shader->ir);
168
169	 reparent_ir(shader->ir, shader->ir);
170	 talloc_free(mem_ctx);
171      }
172   }
173
174   if (!_mesa_ir_link_shader(ctx, prog))
175      return GL_FALSE;
176
177   return GL_TRUE;
178}
179
180static int
181type_size(const struct glsl_type *type)
182{
183   unsigned int size, i;
184
185   switch (type->base_type) {
186   case GLSL_TYPE_UINT:
187   case GLSL_TYPE_INT:
188   case GLSL_TYPE_FLOAT:
189   case GLSL_TYPE_BOOL:
190      return type->components();
191   case GLSL_TYPE_ARRAY:
192      return type_size(type->fields.array) * type->length;
193   case GLSL_TYPE_STRUCT:
194      size = 0;
195      for (i = 0; i < type->length; i++) {
196	 size += type_size(type->fields.structure[i].type);
197      }
198      return size;
199   case GLSL_TYPE_SAMPLER:
200      /* Samplers take up no register space, since they're baked in at
201       * link time.
202       */
203      return 0;
204   default:
205      assert(!"not reached");
206      return 0;
207   }
208}
209
210class fs_reg {
211public:
212   /* Callers of this talloc-based new need not call delete. It's
213    * easier to just talloc_free 'ctx' (or any of its ancestors). */
214   static void* operator new(size_t size, void *ctx)
215   {
216      void *node;
217
218      node = talloc_size(ctx, size);
219      assert(node != NULL);
220
221      return node;
222   }
223
224   void init()
225   {
226      this->reg = 0;
227      this->reg_offset = 0;
228      this->negate = 0;
229      this->abs = 0;
230      this->hw_reg = -1;
231   }
232
233   /** Generic unset register constructor. */
234   fs_reg()
235   {
236      init();
237      this->file = BAD_FILE;
238   }
239
240   /** Immediate value constructor. */
241   fs_reg(float f)
242   {
243      init();
244      this->file = IMM;
245      this->type = BRW_REGISTER_TYPE_F;
246      this->imm.f = f;
247   }
248
249   /** Immediate value constructor. */
250   fs_reg(int32_t i)
251   {
252      init();
253      this->file = IMM;
254      this->type = BRW_REGISTER_TYPE_D;
255      this->imm.i = i;
256   }
257
258   /** Immediate value constructor. */
259   fs_reg(uint32_t u)
260   {
261      init();
262      this->file = IMM;
263      this->type = BRW_REGISTER_TYPE_UD;
264      this->imm.u = u;
265   }
266
267   /** Fixed brw_reg Immediate value constructor. */
268   fs_reg(struct brw_reg fixed_hw_reg)
269   {
270      init();
271      this->file = FIXED_HW_REG;
272      this->fixed_hw_reg = fixed_hw_reg;
273      this->type = fixed_hw_reg.type;
274   }
275
276   fs_reg(enum register_file file, int hw_reg);
277   fs_reg(class fs_visitor *v, const struct glsl_type *type);
278
279   /** Register file: ARF, GRF, MRF, IMM. */
280   enum register_file file;
281   /** virtual register number.  0 = fixed hw reg */
282   int reg;
283   /** Offset within the virtual register. */
284   int reg_offset;
285   /** HW register number.  Generally unset until register allocation. */
286   int hw_reg;
287   /** Register type.  BRW_REGISTER_TYPE_* */
288   int type;
289   bool negate;
290   bool abs;
291   struct brw_reg fixed_hw_reg;
292
293   /** Value for file == BRW_IMMMEDIATE_FILE */
294   union {
295      int32_t i;
296      uint32_t u;
297      float f;
298   } imm;
299};
300
301static const fs_reg reg_undef;
302static const fs_reg reg_null(ARF, BRW_ARF_NULL);
303
304class fs_inst : public exec_node {
305public:
306   /* Callers of this talloc-based new need not call delete. It's
307    * easier to just talloc_free 'ctx' (or any of its ancestors). */
308   static void* operator new(size_t size, void *ctx)
309   {
310      void *node;
311
312      node = talloc_zero_size(ctx, size);
313      assert(node != NULL);
314
315      return node;
316   }
317
318   void init()
319   {
320      this->opcode = BRW_OPCODE_NOP;
321      this->saturate = false;
322      this->conditional_mod = BRW_CONDITIONAL_NONE;
323      this->predicated = false;
324      this->sampler = 0;
325      this->target = 0;
326      this->eot = false;
327      this->shadow_compare = false;
328   }
329
330   fs_inst()
331   {
332      init();
333   }
334
335   fs_inst(int opcode)
336   {
337      init();
338      this->opcode = opcode;
339   }
340
341   fs_inst(int opcode, fs_reg dst, fs_reg src0)
342   {
343      init();
344      this->opcode = opcode;
345      this->dst = dst;
346      this->src[0] = src0;
347   }
348
349   fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1)
350   {
351      init();
352      this->opcode = opcode;
353      this->dst = dst;
354      this->src[0] = src0;
355      this->src[1] = src1;
356   }
357
358   fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1, fs_reg src2)
359   {
360      init();
361      this->opcode = opcode;
362      this->dst = dst;
363      this->src[0] = src0;
364      this->src[1] = src1;
365      this->src[2] = src2;
366   }
367
368   int opcode; /* BRW_OPCODE_* or FS_OPCODE_* */
369   fs_reg dst;
370   fs_reg src[3];
371   bool saturate;
372   bool predicated;
373   int conditional_mod; /**< BRW_CONDITIONAL_* */
374
375   int mlen; /**< SEND message length */
376   int sampler;
377   int target; /**< MRT target. */
378   bool eot;
379   bool shadow_compare;
380
381   /** @{
382    * Annotation for the generated IR.  One of the two can be set.
383    */
384   ir_instruction *ir;
385   const char *annotation;
386   /** @} */
387};
388
389class fs_visitor : public ir_visitor
390{
391public:
392
393   fs_visitor(struct brw_wm_compile *c, struct brw_shader *shader)
394   {
395      this->c = c;
396      this->p = &c->func;
397      this->brw = p->brw;
398      this->fp = brw->fragment_program;
399      this->intel = &brw->intel;
400      this->ctx = &intel->ctx;
401      this->mem_ctx = talloc_new(NULL);
402      this->shader = shader;
403      this->fail = false;
404      this->variable_ht = hash_table_ctor(0,
405					  hash_table_pointer_hash,
406					  hash_table_pointer_compare);
407
408      this->frag_color = NULL;
409      this->frag_data = NULL;
410      this->frag_depth = NULL;
411      this->first_non_payload_grf = 0;
412
413      this->current_annotation = NULL;
414      this->annotation_string = NULL;
415      this->annotation_ir = NULL;
416      this->base_ir = NULL;
417
418      this->virtual_grf_sizes = NULL;
419      this->virtual_grf_next = 1;
420      this->virtual_grf_array_size = 0;
421      this->virtual_grf_def = NULL;
422      this->virtual_grf_use = NULL;
423   }
424   ~fs_visitor()
425   {
426      talloc_free(this->mem_ctx);
427      hash_table_dtor(this->variable_ht);
428   }
429
430   fs_reg *variable_storage(ir_variable *var);
431   int virtual_grf_alloc(int size);
432
433   void visit(ir_variable *ir);
434   void visit(ir_assignment *ir);
435   void visit(ir_dereference_variable *ir);
436   void visit(ir_dereference_record *ir);
437   void visit(ir_dereference_array *ir);
438   void visit(ir_expression *ir);
439   void visit(ir_texture *ir);
440   void visit(ir_if *ir);
441   void visit(ir_constant *ir);
442   void visit(ir_swizzle *ir);
443   void visit(ir_return *ir);
444   void visit(ir_loop *ir);
445   void visit(ir_loop_jump *ir);
446   void visit(ir_discard *ir);
447   void visit(ir_call *ir);
448   void visit(ir_function *ir);
449   void visit(ir_function_signature *ir);
450
451   fs_inst *emit(fs_inst inst);
452   void assign_curb_setup();
453   void calculate_urb_setup();
454   void assign_urb_setup();
455   void assign_regs();
456   void assign_regs_trivial();
457   void calculate_live_intervals();
458   bool propagate_constants();
459   bool dead_code_eliminate();
460   bool virtual_grf_interferes(int a, int b);
461   void generate_code();
462   void generate_fb_write(fs_inst *inst);
463   void generate_linterp(fs_inst *inst, struct brw_reg dst,
464			 struct brw_reg *src);
465   void generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
466   void generate_math(fs_inst *inst, struct brw_reg dst, struct brw_reg *src);
467   void generate_discard(fs_inst *inst, struct brw_reg temp);
468   void generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
469   void generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
470
471   void emit_dummy_fs();
472   void emit_fragcoord_interpolation(ir_variable *ir);
473   void emit_general_interpolation(ir_variable *ir);
474   void emit_interpolation_setup_gen4();
475   void emit_interpolation_setup_gen6();
476   fs_inst *emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate);
477   fs_inst *emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate);
478   void emit_fb_writes();
479   void emit_assignment_writes(fs_reg &l, fs_reg &r,
480			       const glsl_type *type, bool predicated);
481
482   struct brw_reg interp_reg(int location, int channel);
483   int setup_uniform_values(int loc, const glsl_type *type);
484   void setup_builtin_uniform_values(ir_variable *ir);
485
486   struct brw_context *brw;
487   const struct gl_fragment_program *fp;
488   struct intel_context *intel;
489   GLcontext *ctx;
490   struct brw_wm_compile *c;
491   struct brw_compile *p;
492   struct brw_shader *shader;
493   void *mem_ctx;
494   exec_list instructions;
495
496   int *virtual_grf_sizes;
497   int virtual_grf_next;
498   int virtual_grf_array_size;
499   int *virtual_grf_def;
500   int *virtual_grf_use;
501
502   struct hash_table *variable_ht;
503   ir_variable *frag_color, *frag_data, *frag_depth;
504   int first_non_payload_grf;
505   int urb_setup[FRAG_ATTRIB_MAX];
506
507   /** @{ debug annotation info */
508   const char *current_annotation;
509   ir_instruction *base_ir;
510   const char **annotation_string;
511   ir_instruction **annotation_ir;
512   /** @} */
513
514   bool fail;
515
516   /* Result of last visit() method. */
517   fs_reg result;
518
519   fs_reg pixel_x;
520   fs_reg pixel_y;
521   fs_reg wpos_w;
522   fs_reg pixel_w;
523   fs_reg delta_x;
524   fs_reg delta_y;
525
526   int grf_used;
527
528};
529
530int
531fs_visitor::virtual_grf_alloc(int size)
532{
533   if (virtual_grf_array_size <= virtual_grf_next) {
534      if (virtual_grf_array_size == 0)
535	 virtual_grf_array_size = 16;
536      else
537	 virtual_grf_array_size *= 2;
538      virtual_grf_sizes = talloc_realloc(mem_ctx, virtual_grf_sizes,
539					 int, virtual_grf_array_size);
540
541      /* This slot is always unused. */
542      virtual_grf_sizes[0] = 0;
543   }
544   virtual_grf_sizes[virtual_grf_next] = size;
545   return virtual_grf_next++;
546}
547
548/** Fixed HW reg constructor. */
549fs_reg::fs_reg(enum register_file file, int hw_reg)
550{
551   init();
552   this->file = file;
553   this->hw_reg = hw_reg;
554   this->type = BRW_REGISTER_TYPE_F;
555}
556
557int
558brw_type_for_base_type(const struct glsl_type *type)
559{
560   switch (type->base_type) {
561   case GLSL_TYPE_FLOAT:
562      return BRW_REGISTER_TYPE_F;
563   case GLSL_TYPE_INT:
564   case GLSL_TYPE_BOOL:
565      return BRW_REGISTER_TYPE_D;
566   case GLSL_TYPE_UINT:
567      return BRW_REGISTER_TYPE_UD;
568   case GLSL_TYPE_ARRAY:
569   case GLSL_TYPE_STRUCT:
570      /* These should be overridden with the type of the member when
571       * dereferenced into.  BRW_REGISTER_TYPE_UD seems like a likely
572       * way to trip up if we don't.
573       */
574      return BRW_REGISTER_TYPE_UD;
575   default:
576      assert(!"not reached");
577      return BRW_REGISTER_TYPE_F;
578   }
579}
580
581/** Automatic reg constructor. */
582fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
583{
584   init();
585
586   this->file = GRF;
587   this->reg = v->virtual_grf_alloc(type_size(type));
588   this->reg_offset = 0;
589   this->type = brw_type_for_base_type(type);
590}
591
592fs_reg *
593fs_visitor::variable_storage(ir_variable *var)
594{
595   return (fs_reg *)hash_table_find(this->variable_ht, var);
596}
597
598/* Our support for uniforms is piggy-backed on the struct
599 * gl_fragment_program, because that's where the values actually
600 * get stored, rather than in some global gl_shader_program uniform
601 * store.
602 */
603int
604fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
605{
606   unsigned int offset = 0;
607   float *vec_values;
608
609   if (type->is_matrix()) {
610      const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
611							type->vector_elements,
612							1);
613
614      for (unsigned int i = 0; i < type->matrix_columns; i++) {
615	 offset += setup_uniform_values(loc + offset, column);
616      }
617
618      return offset;
619   }
620
621   switch (type->base_type) {
622   case GLSL_TYPE_FLOAT:
623   case GLSL_TYPE_UINT:
624   case GLSL_TYPE_INT:
625   case GLSL_TYPE_BOOL:
626      vec_values = fp->Base.Parameters->ParameterValues[loc];
627      for (unsigned int i = 0; i < type->vector_elements; i++) {
628	 c->prog_data.param[c->prog_data.nr_params++] = &vec_values[i];
629      }
630      return 1;
631
632   case GLSL_TYPE_STRUCT:
633      for (unsigned int i = 0; i < type->length; i++) {
634	 offset += setup_uniform_values(loc + offset,
635					type->fields.structure[i].type);
636      }
637      return offset;
638
639   case GLSL_TYPE_ARRAY:
640      for (unsigned int i = 0; i < type->length; i++) {
641	 offset += setup_uniform_values(loc + offset, type->fields.array);
642      }
643      return offset;
644
645   case GLSL_TYPE_SAMPLER:
646      /* The sampler takes up a slot, but we don't use any values from it. */
647      return 1;
648
649   default:
650      assert(!"not reached");
651      return 0;
652   }
653}
654
655
656/* Our support for builtin uniforms is even scarier than non-builtin.
657 * It sits on top of the PROG_STATE_VAR parameters that are
658 * automatically updated from GL context state.
659 */
660void
661fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
662{
663   const struct gl_builtin_uniform_desc *statevar = NULL;
664
665   for (unsigned int i = 0; _mesa_builtin_uniform_desc[i].name; i++) {
666      statevar = &_mesa_builtin_uniform_desc[i];
667      if (strcmp(ir->name, _mesa_builtin_uniform_desc[i].name) == 0)
668	 break;
669   }
670
671   if (!statevar->name) {
672      this->fail = true;
673      printf("Failed to find builtin uniform `%s'\n", ir->name);
674      return;
675   }
676
677   int array_count;
678   if (ir->type->is_array()) {
679      array_count = ir->type->length;
680   } else {
681      array_count = 1;
682   }
683
684   for (int a = 0; a < array_count; a++) {
685      for (unsigned int i = 0; i < statevar->num_elements; i++) {
686	 struct gl_builtin_uniform_element *element = &statevar->elements[i];
687	 int tokens[STATE_LENGTH];
688
689	 memcpy(tokens, element->tokens, sizeof(element->tokens));
690	 if (ir->type->is_array()) {
691	    tokens[1] = a;
692	 }
693
694	 /* This state reference has already been setup by ir_to_mesa,
695	  * but we'll get the same index back here.
696	  */
697	 int index = _mesa_add_state_reference(this->fp->Base.Parameters,
698					       (gl_state_index *)tokens);
699	 float *vec_values = this->fp->Base.Parameters->ParameterValues[index];
700
701	 /* Add each of the unique swizzles of the element as a
702	  * parameter.  This'll end up matching the expected layout of
703	  * the array/matrix/structure we're trying to fill in.
704	  */
705	 int last_swiz = -1;
706	 for (unsigned int i = 0; i < 4; i++) {
707	    int swiz = GET_SWZ(element->swizzle, i);
708	    if (swiz == last_swiz)
709	       break;
710	    last_swiz = swiz;
711
712	    c->prog_data.param[c->prog_data.nr_params++] = &vec_values[swiz];
713	 }
714      }
715   }
716}
717
718void
719fs_visitor::emit_fragcoord_interpolation(ir_variable *ir)
720{
721   fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
722   fs_reg wpos = *reg;
723   fs_reg neg_y = this->pixel_y;
724   neg_y.negate = true;
725
726   /* gl_FragCoord.x */
727   if (ir->pixel_center_integer) {
728      emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_x));
729   } else {
730      emit(fs_inst(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f)));
731   }
732   wpos.reg_offset++;
733
734   /* gl_FragCoord.y */
735   if (ir->origin_upper_left && ir->pixel_center_integer) {
736      emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_y));
737   } else {
738      fs_reg pixel_y = this->pixel_y;
739      float offset = (ir->pixel_center_integer ? 0.0 : 0.5);
740
741      if (!ir->origin_upper_left) {
742	 pixel_y.negate = true;
743	 offset += c->key.drawable_height - 1.0;
744      }
745
746      emit(fs_inst(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset)));
747   }
748   wpos.reg_offset++;
749
750   /* gl_FragCoord.z */
751   emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
752		interp_reg(FRAG_ATTRIB_WPOS, 2)));
753   wpos.reg_offset++;
754
755   /* gl_FragCoord.w: Already set up in emit_interpolation */
756   emit(fs_inst(BRW_OPCODE_MOV, wpos, this->wpos_w));
757
758   hash_table_insert(this->variable_ht, reg, ir);
759}
760
761
762void
763fs_visitor::emit_general_interpolation(ir_variable *ir)
764{
765   fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
766   /* Interpolation is always in floating point regs. */
767   reg->type = BRW_REGISTER_TYPE_F;
768   fs_reg attr = *reg;
769
770   unsigned int array_elements;
771   const glsl_type *type;
772
773   if (ir->type->is_array()) {
774      array_elements = ir->type->length;
775      if (array_elements == 0) {
776	 this->fail = true;
777      }
778      type = ir->type->fields.array;
779   } else {
780      array_elements = 1;
781      type = ir->type;
782   }
783
784   int location = ir->location;
785   for (unsigned int i = 0; i < array_elements; i++) {
786      for (unsigned int j = 0; j < type->matrix_columns; j++) {
787	 if (urb_setup[location] == -1) {
788	    /* If there's no incoming setup data for this slot, don't
789	     * emit interpolation for it.
790	     */
791	    attr.reg_offset += type->vector_elements;
792	    location++;
793	    continue;
794	 }
795
796	 for (unsigned int c = 0; c < type->vector_elements; c++) {
797	    struct brw_reg interp = interp_reg(location, c);
798	    emit(fs_inst(FS_OPCODE_LINTERP,
799			 attr,
800			 this->delta_x,
801			 this->delta_y,
802			 fs_reg(interp)));
803	    attr.reg_offset++;
804	 }
805	 attr.reg_offset -= type->vector_elements;
806
807	 for (unsigned int c = 0; c < type->vector_elements; c++) {
808	    emit(fs_inst(BRW_OPCODE_MUL,
809			 attr,
810			 attr,
811			 this->pixel_w));
812	    attr.reg_offset++;
813	 }
814	 location++;
815      }
816   }
817
818   hash_table_insert(this->variable_ht, reg, ir);
819}
820
821void
822fs_visitor::visit(ir_variable *ir)
823{
824   fs_reg *reg = NULL;
825
826   if (variable_storage(ir))
827      return;
828
829   if (strcmp(ir->name, "gl_FragColor") == 0) {
830      this->frag_color = ir;
831   } else if (strcmp(ir->name, "gl_FragData") == 0) {
832      this->frag_data = ir;
833   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
834      this->frag_depth = ir;
835   }
836
837   if (ir->mode == ir_var_in) {
838      if (!strcmp(ir->name, "gl_FragCoord")) {
839	 emit_fragcoord_interpolation(ir);
840	 return;
841      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
842	 reg = new(this->mem_ctx) fs_reg(this, ir->type);
843	 struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
844	 /* bit 31 is "primitive is back face", so checking < (1 << 31) gives
845	  * us front face
846	  */
847	 fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP,
848				      *reg,
849				      fs_reg(r1_6ud),
850				      fs_reg(1u << 31)));
851	 inst->conditional_mod = BRW_CONDITIONAL_L;
852	 emit(fs_inst(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u)));
853      } else {
854	 emit_general_interpolation(ir);
855	 return;
856      }
857   }
858
859   if (ir->mode == ir_var_uniform) {
860      int param_index = c->prog_data.nr_params;
861
862      if (!strncmp(ir->name, "gl_", 3)) {
863	 setup_builtin_uniform_values(ir);
864      } else {
865	 setup_uniform_values(ir->location, ir->type);
866      }
867
868      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
869   }
870
871   if (!reg)
872      reg = new(this->mem_ctx) fs_reg(this, ir->type);
873
874   hash_table_insert(this->variable_ht, reg, ir);
875}
876
877void
878fs_visitor::visit(ir_dereference_variable *ir)
879{
880   fs_reg *reg = variable_storage(ir->var);
881   this->result = *reg;
882}
883
884void
885fs_visitor::visit(ir_dereference_record *ir)
886{
887   const glsl_type *struct_type = ir->record->type;
888
889   ir->record->accept(this);
890
891   unsigned int offset = 0;
892   for (unsigned int i = 0; i < struct_type->length; i++) {
893      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
894	 break;
895      offset += type_size(struct_type->fields.structure[i].type);
896   }
897   this->result.reg_offset += offset;
898   this->result.type = brw_type_for_base_type(ir->type);
899}
900
901void
902fs_visitor::visit(ir_dereference_array *ir)
903{
904   ir_constant *index;
905   int element_size;
906
907   ir->array->accept(this);
908   index = ir->array_index->as_constant();
909
910   element_size = type_size(ir->type);
911   this->result.type = brw_type_for_base_type(ir->type);
912
913   if (index) {
914      assert(this->result.file == UNIFORM ||
915	     (this->result.file == GRF &&
916	      this->result.reg != 0));
917      this->result.reg_offset += index->value.i[0] * element_size;
918   } else {
919      assert(!"FINISHME: non-constant array element");
920   }
921}
922
923void
924fs_visitor::visit(ir_expression *ir)
925{
926   unsigned int operand;
927   fs_reg op[2], temp;
928   fs_reg result;
929   fs_inst *inst;
930
931   for (operand = 0; operand < ir->get_num_operands(); operand++) {
932      ir->operands[operand]->accept(this);
933      if (this->result.file == BAD_FILE) {
934	 ir_print_visitor v;
935	 printf("Failed to get tree for expression operand:\n");
936	 ir->operands[operand]->accept(&v);
937	 this->fail = true;
938      }
939      op[operand] = this->result;
940
941      /* Matrix expression operands should have been broken down to vector
942       * operations already.
943       */
944      assert(!ir->operands[operand]->type->is_matrix());
945      /* And then those vector operands should have been broken down to scalar.
946       */
947      assert(!ir->operands[operand]->type->is_vector());
948   }
949
950   /* Storage for our result.  If our result goes into an assignment, it will
951    * just get copy-propagated out, so no worries.
952    */
953   this->result = fs_reg(this, ir->type);
954
955   switch (ir->operation) {
956   case ir_unop_logic_not:
957      emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], fs_reg(-1)));
958      break;
959   case ir_unop_neg:
960      op[0].negate = !op[0].negate;
961      this->result = op[0];
962      break;
963   case ir_unop_abs:
964      op[0].abs = true;
965      this->result = op[0];
966      break;
967   case ir_unop_sign:
968      temp = fs_reg(this, ir->type);
969
970      emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(0.0f)));
971
972      inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
973      inst->conditional_mod = BRW_CONDITIONAL_G;
974      inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(1.0f)));
975      inst->predicated = true;
976
977      inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
978      inst->conditional_mod = BRW_CONDITIONAL_L;
979      inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f)));
980      inst->predicated = true;
981
982      break;
983   case ir_unop_rcp:
984      emit(fs_inst(FS_OPCODE_RCP, this->result, op[0]));
985      break;
986
987   case ir_unop_exp2:
988      emit(fs_inst(FS_OPCODE_EXP2, this->result, op[0]));
989      break;
990   case ir_unop_log2:
991      emit(fs_inst(FS_OPCODE_LOG2, this->result, op[0]));
992      break;
993   case ir_unop_exp:
994   case ir_unop_log:
995      assert(!"not reached: should be handled by ir_explog_to_explog2");
996      break;
997   case ir_unop_sin:
998      emit(fs_inst(FS_OPCODE_SIN, this->result, op[0]));
999      break;
1000   case ir_unop_cos:
1001      emit(fs_inst(FS_OPCODE_COS, this->result, op[0]));
1002      break;
1003
1004   case ir_unop_dFdx:
1005      emit(fs_inst(FS_OPCODE_DDX, this->result, op[0]));
1006      break;
1007   case ir_unop_dFdy:
1008      emit(fs_inst(FS_OPCODE_DDY, this->result, op[0]));
1009      break;
1010
1011   case ir_binop_add:
1012      emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], op[1]));
1013      break;
1014   case ir_binop_sub:
1015      assert(!"not reached: should be handled by ir_sub_to_add_neg");
1016      break;
1017
1018   case ir_binop_mul:
1019      emit(fs_inst(BRW_OPCODE_MUL, this->result, op[0], op[1]));
1020      break;
1021   case ir_binop_div:
1022      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1023      break;
1024   case ir_binop_mod:
1025      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1026      break;
1027
1028   case ir_binop_less:
1029      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1030      inst->conditional_mod = BRW_CONDITIONAL_L;
1031      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1032      break;
1033   case ir_binop_greater:
1034      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1035      inst->conditional_mod = BRW_CONDITIONAL_G;
1036      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1037      break;
1038   case ir_binop_lequal:
1039      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1040      inst->conditional_mod = BRW_CONDITIONAL_LE;
1041      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1042      break;
1043   case ir_binop_gequal:
1044      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1045      inst->conditional_mod = BRW_CONDITIONAL_GE;
1046      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1047      break;
1048   case ir_binop_equal:
1049   case ir_binop_all_equal: /* same as nequal for scalars */
1050      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1051      inst->conditional_mod = BRW_CONDITIONAL_Z;
1052      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1053      break;
1054   case ir_binop_nequal:
1055   case ir_binop_any_nequal: /* same as nequal for scalars */
1056      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1057      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1058      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1059      break;
1060
1061   case ir_binop_logic_xor:
1062      emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1]));
1063      break;
1064
1065   case ir_binop_logic_or:
1066      emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1]));
1067      break;
1068
1069   case ir_binop_logic_and:
1070      emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1]));
1071      break;
1072
1073   case ir_binop_dot:
1074   case ir_binop_cross:
1075   case ir_unop_any:
1076      assert(!"not reached: should be handled by brw_fs_channel_expressions");
1077      break;
1078
1079   case ir_unop_noise:
1080      assert(!"not reached: should be handled by lower_noise");
1081      break;
1082
1083   case ir_unop_sqrt:
1084      emit(fs_inst(FS_OPCODE_SQRT, this->result, op[0]));
1085      break;
1086
1087   case ir_unop_rsq:
1088      emit(fs_inst(FS_OPCODE_RSQ, this->result, op[0]));
1089      break;
1090
1091   case ir_unop_i2f:
1092   case ir_unop_b2f:
1093   case ir_unop_b2i:
1094      emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
1095      break;
1096   case ir_unop_f2i:
1097      emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
1098      break;
1099   case ir_unop_f2b:
1100   case ir_unop_i2b:
1101      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0.0f)));
1102      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1103
1104   case ir_unop_trunc:
1105      emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1106      break;
1107   case ir_unop_ceil:
1108      op[0].negate = ~op[0].negate;
1109      inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1110      this->result.negate = true;
1111      break;
1112   case ir_unop_floor:
1113      inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1114      break;
1115   case ir_unop_fract:
1116      inst = emit(fs_inst(BRW_OPCODE_FRC, this->result, op[0]));
1117      break;
1118
1119   case ir_binop_min:
1120      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1121      inst->conditional_mod = BRW_CONDITIONAL_L;
1122
1123      inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
1124      inst->predicated = true;
1125      break;
1126   case ir_binop_max:
1127      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1128      inst->conditional_mod = BRW_CONDITIONAL_G;
1129
1130      inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
1131      inst->predicated = true;
1132      break;
1133
1134   case ir_binop_pow:
1135      inst = emit(fs_inst(FS_OPCODE_POW, this->result, op[0], op[1]));
1136      break;
1137
1138   case ir_unop_bit_not:
1139   case ir_unop_u2f:
1140   case ir_binop_lshift:
1141   case ir_binop_rshift:
1142   case ir_binop_bit_and:
1143   case ir_binop_bit_xor:
1144   case ir_binop_bit_or:
1145      assert(!"GLSL 1.30 features unsupported");
1146      break;
1147   }
1148}
1149
1150void
1151fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
1152				   const glsl_type *type, bool predicated)
1153{
1154   switch (type->base_type) {
1155   case GLSL_TYPE_FLOAT:
1156   case GLSL_TYPE_UINT:
1157   case GLSL_TYPE_INT:
1158   case GLSL_TYPE_BOOL:
1159      for (unsigned int i = 0; i < type->components(); i++) {
1160	 l.type = brw_type_for_base_type(type);
1161	 r.type = brw_type_for_base_type(type);
1162
1163	 fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
1164	 inst->predicated = predicated;
1165
1166	 l.reg_offset++;
1167	 r.reg_offset++;
1168      }
1169      break;
1170   case GLSL_TYPE_ARRAY:
1171      for (unsigned int i = 0; i < type->length; i++) {
1172	 emit_assignment_writes(l, r, type->fields.array, predicated);
1173      }
1174
1175   case GLSL_TYPE_STRUCT:
1176      for (unsigned int i = 0; i < type->length; i++) {
1177	 emit_assignment_writes(l, r, type->fields.structure[i].type,
1178				predicated);
1179      }
1180      break;
1181
1182   case GLSL_TYPE_SAMPLER:
1183      break;
1184
1185   default:
1186      assert(!"not reached");
1187      break;
1188   }
1189}
1190
1191void
1192fs_visitor::visit(ir_assignment *ir)
1193{
1194   struct fs_reg l, r;
1195   fs_inst *inst;
1196
1197   /* FINISHME: arrays on the lhs */
1198   ir->lhs->accept(this);
1199   l = this->result;
1200
1201   ir->rhs->accept(this);
1202   r = this->result;
1203
1204   assert(l.file != BAD_FILE);
1205   assert(r.file != BAD_FILE);
1206
1207   if (ir->condition) {
1208      /* Get the condition bool into the predicate. */
1209      ir->condition->accept(this);
1210      inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, this->result, fs_reg(0)));
1211      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1212   }
1213
1214   if (ir->lhs->type->is_scalar() ||
1215       ir->lhs->type->is_vector()) {
1216      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
1217	 if (ir->write_mask & (1 << i)) {
1218	    inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
1219	    if (ir->condition)
1220	       inst->predicated = true;
1221	    r.reg_offset++;
1222	 }
1223	 l.reg_offset++;
1224      }
1225   } else {
1226      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
1227   }
1228}
1229
1230fs_inst *
1231fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate)
1232{
1233   int mlen;
1234   int base_mrf = 2;
1235   bool simd16 = false;
1236   fs_reg orig_dst;
1237
1238   if (ir->shadow_comparitor) {
1239      for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
1240	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1241		      coordinate));
1242	 coordinate.reg_offset++;
1243      }
1244      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1245      mlen = 3;
1246
1247      if (ir->op == ir_tex) {
1248	 /* There's no plain shadow compare message, so we use shadow
1249	  * compare with a bias of 0.0.
1250	  */
1251	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1252		      fs_reg(0.0f)));
1253	 mlen++;
1254      } else if (ir->op == ir_txb) {
1255	 ir->lod_info.bias->accept(this);
1256	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1257		      this->result));
1258	 mlen++;
1259      } else {
1260	 assert(ir->op == ir_txl);
1261	 ir->lod_info.lod->accept(this);
1262	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1263		      this->result));
1264	 mlen++;
1265      }
1266
1267      ir->shadow_comparitor->accept(this);
1268      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1269      mlen++;
1270   } else if (ir->op == ir_tex) {
1271      for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
1272	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1273		      coordinate));
1274	 coordinate.reg_offset++;
1275      }
1276      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1277      mlen = 3;
1278   } else {
1279      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1280       * instructions.  We'll need to do SIMD16 here.
1281       */
1282      assert(ir->op == ir_txb || ir->op == ir_txl);
1283
1284      for (mlen = 0; mlen < ir->coordinate->type->vector_elements * 2;) {
1285	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1286		      coordinate));
1287	 coordinate.reg_offset++;
1288	 mlen++;
1289
1290	 /* The unused upper half. */
1291	 mlen++;
1292      }
1293
1294      /* lod/bias appears after u/v/r. */
1295      mlen = 6;
1296
1297      if (ir->op == ir_txb) {
1298	 ir->lod_info.bias->accept(this);
1299	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1300		      this->result));
1301	 mlen++;
1302      } else {
1303	 ir->lod_info.lod->accept(this);
1304	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1305		      this->result));
1306	 mlen++;
1307      }
1308
1309      /* The unused upper half. */
1310      mlen++;
1311
1312      /* Now, since we're doing simd16, the return is 2 interleaved
1313       * vec4s where the odd-indexed ones are junk. We'll need to move
1314       * this weirdness around to the expected layout.
1315       */
1316      simd16 = true;
1317      orig_dst = dst;
1318      dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
1319						       2));
1320      dst.type = BRW_REGISTER_TYPE_F;
1321   }
1322
1323   fs_inst *inst = NULL;
1324   switch (ir->op) {
1325   case ir_tex:
1326      inst = emit(fs_inst(FS_OPCODE_TEX, dst, fs_reg(MRF, base_mrf)));
1327      break;
1328   case ir_txb:
1329      inst = emit(fs_inst(FS_OPCODE_TXB, dst, fs_reg(MRF, base_mrf)));
1330      break;
1331   case ir_txl:
1332      inst = emit(fs_inst(FS_OPCODE_TXL, dst, fs_reg(MRF, base_mrf)));
1333      break;
1334   case ir_txd:
1335   case ir_txf:
1336      assert(!"GLSL 1.30 features unsupported");
1337      break;
1338   }
1339   inst->mlen = mlen;
1340
1341   if (simd16) {
1342      for (int i = 0; i < 4; i++) {
1343	 emit(fs_inst(BRW_OPCODE_MOV, orig_dst, dst));
1344	 orig_dst.reg_offset++;
1345	 dst.reg_offset += 2;
1346      }
1347   }
1348
1349   return inst;
1350}
1351
1352fs_inst *
1353fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate)
1354{
1355   /* gen5's SIMD8 sampler has slots for u, v, r, array index, then
1356    * optional parameters like shadow comparitor or LOD bias.  If
1357    * optional parameters aren't present, those base slots are
1358    * optional and don't need to be included in the message.
1359    *
1360    * We don't fill in the unnecessary slots regardless, which may
1361    * look surprising in the disassembly.
1362    */
1363   int mlen;
1364   int base_mrf = 2;
1365
1366   for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
1367      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate));
1368      coordinate.reg_offset++;
1369   }
1370
1371   if (ir->shadow_comparitor) {
1372      mlen = MAX2(mlen, 4);
1373
1374      ir->shadow_comparitor->accept(this);
1375      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1376      mlen++;
1377   }
1378
1379   fs_inst *inst = NULL;
1380   switch (ir->op) {
1381   case ir_tex:
1382      inst = emit(fs_inst(FS_OPCODE_TEX, dst, fs_reg(MRF, base_mrf)));
1383      break;
1384   case ir_txb:
1385      ir->lod_info.bias->accept(this);
1386      mlen = MAX2(mlen, 4);
1387      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1388      mlen++;
1389
1390      inst = emit(fs_inst(FS_OPCODE_TXB, dst, fs_reg(MRF, base_mrf)));
1391      break;
1392   case ir_txl:
1393      ir->lod_info.lod->accept(this);
1394      mlen = MAX2(mlen, 4);
1395      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1396      mlen++;
1397
1398      inst = emit(fs_inst(FS_OPCODE_TXL, dst, fs_reg(MRF, base_mrf)));
1399      break;
1400   case ir_txd:
1401   case ir_txf:
1402      assert(!"GLSL 1.30 features unsupported");
1403      break;
1404   }
1405   inst->mlen = mlen;
1406
1407   return inst;
1408}
1409
1410void
1411fs_visitor::visit(ir_texture *ir)
1412{
1413   fs_inst *inst = NULL;
1414
1415   ir->coordinate->accept(this);
1416   fs_reg coordinate = this->result;
1417
1418   /* Should be lowered by do_lower_texture_projection */
1419   assert(!ir->projector);
1420
1421   /* Writemasking doesn't eliminate channels on SIMD8 texture
1422    * samples, so don't worry about them.
1423    */
1424   fs_reg dst = fs_reg(this, glsl_type::vec4_type);
1425
1426   if (intel->gen < 5) {
1427      inst = emit_texture_gen4(ir, dst, coordinate);
1428   } else {
1429      inst = emit_texture_gen5(ir, dst, coordinate);
1430   }
1431
1432   inst->sampler =
1433      _mesa_get_sampler_uniform_value(ir->sampler,
1434				      ctx->Shader.CurrentProgram,
1435				      &brw->fragment_program->Base);
1436   inst->sampler = c->fp->program.Base.SamplerUnits[inst->sampler];
1437
1438   this->result = dst;
1439
1440   if (ir->shadow_comparitor)
1441      inst->shadow_compare = true;
1442
1443   if (c->key.tex_swizzles[inst->sampler] != SWIZZLE_NOOP) {
1444      fs_reg swizzle_dst = fs_reg(this, glsl_type::vec4_type);
1445
1446      for (int i = 0; i < 4; i++) {
1447	 int swiz = GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1448	 fs_reg l = swizzle_dst;
1449	 l.reg_offset += i;
1450
1451	 if (swiz == SWIZZLE_ZERO) {
1452	    emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(0.0f)));
1453	 } else if (swiz == SWIZZLE_ONE) {
1454	    emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(1.0f)));
1455	 } else {
1456	    fs_reg r = dst;
1457	    r.reg_offset += GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1458	    emit(fs_inst(BRW_OPCODE_MOV, l, r));
1459	 }
1460      }
1461      this->result = swizzle_dst;
1462   }
1463}
1464
1465void
1466fs_visitor::visit(ir_swizzle *ir)
1467{
1468   ir->val->accept(this);
1469   fs_reg val = this->result;
1470
1471   if (ir->type->vector_elements == 1) {
1472      this->result.reg_offset += ir->mask.x;
1473      return;
1474   }
1475
1476   fs_reg result = fs_reg(this, ir->type);
1477   this->result = result;
1478
1479   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1480      fs_reg channel = val;
1481      int swiz = 0;
1482
1483      switch (i) {
1484      case 0:
1485	 swiz = ir->mask.x;
1486	 break;
1487      case 1:
1488	 swiz = ir->mask.y;
1489	 break;
1490      case 2:
1491	 swiz = ir->mask.z;
1492	 break;
1493      case 3:
1494	 swiz = ir->mask.w;
1495	 break;
1496      }
1497
1498      channel.reg_offset += swiz;
1499      emit(fs_inst(BRW_OPCODE_MOV, result, channel));
1500      result.reg_offset++;
1501   }
1502}
1503
1504void
1505fs_visitor::visit(ir_discard *ir)
1506{
1507   fs_reg temp = fs_reg(this, glsl_type::uint_type);
1508
1509   assert(ir->condition == NULL); /* FINISHME */
1510
1511   emit(fs_inst(FS_OPCODE_DISCARD, temp, temp));
1512}
1513
1514void
1515fs_visitor::visit(ir_constant *ir)
1516{
1517   fs_reg reg(this, ir->type);
1518   this->result = reg;
1519
1520   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1521      switch (ir->type->base_type) {
1522      case GLSL_TYPE_FLOAT:
1523	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.f[i])));
1524	 break;
1525      case GLSL_TYPE_UINT:
1526	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.u[i])));
1527	 break;
1528      case GLSL_TYPE_INT:
1529	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.i[i])));
1530	 break;
1531      case GLSL_TYPE_BOOL:
1532	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg((int)ir->value.b[i])));
1533	 break;
1534      default:
1535	 assert(!"Non-float/uint/int/bool constant");
1536      }
1537      reg.reg_offset++;
1538   }
1539}
1540
1541void
1542fs_visitor::visit(ir_if *ir)
1543{
1544   fs_inst *inst;
1545
1546   /* Don't point the annotation at the if statement, because then it plus
1547    * the then and else blocks get printed.
1548    */
1549   this->base_ir = ir->condition;
1550
1551   /* Generate the condition into the condition code. */
1552   ir->condition->accept(this);
1553   inst = emit(fs_inst(BRW_OPCODE_MOV, fs_reg(brw_null_reg()), this->result));
1554   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1555
1556   inst = emit(fs_inst(BRW_OPCODE_IF));
1557   inst->predicated = true;
1558
1559   foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1560      ir_instruction *ir = (ir_instruction *)iter.get();
1561      this->base_ir = ir;
1562
1563      ir->accept(this);
1564   }
1565
1566   if (!ir->else_instructions.is_empty()) {
1567      emit(fs_inst(BRW_OPCODE_ELSE));
1568
1569      foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1570	 ir_instruction *ir = (ir_instruction *)iter.get();
1571	 this->base_ir = ir;
1572
1573	 ir->accept(this);
1574      }
1575   }
1576
1577   emit(fs_inst(BRW_OPCODE_ENDIF));
1578}
1579
1580void
1581fs_visitor::visit(ir_loop *ir)
1582{
1583   fs_reg counter = reg_undef;
1584
1585   if (ir->counter) {
1586      this->base_ir = ir->counter;
1587      ir->counter->accept(this);
1588      counter = *(variable_storage(ir->counter));
1589
1590      if (ir->from) {
1591	 this->base_ir = ir->from;
1592	 ir->from->accept(this);
1593
1594	 emit(fs_inst(BRW_OPCODE_MOV, counter, this->result));
1595      }
1596   }
1597
1598   emit(fs_inst(BRW_OPCODE_DO));
1599
1600   if (ir->to) {
1601      this->base_ir = ir->to;
1602      ir->to->accept(this);
1603
1604      fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null,
1605				   counter, this->result));
1606      switch (ir->cmp) {
1607      case ir_binop_equal:
1608	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1609	 break;
1610      case ir_binop_nequal:
1611	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1612	 break;
1613      case ir_binop_gequal:
1614	 inst->conditional_mod = BRW_CONDITIONAL_GE;
1615	 break;
1616      case ir_binop_lequal:
1617	 inst->conditional_mod = BRW_CONDITIONAL_LE;
1618	 break;
1619      case ir_binop_greater:
1620	 inst->conditional_mod = BRW_CONDITIONAL_G;
1621	 break;
1622      case ir_binop_less:
1623	 inst->conditional_mod = BRW_CONDITIONAL_L;
1624	 break;
1625      default:
1626	 assert(!"not reached: unknown loop condition");
1627	 this->fail = true;
1628	 break;
1629      }
1630
1631      inst = emit(fs_inst(BRW_OPCODE_BREAK));
1632      inst->predicated = true;
1633   }
1634
1635   foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1636      ir_instruction *ir = (ir_instruction *)iter.get();
1637
1638      this->base_ir = ir;
1639      ir->accept(this);
1640   }
1641
1642   if (ir->increment) {
1643      this->base_ir = ir->increment;
1644      ir->increment->accept(this);
1645      emit(fs_inst(BRW_OPCODE_ADD, counter, counter, this->result));
1646   }
1647
1648   emit(fs_inst(BRW_OPCODE_WHILE));
1649}
1650
1651void
1652fs_visitor::visit(ir_loop_jump *ir)
1653{
1654   switch (ir->mode) {
1655   case ir_loop_jump::jump_break:
1656      emit(fs_inst(BRW_OPCODE_BREAK));
1657      break;
1658   case ir_loop_jump::jump_continue:
1659      emit(fs_inst(BRW_OPCODE_CONTINUE));
1660      break;
1661   }
1662}
1663
1664void
1665fs_visitor::visit(ir_call *ir)
1666{
1667   assert(!"FINISHME");
1668}
1669
1670void
1671fs_visitor::visit(ir_return *ir)
1672{
1673   assert(!"FINISHME");
1674}
1675
1676void
1677fs_visitor::visit(ir_function *ir)
1678{
1679   /* Ignore function bodies other than main() -- we shouldn't see calls to
1680    * them since they should all be inlined before we get to ir_to_mesa.
1681    */
1682   if (strcmp(ir->name, "main") == 0) {
1683      const ir_function_signature *sig;
1684      exec_list empty;
1685
1686      sig = ir->matching_signature(&empty);
1687
1688      assert(sig);
1689
1690      foreach_iter(exec_list_iterator, iter, sig->body) {
1691	 ir_instruction *ir = (ir_instruction *)iter.get();
1692	 this->base_ir = ir;
1693
1694	 ir->accept(this);
1695      }
1696   }
1697}
1698
1699void
1700fs_visitor::visit(ir_function_signature *ir)
1701{
1702   assert(!"not reached");
1703   (void)ir;
1704}
1705
1706fs_inst *
1707fs_visitor::emit(fs_inst inst)
1708{
1709   fs_inst *list_inst = new(mem_ctx) fs_inst;
1710   *list_inst = inst;
1711
1712   list_inst->annotation = this->current_annotation;
1713   list_inst->ir = this->base_ir;
1714
1715   this->instructions.push_tail(list_inst);
1716
1717   return list_inst;
1718}
1719
1720/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1721void
1722fs_visitor::emit_dummy_fs()
1723{
1724   /* Everyone's favorite color. */
1725   emit(fs_inst(BRW_OPCODE_MOV,
1726		fs_reg(MRF, 2),
1727		fs_reg(1.0f)));
1728   emit(fs_inst(BRW_OPCODE_MOV,
1729		fs_reg(MRF, 3),
1730		fs_reg(0.0f)));
1731   emit(fs_inst(BRW_OPCODE_MOV,
1732		fs_reg(MRF, 4),
1733		fs_reg(1.0f)));
1734   emit(fs_inst(BRW_OPCODE_MOV,
1735		fs_reg(MRF, 5),
1736		fs_reg(0.0f)));
1737
1738   fs_inst *write;
1739   write = emit(fs_inst(FS_OPCODE_FB_WRITE,
1740			fs_reg(0),
1741			fs_reg(0)));
1742}
1743
1744/* The register location here is relative to the start of the URB
1745 * data.  It will get adjusted to be a real location before
1746 * generate_code() time.
1747 */
1748struct brw_reg
1749fs_visitor::interp_reg(int location, int channel)
1750{
1751   int regnr = urb_setup[location] * 2 + channel / 2;
1752   int stride = (channel & 1) * 4;
1753
1754   assert(urb_setup[location] != -1);
1755
1756   return brw_vec1_grf(regnr, stride);
1757}
1758
1759/** Emits the interpolation for the varying inputs. */
1760void
1761fs_visitor::emit_interpolation_setup_gen4()
1762{
1763   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1764
1765   this->current_annotation = "compute pixel centers";
1766   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1767   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1768   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1769   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1770   emit(fs_inst(BRW_OPCODE_ADD,
1771		this->pixel_x,
1772		fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1773		fs_reg(brw_imm_v(0x10101010))));
1774   emit(fs_inst(BRW_OPCODE_ADD,
1775		this->pixel_y,
1776		fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1777		fs_reg(brw_imm_v(0x11001100))));
1778
1779   this->current_annotation = "compute pixel deltas from v0";
1780   if (brw->has_pln) {
1781      this->delta_x = fs_reg(this, glsl_type::vec2_type);
1782      this->delta_y = this->delta_x;
1783      this->delta_y.reg_offset++;
1784   } else {
1785      this->delta_x = fs_reg(this, glsl_type::float_type);
1786      this->delta_y = fs_reg(this, glsl_type::float_type);
1787   }
1788   emit(fs_inst(BRW_OPCODE_ADD,
1789		this->delta_x,
1790		this->pixel_x,
1791		fs_reg(negate(brw_vec1_grf(1, 0)))));
1792   emit(fs_inst(BRW_OPCODE_ADD,
1793		this->delta_y,
1794		this->pixel_y,
1795		fs_reg(negate(brw_vec1_grf(1, 1)))));
1796
1797   this->current_annotation = "compute pos.w and 1/pos.w";
1798   /* Compute wpos.w.  It's always in our setup, since it's needed to
1799    * interpolate the other attributes.
1800    */
1801   this->wpos_w = fs_reg(this, glsl_type::float_type);
1802   emit(fs_inst(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1803		interp_reg(FRAG_ATTRIB_WPOS, 3)));
1804   /* Compute the pixel 1/W value from wpos.w. */
1805   this->pixel_w = fs_reg(this, glsl_type::float_type);
1806   emit(fs_inst(FS_OPCODE_RCP, this->pixel_w, wpos_w));
1807   this->current_annotation = NULL;
1808}
1809
1810/** Emits the interpolation for the varying inputs. */
1811void
1812fs_visitor::emit_interpolation_setup_gen6()
1813{
1814   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1815
1816   /* If the pixel centers end up used, the setup is the same as for gen4. */
1817   this->current_annotation = "compute pixel centers";
1818   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1819   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1820   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1821   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1822   emit(fs_inst(BRW_OPCODE_ADD,
1823		this->pixel_x,
1824		fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1825		fs_reg(brw_imm_v(0x10101010))));
1826   emit(fs_inst(BRW_OPCODE_ADD,
1827		this->pixel_y,
1828		fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1829		fs_reg(brw_imm_v(0x11001100))));
1830
1831   this->current_annotation = "compute 1/pos.w";
1832   this->wpos_w = fs_reg(brw_vec8_grf(c->key.source_w_reg, 0));
1833   this->pixel_w = fs_reg(this, glsl_type::float_type);
1834   emit(fs_inst(FS_OPCODE_RCP, this->pixel_w, wpos_w));
1835
1836   this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1837   this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1838
1839   this->current_annotation = NULL;
1840}
1841
1842void
1843fs_visitor::emit_fb_writes()
1844{
1845   this->current_annotation = "FB write header";
1846   int nr = 0;
1847
1848   /* m0, m1 header */
1849   nr += 2;
1850
1851   if (c->key.aa_dest_stencil_reg) {
1852      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1853		   fs_reg(brw_vec8_grf(c->key.aa_dest_stencil_reg, 0))));
1854   }
1855
1856   /* Reserve space for color. It'll be filled in per MRT below. */
1857   int color_mrf = nr;
1858   nr += 4;
1859
1860   if (c->key.source_depth_to_render_target) {
1861      if (c->key.computes_depth) {
1862	 /* Hand over gl_FragDepth. */
1863	 assert(this->frag_depth);
1864	 fs_reg depth = *(variable_storage(this->frag_depth));
1865
1866	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++), depth));
1867      } else {
1868	 /* Pass through the payload depth. */
1869	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1870		      fs_reg(brw_vec8_grf(c->key.source_depth_reg, 0))));
1871      }
1872   }
1873
1874   if (c->key.dest_depth_reg) {
1875      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1876		   fs_reg(brw_vec8_grf(c->key.dest_depth_reg, 0))));
1877   }
1878
1879   fs_reg color = reg_undef;
1880   if (this->frag_color)
1881      color = *(variable_storage(this->frag_color));
1882   else if (this->frag_data)
1883      color = *(variable_storage(this->frag_data));
1884
1885   for (int target = 0; target < c->key.nr_color_regions; target++) {
1886      this->current_annotation = talloc_asprintf(this->mem_ctx,
1887						 "FB write target %d",
1888						 target);
1889      if (this->frag_color || this->frag_data) {
1890	 for (int i = 0; i < 4; i++) {
1891	    emit(fs_inst(BRW_OPCODE_MOV,
1892			 fs_reg(MRF, color_mrf + i),
1893			 color));
1894	    color.reg_offset++;
1895	 }
1896      }
1897
1898      if (this->frag_color)
1899	 color.reg_offset -= 4;
1900
1901      fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
1902				   reg_undef, reg_undef));
1903      inst->target = target;
1904      inst->mlen = nr;
1905      if (target == c->key.nr_color_regions - 1)
1906	 inst->eot = true;
1907   }
1908
1909   if (c->key.nr_color_regions == 0) {
1910      fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
1911				   reg_undef, reg_undef));
1912      inst->mlen = nr;
1913      inst->eot = true;
1914   }
1915
1916   this->current_annotation = NULL;
1917}
1918
1919void
1920fs_visitor::generate_fb_write(fs_inst *inst)
1921{
1922   GLboolean eot = inst->eot;
1923
1924   /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
1925    * move, here's g1.
1926    */
1927   brw_push_insn_state(p);
1928   brw_set_mask_control(p, BRW_MASK_DISABLE);
1929   brw_set_compression_control(p, BRW_COMPRESSION_NONE);
1930   brw_MOV(p,
1931	   brw_message_reg(1),
1932	   brw_vec8_grf(1, 0));
1933   brw_pop_insn_state(p);
1934
1935   brw_fb_WRITE(p,
1936		8, /* dispatch_width */
1937		retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW),
1938		0, /* base MRF */
1939		retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
1940		inst->target,
1941		inst->mlen,
1942		0,
1943		eot);
1944}
1945
1946void
1947fs_visitor::generate_linterp(fs_inst *inst,
1948			     struct brw_reg dst, struct brw_reg *src)
1949{
1950   struct brw_reg delta_x = src[0];
1951   struct brw_reg delta_y = src[1];
1952   struct brw_reg interp = src[2];
1953
1954   if (brw->has_pln &&
1955       delta_y.nr == delta_x.nr + 1 &&
1956       (intel->gen >= 6 || (delta_x.nr & 1) == 0)) {
1957      brw_PLN(p, dst, interp, delta_x);
1958   } else {
1959      brw_LINE(p, brw_null_reg(), interp, delta_x);
1960      brw_MAC(p, dst, suboffset(interp, 1), delta_y);
1961   }
1962}
1963
1964void
1965fs_visitor::generate_math(fs_inst *inst,
1966			  struct brw_reg dst, struct brw_reg *src)
1967{
1968   int op;
1969
1970   switch (inst->opcode) {
1971   case FS_OPCODE_RCP:
1972      op = BRW_MATH_FUNCTION_INV;
1973      break;
1974   case FS_OPCODE_RSQ:
1975      op = BRW_MATH_FUNCTION_RSQ;
1976      break;
1977   case FS_OPCODE_SQRT:
1978      op = BRW_MATH_FUNCTION_SQRT;
1979      break;
1980   case FS_OPCODE_EXP2:
1981      op = BRW_MATH_FUNCTION_EXP;
1982      break;
1983   case FS_OPCODE_LOG2:
1984      op = BRW_MATH_FUNCTION_LOG;
1985      break;
1986   case FS_OPCODE_POW:
1987      op = BRW_MATH_FUNCTION_POW;
1988      break;
1989   case FS_OPCODE_SIN:
1990      op = BRW_MATH_FUNCTION_SIN;
1991      break;
1992   case FS_OPCODE_COS:
1993      op = BRW_MATH_FUNCTION_COS;
1994      break;
1995   default:
1996      assert(!"not reached: unknown math function");
1997      op = 0;
1998      break;
1999   }
2000
2001   if (inst->opcode == FS_OPCODE_POW) {
2002      brw_MOV(p, brw_message_reg(3), src[1]);
2003   }
2004
2005   brw_math(p, dst,
2006	    op,
2007	    inst->saturate ? BRW_MATH_SATURATE_SATURATE :
2008	    BRW_MATH_SATURATE_NONE,
2009	    2, src[0],
2010	    BRW_MATH_DATA_VECTOR,
2011	    BRW_MATH_PRECISION_FULL);
2012}
2013
2014void
2015fs_visitor::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2016{
2017   int msg_type = -1;
2018   int rlen = 4;
2019   uint32_t simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
2020
2021   if (intel->gen == 5) {
2022      switch (inst->opcode) {
2023      case FS_OPCODE_TEX:
2024	 if (inst->shadow_compare) {
2025	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_COMPARE_GEN5;
2026	 } else {
2027	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_GEN5;
2028	 }
2029	 break;
2030      case FS_OPCODE_TXB:
2031	 if (inst->shadow_compare) {
2032	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE_GEN5;
2033	 } else {
2034	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5;
2035	 }
2036	 break;
2037      }
2038   } else {
2039      switch (inst->opcode) {
2040      case FS_OPCODE_TEX:
2041	 /* Note that G45 and older determines shadow compare and dispatch width
2042	  * from message length for most messages.
2043	  */
2044	 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
2045	 if (inst->shadow_compare) {
2046	    assert(inst->mlen == 5);
2047	 } else {
2048	    assert(inst->mlen <= 6);
2049	 }
2050	 break;
2051      case FS_OPCODE_TXB:
2052	 if (inst->shadow_compare) {
2053	    assert(inst->mlen == 5);
2054	    msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
2055	 } else {
2056	    assert(inst->mlen == 8);
2057	    msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
2058	    simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
2059	 }
2060	 break;
2061      }
2062   }
2063   assert(msg_type != -1);
2064
2065   if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
2066      rlen = 8;
2067      dst = vec16(dst);
2068   }
2069
2070   /* g0 header. */
2071   src.nr--;
2072
2073   brw_SAMPLE(p,
2074	      retype(dst, BRW_REGISTER_TYPE_UW),
2075	      src.nr,
2076	      retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
2077              SURF_INDEX_TEXTURE(inst->sampler),
2078	      inst->sampler,
2079	      WRITEMASK_XYZW,
2080	      msg_type,
2081	      rlen,
2082	      inst->mlen + 1,
2083	      0,
2084	      1,
2085	      simd_mode);
2086}
2087
2088
2089/* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
2090 * looking like:
2091 *
2092 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
2093 *
2094 * and we're trying to produce:
2095 *
2096 *           DDX                     DDY
2097 * dst: (ss0.tr - ss0.tl)     (ss0.tl - ss0.bl)
2098 *      (ss0.tr - ss0.tl)     (ss0.tr - ss0.br)
2099 *      (ss0.br - ss0.bl)     (ss0.tl - ss0.bl)
2100 *      (ss0.br - ss0.bl)     (ss0.tr - ss0.br)
2101 *      (ss1.tr - ss1.tl)     (ss1.tl - ss1.bl)
2102 *      (ss1.tr - ss1.tl)     (ss1.tr - ss1.br)
2103 *      (ss1.br - ss1.bl)     (ss1.tl - ss1.bl)
2104 *      (ss1.br - ss1.bl)     (ss1.tr - ss1.br)
2105 *
2106 * and add another set of two more subspans if in 16-pixel dispatch mode.
2107 *
2108 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
2109 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
2110 * pair. But for DDY, it's harder, as we want to produce the pairs swizzled
2111 * between each other.  We could probably do it like ddx and swizzle the right
2112 * order later, but bail for now and just produce
2113 * ((ss0.tl - ss0.bl)x4 (ss1.tl - ss1.bl)x4)
2114 */
2115void
2116fs_visitor::generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2117{
2118   struct brw_reg src0 = brw_reg(src.file, src.nr, 1,
2119				 BRW_REGISTER_TYPE_F,
2120				 BRW_VERTICAL_STRIDE_2,
2121				 BRW_WIDTH_2,
2122				 BRW_HORIZONTAL_STRIDE_0,
2123				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2124   struct brw_reg src1 = brw_reg(src.file, src.nr, 0,
2125				 BRW_REGISTER_TYPE_F,
2126				 BRW_VERTICAL_STRIDE_2,
2127				 BRW_WIDTH_2,
2128				 BRW_HORIZONTAL_STRIDE_0,
2129				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2130   brw_ADD(p, dst, src0, negate(src1));
2131}
2132
2133void
2134fs_visitor::generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2135{
2136   struct brw_reg src0 = brw_reg(src.file, src.nr, 0,
2137				 BRW_REGISTER_TYPE_F,
2138				 BRW_VERTICAL_STRIDE_4,
2139				 BRW_WIDTH_4,
2140				 BRW_HORIZONTAL_STRIDE_0,
2141				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2142   struct brw_reg src1 = brw_reg(src.file, src.nr, 2,
2143				 BRW_REGISTER_TYPE_F,
2144				 BRW_VERTICAL_STRIDE_4,
2145				 BRW_WIDTH_4,
2146				 BRW_HORIZONTAL_STRIDE_0,
2147				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2148   brw_ADD(p, dst, src0, negate(src1));
2149}
2150
2151void
2152fs_visitor::generate_discard(fs_inst *inst, struct brw_reg temp)
2153{
2154   struct brw_reg g0 = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
2155   temp = brw_uw1_reg(temp.file, temp.nr, 0);
2156
2157   brw_push_insn_state(p);
2158   brw_set_mask_control(p, BRW_MASK_DISABLE);
2159   brw_NOT(p, temp, brw_mask_reg(1)); /* IMASK */
2160   brw_AND(p, g0, temp, g0);
2161   brw_pop_insn_state(p);
2162}
2163
2164void
2165fs_visitor::assign_curb_setup()
2166{
2167   c->prog_data.first_curbe_grf = c->key.nr_payload_regs;
2168   c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
2169
2170   /* Map the offsets in the UNIFORM file to fixed HW regs. */
2171   foreach_iter(exec_list_iterator, iter, this->instructions) {
2172      fs_inst *inst = (fs_inst *)iter.get();
2173
2174      for (unsigned int i = 0; i < 3; i++) {
2175	 if (inst->src[i].file == UNIFORM) {
2176	    int constant_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
2177	    struct brw_reg brw_reg = brw_vec1_grf(c->prog_data.first_curbe_grf +
2178						  constant_nr / 8,
2179						  constant_nr % 8);
2180
2181	    inst->src[i].file = FIXED_HW_REG;
2182	    inst->src[i].fixed_hw_reg = brw_reg;
2183	 }
2184      }
2185   }
2186}
2187
2188void
2189fs_visitor::calculate_urb_setup()
2190{
2191   for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2192      urb_setup[i] = -1;
2193   }
2194
2195   int urb_next = 0;
2196   /* Figure out where each of the incoming setup attributes lands. */
2197   if (intel->gen >= 6) {
2198      for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2199	 if (i == FRAG_ATTRIB_WPOS ||
2200	     (brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(i))) {
2201	    urb_setup[i] = urb_next++;
2202	 }
2203      }
2204   } else {
2205      /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
2206      for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) {
2207	 if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
2208	    int fp_index;
2209
2210	    if (i >= VERT_RESULT_VAR0)
2211	       fp_index = i - (VERT_RESULT_VAR0 - FRAG_ATTRIB_VAR0);
2212	    else if (i <= VERT_RESULT_TEX7)
2213	       fp_index = i;
2214	    else
2215	       fp_index = -1;
2216
2217	    if (fp_index >= 0)
2218	       urb_setup[fp_index] = urb_next++;
2219	 }
2220      }
2221   }
2222
2223   /* Each attribute is 4 setup channels, each of which is half a reg. */
2224   c->prog_data.urb_read_length = urb_next * 2;
2225}
2226
2227void
2228fs_visitor::assign_urb_setup()
2229{
2230   int urb_start = c->prog_data.first_curbe_grf + c->prog_data.curb_read_length;
2231
2232   /* Offset all the urb_setup[] index by the actual position of the
2233    * setup regs, now that the location of the constants has been chosen.
2234    */
2235   foreach_iter(exec_list_iterator, iter, this->instructions) {
2236      fs_inst *inst = (fs_inst *)iter.get();
2237
2238      if (inst->opcode != FS_OPCODE_LINTERP)
2239	 continue;
2240
2241      assert(inst->src[2].file == FIXED_HW_REG);
2242
2243      inst->src[2].fixed_hw_reg.nr += urb_start;
2244   }
2245
2246   this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
2247}
2248
2249static void
2250assign_reg(int *reg_hw_locations, fs_reg *reg)
2251{
2252   if (reg->file == GRF && reg->reg != 0) {
2253      reg->hw_reg = reg_hw_locations[reg->reg] + reg->reg_offset;
2254      reg->reg = 0;
2255   }
2256}
2257
2258void
2259fs_visitor::assign_regs_trivial()
2260{
2261   int last_grf = 0;
2262   int hw_reg_mapping[this->virtual_grf_next];
2263   int i;
2264
2265   hw_reg_mapping[0] = 0;
2266   hw_reg_mapping[1] = this->first_non_payload_grf;
2267   for (i = 2; i < this->virtual_grf_next; i++) {
2268      hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
2269			   this->virtual_grf_sizes[i - 1]);
2270   }
2271   last_grf = hw_reg_mapping[i - 1] + this->virtual_grf_sizes[i - 1];
2272
2273   foreach_iter(exec_list_iterator, iter, this->instructions) {
2274      fs_inst *inst = (fs_inst *)iter.get();
2275
2276      assign_reg(hw_reg_mapping, &inst->dst);
2277      assign_reg(hw_reg_mapping, &inst->src[0]);
2278      assign_reg(hw_reg_mapping, &inst->src[1]);
2279   }
2280
2281   this->grf_used = last_grf + 1;
2282}
2283
2284void
2285fs_visitor::assign_regs()
2286{
2287   int last_grf = 0;
2288   int hw_reg_mapping[this->virtual_grf_next + 1];
2289   int base_reg_count = BRW_MAX_GRF - this->first_non_payload_grf;
2290   int class_sizes[base_reg_count];
2291   int class_count = 0;
2292   int aligned_pair_class = -1;
2293
2294   /* Set up the register classes.
2295    *
2296    * The base registers store a scalar value.  For texture samples,
2297    * we get virtual GRFs composed of 4 contiguous hw register.  For
2298    * structures and arrays, we store them as contiguous larger things
2299    * than that, though we should be able to do better most of the
2300    * time.
2301    */
2302   class_sizes[class_count++] = 1;
2303   if (brw->has_pln && intel->gen < 6) {
2304      /* Always set up the (unaligned) pairs for gen5, so we can find
2305       * them for making the aligned pair class.
2306       */
2307      class_sizes[class_count++] = 2;
2308   }
2309   for (int r = 1; r < this->virtual_grf_next; r++) {
2310      int i;
2311
2312      for (i = 0; i < class_count; i++) {
2313	 if (class_sizes[i] == this->virtual_grf_sizes[r])
2314	    break;
2315      }
2316      if (i == class_count) {
2317	 if (this->virtual_grf_sizes[r] >= base_reg_count) {
2318	    fprintf(stderr, "Object too large to register allocate.\n");
2319	    this->fail = true;
2320	 }
2321
2322	 class_sizes[class_count++] = this->virtual_grf_sizes[r];
2323      }
2324   }
2325
2326   int ra_reg_count = 0;
2327   int class_base_reg[class_count];
2328   int class_reg_count[class_count];
2329   int classes[class_count + 1];
2330
2331   for (int i = 0; i < class_count; i++) {
2332      class_base_reg[i] = ra_reg_count;
2333      class_reg_count[i] = base_reg_count - (class_sizes[i] - 1);
2334      ra_reg_count += class_reg_count[i];
2335   }
2336
2337   struct ra_regs *regs = ra_alloc_reg_set(ra_reg_count);
2338   for (int i = 0; i < class_count; i++) {
2339      classes[i] = ra_alloc_reg_class(regs);
2340
2341      for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
2342	 ra_class_add_reg(regs, classes[i], class_base_reg[i] + i_r);
2343      }
2344
2345      /* Add conflicts between our contiguous registers aliasing
2346       * base regs and other register classes' contiguous registers
2347       * that alias base regs, or the base regs themselves for classes[0].
2348       */
2349      for (int c = 0; c <= i; c++) {
2350	 for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
2351	    for (int c_r = MAX2(0, i_r - (class_sizes[c] - 1));
2352		 c_r < MIN2(class_reg_count[c], i_r + class_sizes[i]);
2353		 c_r++) {
2354
2355	       if (0) {
2356		  printf("%d/%d conflicts %d/%d\n",
2357			 class_sizes[i], this->first_non_payload_grf + i_r,
2358			 class_sizes[c], this->first_non_payload_grf + c_r);
2359	       }
2360
2361	       ra_add_reg_conflict(regs,
2362				   class_base_reg[i] + i_r,
2363				   class_base_reg[c] + c_r);
2364	    }
2365	 }
2366      }
2367   }
2368
2369   /* Add a special class for aligned pairs, which we'll put delta_x/y
2370    * in on gen5 so that we can do PLN.
2371    */
2372   if (brw->has_pln && intel->gen < 6) {
2373      int reg_count = (base_reg_count - 1) / 2;
2374      int unaligned_pair_class = 1;
2375      assert(class_sizes[unaligned_pair_class] == 2);
2376
2377      aligned_pair_class = class_count;
2378      classes[aligned_pair_class] = ra_alloc_reg_class(regs);
2379      class_base_reg[aligned_pair_class] = 0;
2380      class_reg_count[aligned_pair_class] = 0;
2381      int start = (this->first_non_payload_grf & 1) ? 1 : 0;
2382
2383      for (int i = 0; i < reg_count; i++) {
2384	 ra_class_add_reg(regs, classes[aligned_pair_class],
2385			  class_base_reg[unaligned_pair_class] + i * 2 + start);
2386      }
2387      class_count++;
2388   }
2389
2390   ra_set_finalize(regs);
2391
2392   struct ra_graph *g = ra_alloc_interference_graph(regs,
2393						    this->virtual_grf_next);
2394   /* Node 0 is just a placeholder to keep virtual_grf[] mapping 1:1
2395    * with nodes.
2396    */
2397   ra_set_node_class(g, 0, classes[0]);
2398
2399   for (int i = 1; i < this->virtual_grf_next; i++) {
2400      for (int c = 0; c < class_count; c++) {
2401	 if (class_sizes[c] == this->virtual_grf_sizes[i]) {
2402	    if (aligned_pair_class >= 0 &&
2403		this->delta_x.reg == i) {
2404	       ra_set_node_class(g, i, classes[aligned_pair_class]);
2405	    } else {
2406	       ra_set_node_class(g, i, classes[c]);
2407	    }
2408	    break;
2409	 }
2410      }
2411
2412      for (int j = 1; j < i; j++) {
2413	 if (virtual_grf_interferes(i, j)) {
2414	    ra_add_node_interference(g, i, j);
2415	 }
2416      }
2417   }
2418
2419   /* FINISHME: Handle spilling */
2420   if (!ra_allocate_no_spills(g)) {
2421      fprintf(stderr, "Failed to allocate registers.\n");
2422      this->fail = true;
2423      return;
2424   }
2425
2426   /* Get the chosen virtual registers for each node, and map virtual
2427    * regs in the register classes back down to real hardware reg
2428    * numbers.
2429    */
2430   hw_reg_mapping[0] = 0; /* unused */
2431   for (int i = 1; i < this->virtual_grf_next; i++) {
2432      int reg = ra_get_node_reg(g, i);
2433      int hw_reg = -1;
2434
2435      for (int c = 0; c < class_count; c++) {
2436	 if (reg >= class_base_reg[c] &&
2437	     reg < class_base_reg[c] + class_reg_count[c]) {
2438	    hw_reg = reg - class_base_reg[c];
2439	    break;
2440	 }
2441      }
2442
2443      assert(hw_reg != -1);
2444      hw_reg_mapping[i] = this->first_non_payload_grf + hw_reg;
2445      last_grf = MAX2(last_grf,
2446		      hw_reg_mapping[i] + this->virtual_grf_sizes[i] - 1);
2447   }
2448
2449   foreach_iter(exec_list_iterator, iter, this->instructions) {
2450      fs_inst *inst = (fs_inst *)iter.get();
2451
2452      assign_reg(hw_reg_mapping, &inst->dst);
2453      assign_reg(hw_reg_mapping, &inst->src[0]);
2454      assign_reg(hw_reg_mapping, &inst->src[1]);
2455   }
2456
2457   this->grf_used = last_grf + 1;
2458
2459   talloc_free(g);
2460   talloc_free(regs);
2461}
2462
2463void
2464fs_visitor::calculate_live_intervals()
2465{
2466   int num_vars = this->virtual_grf_next;
2467   int *def = talloc_array(mem_ctx, int, num_vars);
2468   int *use = talloc_array(mem_ctx, int, num_vars);
2469   int loop_depth = 0;
2470   int loop_start = 0;
2471
2472   for (int i = 0; i < num_vars; i++) {
2473      def[i] = 1 << 30;
2474      use[i] = -1;
2475   }
2476
2477   int ip = 0;
2478   foreach_iter(exec_list_iterator, iter, this->instructions) {
2479      fs_inst *inst = (fs_inst *)iter.get();
2480
2481      if (inst->opcode == BRW_OPCODE_DO) {
2482	 if (loop_depth++ == 0)
2483	    loop_start = ip;
2484      } else if (inst->opcode == BRW_OPCODE_WHILE) {
2485	 loop_depth--;
2486
2487	 if (loop_depth == 0) {
2488	    /* FINISHME:
2489	     *
2490	     * Patches up any vars marked for use within the loop as
2491	     * live until the end.  This is conservative, as there
2492	     * will often be variables defined and used inside the
2493	     * loop but dead at the end of the loop body.
2494	     */
2495	    for (int i = 0; i < num_vars; i++) {
2496	       if (use[i] == loop_start) {
2497		  use[i] = ip;
2498	       }
2499	    }
2500	 }
2501      } else {
2502	 int eip = ip;
2503
2504	 if (loop_depth)
2505	    eip = loop_start;
2506
2507	 for (unsigned int i = 0; i < 3; i++) {
2508	    if (inst->src[i].file == GRF && inst->src[i].reg != 0) {
2509	       use[inst->src[i].reg] = MAX2(use[inst->src[i].reg], eip);
2510	    }
2511	 }
2512	 if (inst->dst.file == GRF && inst->dst.reg != 0) {
2513	    def[inst->dst.reg] = MIN2(def[inst->dst.reg], eip);
2514	 }
2515      }
2516
2517      ip++;
2518   }
2519
2520   talloc_free(this->virtual_grf_def);
2521   talloc_free(this->virtual_grf_use);
2522   this->virtual_grf_def = def;
2523   this->virtual_grf_use = use;
2524}
2525
2526/**
2527 * Attempts to move immediate constants into the immediate
2528 * constant slot of following instructions.
2529 *
2530 * Immediate constants are a bit tricky -- they have to be in the last
2531 * operand slot, you can't do abs/negate on them,
2532 */
2533
2534bool
2535fs_visitor::propagate_constants()
2536{
2537   bool progress = false;
2538
2539   return false;
2540
2541   foreach_iter(exec_list_iterator, iter, this->instructions) {
2542      fs_inst *inst = (fs_inst *)iter.get();
2543
2544      if (inst->opcode != BRW_OPCODE_MOV ||
2545	  inst->predicated ||
2546	  inst->dst.file != GRF || inst->src[0].file != IMM ||
2547	  inst->dst.type != inst->src[0].type)
2548	 continue;
2549
2550      /* Don't bother with cases where we should have had the
2551       * operation on the constant folded in GLSL already.
2552       */
2553      if (inst->saturate)
2554	 continue;
2555
2556      /* Found a move of a constant to a GRF.  Find anything else using the GRF
2557       * before it's written, and replace it with the constant if we can.
2558       */
2559      exec_list_iterator scan_iter = iter;
2560      scan_iter.next();
2561      for (; scan_iter.has_next(); scan_iter.next()) {
2562	 fs_inst *scan_inst = (fs_inst *)scan_iter.get();
2563
2564	 if (scan_inst->opcode == BRW_OPCODE_DO ||
2565	     scan_inst->opcode == BRW_OPCODE_WHILE ||
2566	     scan_inst->opcode == BRW_OPCODE_ELSE ||
2567	     scan_inst->opcode == BRW_OPCODE_ENDIF) {
2568	    break;
2569	 }
2570
2571	 for (int i = 2; i >= 0; i--) {
2572	    if (scan_inst->src[i].file != GRF ||
2573		scan_inst->src[i].reg != inst->dst.reg ||
2574		scan_inst->src[i].reg_offset != inst->dst.reg_offset)
2575	       continue;
2576
2577	    /* Don't bother with cases where we should have had the
2578	     * operation on the constant folded in GLSL already.
2579	     */
2580	    if (scan_inst->src[i].negate || scan_inst->src[i].abs)
2581	       continue;
2582
2583	    switch (scan_inst->opcode) {
2584	    case BRW_OPCODE_MOV:
2585	       scan_inst->src[i] = inst->src[0];
2586	       progress = true;
2587	       break;
2588
2589	    case BRW_OPCODE_MUL:
2590	    case BRW_OPCODE_ADD:
2591	       if (i == 1) {
2592		  scan_inst->src[i] = inst->src[0];
2593		  progress = true;
2594	       } else if (i == 0 && scan_inst->src[1].file != IMM) {
2595		  /* Fit this constant in by commuting the operands */
2596		  scan_inst->src[0] = scan_inst->src[1];
2597		  scan_inst->src[1] = inst->src[0];
2598	       }
2599	       break;
2600	    }
2601	 }
2602
2603	 if (scan_inst->dst.file == GRF &&
2604	     scan_inst->dst.reg == inst->dst.reg &&
2605	     (scan_inst->dst.reg_offset == inst->dst.reg_offset ||
2606	      scan_inst->opcode == FS_OPCODE_TEX)) {
2607	    break;
2608	 }
2609      }
2610   }
2611
2612   return progress;
2613}
2614/**
2615 * Must be called after calculate_live_intervales() to remove unused
2616 * writes to registers -- register allocation will fail otherwise
2617 * because something deffed but not used won't be considered to
2618 * interfere with other regs.
2619 */
2620bool
2621fs_visitor::dead_code_eliminate()
2622{
2623   bool progress = false;
2624   int num_vars = this->virtual_grf_next;
2625   bool dead[num_vars];
2626
2627   for (int i = 0; i < num_vars; i++) {
2628      /* This would be ">=", but FS_OPCODE_DISCARD has a src == dst where
2629       * it writes dst then reads it as src.
2630       */
2631      dead[i] = this->virtual_grf_def[i] > this->virtual_grf_use[i];
2632
2633      if (dead[i]) {
2634	 /* Mark off its interval so it won't interfere with anything. */
2635	 this->virtual_grf_def[i] = -1;
2636	 this->virtual_grf_use[i] = -1;
2637      }
2638   }
2639
2640   foreach_iter(exec_list_iterator, iter, this->instructions) {
2641      fs_inst *inst = (fs_inst *)iter.get();
2642
2643      if (inst->dst.file == GRF && dead[inst->dst.reg]) {
2644	 inst->remove();
2645	 progress = true;
2646      }
2647   }
2648
2649   return progress;
2650}
2651
2652bool
2653fs_visitor::virtual_grf_interferes(int a, int b)
2654{
2655   int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
2656   int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
2657
2658   /* For dead code, just check if the def interferes with the other range. */
2659   if (this->virtual_grf_use[a] == -1) {
2660      return (this->virtual_grf_def[a] >= this->virtual_grf_def[b] &&
2661	      this->virtual_grf_def[a] < this->virtual_grf_use[b]);
2662   }
2663   if (this->virtual_grf_use[b] == -1) {
2664      return (this->virtual_grf_def[b] >= this->virtual_grf_def[a] &&
2665	      this->virtual_grf_def[b] < this->virtual_grf_use[a]);
2666   }
2667
2668   return start <= end;
2669}
2670
2671static struct brw_reg brw_reg_from_fs_reg(fs_reg *reg)
2672{
2673   struct brw_reg brw_reg;
2674
2675   switch (reg->file) {
2676   case GRF:
2677   case ARF:
2678   case MRF:
2679      brw_reg = brw_vec8_reg(reg->file,
2680			    reg->hw_reg, 0);
2681      brw_reg = retype(brw_reg, reg->type);
2682      break;
2683   case IMM:
2684      switch (reg->type) {
2685      case BRW_REGISTER_TYPE_F:
2686	 brw_reg = brw_imm_f(reg->imm.f);
2687	 break;
2688      case BRW_REGISTER_TYPE_D:
2689	 brw_reg = brw_imm_d(reg->imm.i);
2690	 break;
2691      case BRW_REGISTER_TYPE_UD:
2692	 brw_reg = brw_imm_ud(reg->imm.u);
2693	 break;
2694      default:
2695	 assert(!"not reached");
2696	 break;
2697      }
2698      break;
2699   case FIXED_HW_REG:
2700      brw_reg = reg->fixed_hw_reg;
2701      break;
2702   case BAD_FILE:
2703      /* Probably unused. */
2704      brw_reg = brw_null_reg();
2705      break;
2706   case UNIFORM:
2707      assert(!"not reached");
2708      brw_reg = brw_null_reg();
2709      break;
2710   }
2711   if (reg->abs)
2712      brw_reg = brw_abs(brw_reg);
2713   if (reg->negate)
2714      brw_reg = negate(brw_reg);
2715
2716   return brw_reg;
2717}
2718
2719void
2720fs_visitor::generate_code()
2721{
2722   unsigned int annotation_len = 0;
2723   int last_native_inst = 0;
2724   struct brw_instruction *if_stack[16], *loop_stack[16];
2725   int if_stack_depth = 0, loop_stack_depth = 0;
2726   int if_depth_in_loop[16];
2727
2728   if_depth_in_loop[loop_stack_depth] = 0;
2729
2730   memset(&if_stack, 0, sizeof(if_stack));
2731   foreach_iter(exec_list_iterator, iter, this->instructions) {
2732      fs_inst *inst = (fs_inst *)iter.get();
2733      struct brw_reg src[3], dst;
2734
2735      for (unsigned int i = 0; i < 3; i++) {
2736	 src[i] = brw_reg_from_fs_reg(&inst->src[i]);
2737      }
2738      dst = brw_reg_from_fs_reg(&inst->dst);
2739
2740      brw_set_conditionalmod(p, inst->conditional_mod);
2741      brw_set_predicate_control(p, inst->predicated);
2742
2743      switch (inst->opcode) {
2744      case BRW_OPCODE_MOV:
2745	 brw_MOV(p, dst, src[0]);
2746	 break;
2747      case BRW_OPCODE_ADD:
2748	 brw_ADD(p, dst, src[0], src[1]);
2749	 break;
2750      case BRW_OPCODE_MUL:
2751	 brw_MUL(p, dst, src[0], src[1]);
2752	 break;
2753
2754      case BRW_OPCODE_FRC:
2755	 brw_FRC(p, dst, src[0]);
2756	 break;
2757      case BRW_OPCODE_RNDD:
2758	 brw_RNDD(p, dst, src[0]);
2759	 break;
2760      case BRW_OPCODE_RNDZ:
2761	 brw_RNDZ(p, dst, src[0]);
2762	 break;
2763
2764      case BRW_OPCODE_AND:
2765	 brw_AND(p, dst, src[0], src[1]);
2766	 break;
2767      case BRW_OPCODE_OR:
2768	 brw_OR(p, dst, src[0], src[1]);
2769	 break;
2770      case BRW_OPCODE_XOR:
2771	 brw_XOR(p, dst, src[0], src[1]);
2772	 break;
2773
2774      case BRW_OPCODE_CMP:
2775	 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
2776	 break;
2777      case BRW_OPCODE_SEL:
2778	 brw_SEL(p, dst, src[0], src[1]);
2779	 break;
2780
2781      case BRW_OPCODE_IF:
2782	 assert(if_stack_depth < 16);
2783	 if_stack[if_stack_depth] = brw_IF(p, BRW_EXECUTE_8);
2784	 if_depth_in_loop[loop_stack_depth]++;
2785	 if_stack_depth++;
2786	 break;
2787      case BRW_OPCODE_ELSE:
2788	 if_stack[if_stack_depth - 1] =
2789	    brw_ELSE(p, if_stack[if_stack_depth - 1]);
2790	 break;
2791      case BRW_OPCODE_ENDIF:
2792	 if_stack_depth--;
2793	 brw_ENDIF(p , if_stack[if_stack_depth]);
2794	 if_depth_in_loop[loop_stack_depth]--;
2795	 break;
2796
2797      case BRW_OPCODE_DO:
2798	 loop_stack[loop_stack_depth++] = brw_DO(p, BRW_EXECUTE_8);
2799	 if_depth_in_loop[loop_stack_depth] = 0;
2800	 break;
2801
2802      case BRW_OPCODE_BREAK:
2803	 brw_BREAK(p, if_depth_in_loop[loop_stack_depth]);
2804	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2805	 break;
2806      case BRW_OPCODE_CONTINUE:
2807	 brw_CONT(p, if_depth_in_loop[loop_stack_depth]);
2808	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2809	 break;
2810
2811      case BRW_OPCODE_WHILE: {
2812	 struct brw_instruction *inst0, *inst1;
2813	 GLuint br = 1;
2814
2815	 if (intel->gen >= 5)
2816	    br = 2;
2817
2818	 assert(loop_stack_depth > 0);
2819	 loop_stack_depth--;
2820	 inst0 = inst1 = brw_WHILE(p, loop_stack[loop_stack_depth]);
2821	 /* patch all the BREAK/CONT instructions from last BGNLOOP */
2822	 while (inst0 > loop_stack[loop_stack_depth]) {
2823	    inst0--;
2824	    if (inst0->header.opcode == BRW_OPCODE_BREAK &&
2825		inst0->bits3.if_else.jump_count == 0) {
2826	       inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
2827	    }
2828	    else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
2829		     inst0->bits3.if_else.jump_count == 0) {
2830	       inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
2831	    }
2832	 }
2833      }
2834	 break;
2835
2836      case FS_OPCODE_RCP:
2837      case FS_OPCODE_RSQ:
2838      case FS_OPCODE_SQRT:
2839      case FS_OPCODE_EXP2:
2840      case FS_OPCODE_LOG2:
2841      case FS_OPCODE_POW:
2842      case FS_OPCODE_SIN:
2843      case FS_OPCODE_COS:
2844	 generate_math(inst, dst, src);
2845	 break;
2846      case FS_OPCODE_LINTERP:
2847	 generate_linterp(inst, dst, src);
2848	 break;
2849      case FS_OPCODE_TEX:
2850      case FS_OPCODE_TXB:
2851      case FS_OPCODE_TXL:
2852	 generate_tex(inst, dst, src[0]);
2853	 break;
2854      case FS_OPCODE_DISCARD:
2855	 generate_discard(inst, dst /* src0 == dst */);
2856	 break;
2857      case FS_OPCODE_DDX:
2858	 generate_ddx(inst, dst, src[0]);
2859	 break;
2860      case FS_OPCODE_DDY:
2861	 generate_ddy(inst, dst, src[0]);
2862	 break;
2863      case FS_OPCODE_FB_WRITE:
2864	 generate_fb_write(inst);
2865	 break;
2866      default:
2867	 if (inst->opcode < (int)ARRAY_SIZE(brw_opcodes)) {
2868	    _mesa_problem(ctx, "Unsupported opcode `%s' in FS",
2869			  brw_opcodes[inst->opcode].name);
2870	 } else {
2871	    _mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode);
2872	 }
2873	 this->fail = true;
2874      }
2875
2876      if (annotation_len < p->nr_insn) {
2877	 annotation_len *= 2;
2878	 if (annotation_len < 16)
2879	    annotation_len = 16;
2880
2881	 this->annotation_string = talloc_realloc(this->mem_ctx,
2882						  annotation_string,
2883						  const char *,
2884						  annotation_len);
2885	 this->annotation_ir = talloc_realloc(this->mem_ctx,
2886					      annotation_ir,
2887					      ir_instruction *,
2888					      annotation_len);
2889      }
2890
2891      for (unsigned int i = last_native_inst; i < p->nr_insn; i++) {
2892	 this->annotation_string[i] = inst->annotation;
2893	 this->annotation_ir[i] = inst->ir;
2894      }
2895      last_native_inst = p->nr_insn;
2896   }
2897}
2898
2899GLboolean
2900brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c)
2901{
2902   struct brw_compile *p = &c->func;
2903   struct intel_context *intel = &brw->intel;
2904   GLcontext *ctx = &intel->ctx;
2905   struct brw_shader *shader = NULL;
2906   struct gl_shader_program *prog = ctx->Shader.CurrentProgram;
2907
2908   if (!prog)
2909      return GL_FALSE;
2910
2911   if (!using_new_fs)
2912      return GL_FALSE;
2913
2914   for (unsigned int i = 0; i < prog->_NumLinkedShaders; i++) {
2915      if (prog->_LinkedShaders[i]->Type == GL_FRAGMENT_SHADER) {
2916	 shader = (struct brw_shader *)prog->_LinkedShaders[i];
2917	 break;
2918      }
2919   }
2920   if (!shader)
2921      return GL_FALSE;
2922
2923   /* We always use 8-wide mode, at least for now.  For one, flow
2924    * control only works in 8-wide.  Also, when we're fragment shader
2925    * bound, we're almost always under register pressure as well, so
2926    * 8-wide would save us from the performance cliff of spilling
2927    * regs.
2928    */
2929   c->dispatch_width = 8;
2930
2931   if (INTEL_DEBUG & DEBUG_WM) {
2932      printf("GLSL IR for native fragment shader %d:\n", prog->Name);
2933      _mesa_print_ir(shader->ir, NULL);
2934      printf("\n");
2935   }
2936
2937   /* Now the main event: Visit the shader IR and generate our FS IR for it.
2938    */
2939   fs_visitor v(c, shader);
2940
2941   if (0) {
2942      v.emit_dummy_fs();
2943   } else {
2944      v.calculate_urb_setup();
2945      if (intel->gen < 6)
2946	 v.emit_interpolation_setup_gen4();
2947      else
2948	 v.emit_interpolation_setup_gen6();
2949
2950      /* Generate FS IR for main().  (the visitor only descends into
2951       * functions called "main").
2952       */
2953      foreach_iter(exec_list_iterator, iter, *shader->ir) {
2954	 ir_instruction *ir = (ir_instruction *)iter.get();
2955	 v.base_ir = ir;
2956	 ir->accept(&v);
2957      }
2958
2959      v.emit_fb_writes();
2960      v.assign_curb_setup();
2961      v.assign_urb_setup();
2962
2963      bool progress;
2964      do {
2965	 progress = false;
2966
2967	 v.calculate_live_intervals();
2968	 progress = v.propagate_constants() || progress;
2969	 progress = v.dead_code_eliminate() || progress;
2970      } while (progress);
2971
2972      if (0)
2973	 v.assign_regs_trivial();
2974      else
2975	 v.assign_regs();
2976   }
2977
2978   if (!v.fail)
2979      v.generate_code();
2980
2981   assert(!v.fail); /* FINISHME: Cleanly fail, tested at link time, etc. */
2982
2983   if (v.fail)
2984      return GL_FALSE;
2985
2986   if (INTEL_DEBUG & DEBUG_WM) {
2987      const char *last_annotation_string = NULL;
2988      ir_instruction *last_annotation_ir = NULL;
2989
2990      printf("Native code for fragment shader %d:\n", prog->Name);
2991      for (unsigned int i = 0; i < p->nr_insn; i++) {
2992	 if (last_annotation_ir != v.annotation_ir[i]) {
2993	    last_annotation_ir = v.annotation_ir[i];
2994	    if (last_annotation_ir) {
2995	       printf("   ");
2996	       last_annotation_ir->print();
2997	       printf("\n");
2998	    }
2999	 }
3000	 if (last_annotation_string != v.annotation_string[i]) {
3001	    last_annotation_string = v.annotation_string[i];
3002	    if (last_annotation_string)
3003	       printf("   %s\n", last_annotation_string);
3004	 }
3005	 brw_disasm(stdout, &p->store[i], intel->gen);
3006      }
3007      printf("\n");
3008   }
3009
3010   c->prog_data.total_grf = v.grf_used;
3011   c->prog_data.total_scratch = 0;
3012
3013   return GL_TRUE;
3014}
3015