brw_fs.cpp revision 3f2fe31eee1667ef9cad99aaad69e52a09c9effa
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28extern "C" {
29
30#include <sys/types.h>
31
32#include "main/macros.h"
33#include "main/shaderobj.h"
34#include "main/uniforms.h"
35#include "program/prog_parameter.h"
36#include "program/prog_print.h"
37#include "program/prog_optimize.h"
38#include "program/register_allocate.h"
39#include "program/sampler.h"
40#include "program/hash_table.h"
41#include "brw_context.h"
42#include "brw_eu.h"
43#include "brw_wm.h"
44#include "talloc.h"
45}
46#include "brw_fs.h"
47#include "../glsl/glsl_types.h"
48#include "../glsl/ir_optimization.h"
49#include "../glsl/ir_print_visitor.h"
50
51#define MAX_INSTRUCTION (1 << 30)
52static struct brw_reg brw_reg_from_fs_reg(class fs_reg *reg);
53
54struct gl_shader *
55brw_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
56{
57   struct brw_shader *shader;
58
59   shader = talloc_zero(NULL, struct brw_shader);
60   if (shader) {
61      shader->base.Type = type;
62      shader->base.Name = name;
63      _mesa_init_shader(ctx, &shader->base);
64   }
65
66   return &shader->base;
67}
68
69struct gl_shader_program *
70brw_new_shader_program(struct gl_context *ctx, GLuint name)
71{
72   struct brw_shader_program *prog;
73   prog = talloc_zero(NULL, struct brw_shader_program);
74   if (prog) {
75      prog->base.Name = name;
76      _mesa_init_shader_program(ctx, &prog->base);
77   }
78   return &prog->base;
79}
80
81GLboolean
82brw_compile_shader(struct gl_context *ctx, struct gl_shader *shader)
83{
84   if (!_mesa_ir_compile_shader(ctx, shader))
85      return GL_FALSE;
86
87   return GL_TRUE;
88}
89
90GLboolean
91brw_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
92{
93   struct brw_context *brw = brw_context(ctx);
94   struct intel_context *intel = &brw->intel;
95
96   struct brw_shader *shader =
97      (struct brw_shader *)prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
98   if (shader != NULL) {
99      void *mem_ctx = talloc_new(NULL);
100      bool progress;
101
102      if (shader->ir)
103	 talloc_free(shader->ir);
104      shader->ir = new(shader) exec_list;
105      clone_ir_list(mem_ctx, shader->ir, shader->base.ir);
106
107      do_mat_op_to_vec(shader->ir);
108      lower_instructions(shader->ir,
109			 MOD_TO_FRACT |
110			 DIV_TO_MUL_RCP |
111			 SUB_TO_ADD_NEG |
112			 EXP_TO_EXP2 |
113			 LOG_TO_LOG2);
114
115      /* Pre-gen6 HW can only nest if-statements 16 deep.  Beyond this,
116       * if-statements need to be flattened.
117       */
118      if (intel->gen < 6)
119	 lower_if_to_cond_assign(shader->ir, 16);
120
121      do_lower_texture_projection(shader->ir);
122      do_vec_index_to_cond_assign(shader->ir);
123      brw_do_cubemap_normalize(shader->ir);
124
125      do {
126	 progress = false;
127
128	 brw_do_channel_expressions(shader->ir);
129	 brw_do_vector_splitting(shader->ir);
130
131	 progress = do_lower_jumps(shader->ir, true, true,
132				   true, /* main return */
133				   false, /* continue */
134				   false /* loops */
135				   ) || progress;
136
137	 progress = do_common_optimization(shader->ir, true, 32) || progress;
138
139	 progress = lower_noise(shader->ir) || progress;
140	 progress =
141	    lower_variable_index_to_cond_assign(shader->ir,
142						GL_TRUE, /* input */
143						GL_TRUE, /* output */
144						GL_TRUE, /* temp */
145						GL_TRUE /* uniform */
146						) || progress;
147	 progress = lower_quadop_vector(shader->ir, false) || progress;
148      } while (progress);
149
150      validate_ir_tree(shader->ir);
151
152      reparent_ir(shader->ir, shader->ir);
153      talloc_free(mem_ctx);
154   }
155
156   if (!_mesa_ir_link_shader(ctx, prog))
157      return GL_FALSE;
158
159   return GL_TRUE;
160}
161
162static int
163type_size(const struct glsl_type *type)
164{
165   unsigned int size, i;
166
167   switch (type->base_type) {
168   case GLSL_TYPE_UINT:
169   case GLSL_TYPE_INT:
170   case GLSL_TYPE_FLOAT:
171   case GLSL_TYPE_BOOL:
172      return type->components();
173   case GLSL_TYPE_ARRAY:
174      return type_size(type->fields.array) * type->length;
175   case GLSL_TYPE_STRUCT:
176      size = 0;
177      for (i = 0; i < type->length; i++) {
178	 size += type_size(type->fields.structure[i].type);
179      }
180      return size;
181   case GLSL_TYPE_SAMPLER:
182      /* Samplers take up no register space, since they're baked in at
183       * link time.
184       */
185      return 0;
186   default:
187      assert(!"not reached");
188      return 0;
189   }
190}
191
192/**
193 * Returns how many MRFs an FS opcode will write over.
194 *
195 * Note that this is not the 0 or 1 implied writes in an actual gen
196 * instruction -- the FS opcodes often generate MOVs in addition.
197 */
198int
199fs_visitor::implied_mrf_writes(fs_inst *inst)
200{
201   if (inst->mlen == 0)
202      return 0;
203
204   switch (inst->opcode) {
205   case FS_OPCODE_RCP:
206   case FS_OPCODE_RSQ:
207   case FS_OPCODE_SQRT:
208   case FS_OPCODE_EXP2:
209   case FS_OPCODE_LOG2:
210   case FS_OPCODE_SIN:
211   case FS_OPCODE_COS:
212      return 1;
213   case FS_OPCODE_POW:
214      return 2;
215   case FS_OPCODE_TEX:
216   case FS_OPCODE_TXB:
217   case FS_OPCODE_TXL:
218      return 1;
219   case FS_OPCODE_FB_WRITE:
220      return 2;
221   case FS_OPCODE_PULL_CONSTANT_LOAD:
222   case FS_OPCODE_UNSPILL:
223      return 1;
224   case FS_OPCODE_SPILL:
225      return 2;
226   default:
227      assert(!"not reached");
228      return inst->mlen;
229   }
230}
231
232int
233fs_visitor::virtual_grf_alloc(int size)
234{
235   if (virtual_grf_array_size <= virtual_grf_next) {
236      if (virtual_grf_array_size == 0)
237	 virtual_grf_array_size = 16;
238      else
239	 virtual_grf_array_size *= 2;
240      virtual_grf_sizes = talloc_realloc(mem_ctx, virtual_grf_sizes,
241					 int, virtual_grf_array_size);
242
243      /* This slot is always unused. */
244      virtual_grf_sizes[0] = 0;
245   }
246   virtual_grf_sizes[virtual_grf_next] = size;
247   return virtual_grf_next++;
248}
249
250/** Fixed HW reg constructor. */
251fs_reg::fs_reg(enum register_file file, int hw_reg)
252{
253   init();
254   this->file = file;
255   this->hw_reg = hw_reg;
256   this->type = BRW_REGISTER_TYPE_F;
257}
258
259/** Fixed HW reg constructor. */
260fs_reg::fs_reg(enum register_file file, int hw_reg, uint32_t type)
261{
262   init();
263   this->file = file;
264   this->hw_reg = hw_reg;
265   this->type = type;
266}
267
268int
269brw_type_for_base_type(const struct glsl_type *type)
270{
271   switch (type->base_type) {
272   case GLSL_TYPE_FLOAT:
273      return BRW_REGISTER_TYPE_F;
274   case GLSL_TYPE_INT:
275   case GLSL_TYPE_BOOL:
276      return BRW_REGISTER_TYPE_D;
277   case GLSL_TYPE_UINT:
278      return BRW_REGISTER_TYPE_UD;
279   case GLSL_TYPE_ARRAY:
280   case GLSL_TYPE_STRUCT:
281   case GLSL_TYPE_SAMPLER:
282      /* These should be overridden with the type of the member when
283       * dereferenced into.  BRW_REGISTER_TYPE_UD seems like a likely
284       * way to trip up if we don't.
285       */
286      return BRW_REGISTER_TYPE_UD;
287   default:
288      assert(!"not reached");
289      return BRW_REGISTER_TYPE_F;
290   }
291}
292
293/** Automatic reg constructor. */
294fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
295{
296   init();
297
298   this->file = GRF;
299   this->reg = v->virtual_grf_alloc(type_size(type));
300   this->reg_offset = 0;
301   this->type = brw_type_for_base_type(type);
302}
303
304fs_reg *
305fs_visitor::variable_storage(ir_variable *var)
306{
307   return (fs_reg *)hash_table_find(this->variable_ht, var);
308}
309
310/* Our support for uniforms is piggy-backed on the struct
311 * gl_fragment_program, because that's where the values actually
312 * get stored, rather than in some global gl_shader_program uniform
313 * store.
314 */
315int
316fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
317{
318   unsigned int offset = 0;
319
320   if (type->is_matrix()) {
321      const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
322							type->vector_elements,
323							1);
324
325      for (unsigned int i = 0; i < type->matrix_columns; i++) {
326	 offset += setup_uniform_values(loc + offset, column);
327      }
328
329      return offset;
330   }
331
332   switch (type->base_type) {
333   case GLSL_TYPE_FLOAT:
334   case GLSL_TYPE_UINT:
335   case GLSL_TYPE_INT:
336   case GLSL_TYPE_BOOL:
337      for (unsigned int i = 0; i < type->vector_elements; i++) {
338	 unsigned int param = c->prog_data.nr_params++;
339
340	 assert(param < ARRAY_SIZE(c->prog_data.param));
341
342	 switch (type->base_type) {
343	 case GLSL_TYPE_FLOAT:
344	    c->prog_data.param_convert[param] = PARAM_NO_CONVERT;
345	    break;
346	 case GLSL_TYPE_UINT:
347	    c->prog_data.param_convert[param] = PARAM_CONVERT_F2U;
348	    break;
349	 case GLSL_TYPE_INT:
350	    c->prog_data.param_convert[param] = PARAM_CONVERT_F2I;
351	    break;
352	 case GLSL_TYPE_BOOL:
353	    c->prog_data.param_convert[param] = PARAM_CONVERT_F2B;
354	    break;
355	 default:
356	    assert(!"not reached");
357	    c->prog_data.param_convert[param] = PARAM_NO_CONVERT;
358	    break;
359	 }
360	 this->param_index[param] = loc;
361	 this->param_offset[param] = i;
362      }
363      return 1;
364
365   case GLSL_TYPE_STRUCT:
366      for (unsigned int i = 0; i < type->length; i++) {
367	 offset += setup_uniform_values(loc + offset,
368					type->fields.structure[i].type);
369      }
370      return offset;
371
372   case GLSL_TYPE_ARRAY:
373      for (unsigned int i = 0; i < type->length; i++) {
374	 offset += setup_uniform_values(loc + offset, type->fields.array);
375      }
376      return offset;
377
378   case GLSL_TYPE_SAMPLER:
379      /* The sampler takes up a slot, but we don't use any values from it. */
380      return 1;
381
382   default:
383      assert(!"not reached");
384      return 0;
385   }
386}
387
388
389/* Our support for builtin uniforms is even scarier than non-builtin.
390 * It sits on top of the PROG_STATE_VAR parameters that are
391 * automatically updated from GL context state.
392 */
393void
394fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
395{
396   const struct gl_builtin_uniform_desc *statevar = NULL;
397
398   for (unsigned int i = 0; _mesa_builtin_uniform_desc[i].name; i++) {
399      statevar = &_mesa_builtin_uniform_desc[i];
400      if (strcmp(ir->name, _mesa_builtin_uniform_desc[i].name) == 0)
401	 break;
402   }
403
404   if (!statevar->name) {
405      this->fail = true;
406      printf("Failed to find builtin uniform `%s'\n", ir->name);
407      return;
408   }
409
410   int array_count;
411   if (ir->type->is_array()) {
412      array_count = ir->type->length;
413   } else {
414      array_count = 1;
415   }
416
417   for (int a = 0; a < array_count; a++) {
418      for (unsigned int i = 0; i < statevar->num_elements; i++) {
419	 struct gl_builtin_uniform_element *element = &statevar->elements[i];
420	 int tokens[STATE_LENGTH];
421
422	 memcpy(tokens, element->tokens, sizeof(element->tokens));
423	 if (ir->type->is_array()) {
424	    tokens[1] = a;
425	 }
426
427	 /* This state reference has already been setup by ir_to_mesa,
428	  * but we'll get the same index back here.
429	  */
430	 int index = _mesa_add_state_reference(this->fp->Base.Parameters,
431					       (gl_state_index *)tokens);
432
433	 /* Add each of the unique swizzles of the element as a
434	  * parameter.  This'll end up matching the expected layout of
435	  * the array/matrix/structure we're trying to fill in.
436	  */
437	 int last_swiz = -1;
438	 for (unsigned int i = 0; i < 4; i++) {
439	    int swiz = GET_SWZ(element->swizzle, i);
440	    if (swiz == last_swiz)
441	       break;
442	    last_swiz = swiz;
443
444	    c->prog_data.param_convert[c->prog_data.nr_params] =
445	       PARAM_NO_CONVERT;
446	    this->param_index[c->prog_data.nr_params] = index;
447	    this->param_offset[c->prog_data.nr_params] = swiz;
448	    c->prog_data.nr_params++;
449	 }
450      }
451   }
452}
453
454fs_reg *
455fs_visitor::emit_fragcoord_interpolation(ir_variable *ir)
456{
457   fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
458   fs_reg wpos = *reg;
459   fs_reg neg_y = this->pixel_y;
460   neg_y.negate = true;
461   bool flip = !ir->origin_upper_left ^ c->key.render_to_fbo;
462
463   /* gl_FragCoord.x */
464   if (ir->pixel_center_integer) {
465      emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_x));
466   } else {
467      emit(fs_inst(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f)));
468   }
469   wpos.reg_offset++;
470
471   /* gl_FragCoord.y */
472   if (!flip && ir->pixel_center_integer) {
473      emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_y));
474   } else {
475      fs_reg pixel_y = this->pixel_y;
476      float offset = (ir->pixel_center_integer ? 0.0 : 0.5);
477
478      if (flip) {
479	 pixel_y.negate = true;
480	 offset += c->key.drawable_height - 1.0;
481      }
482
483      emit(fs_inst(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset)));
484   }
485   wpos.reg_offset++;
486
487   /* gl_FragCoord.z */
488   if (intel->gen >= 6) {
489      emit(fs_inst(BRW_OPCODE_MOV, wpos,
490		   fs_reg(brw_vec8_grf(c->source_depth_reg, 0))));
491   } else {
492      emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
493		   interp_reg(FRAG_ATTRIB_WPOS, 2)));
494   }
495   wpos.reg_offset++;
496
497   /* gl_FragCoord.w: Already set up in emit_interpolation */
498   emit(fs_inst(BRW_OPCODE_MOV, wpos, this->wpos_w));
499
500   return reg;
501}
502
503fs_reg *
504fs_visitor::emit_general_interpolation(ir_variable *ir)
505{
506   fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
507   /* Interpolation is always in floating point regs. */
508   reg->type = BRW_REGISTER_TYPE_F;
509   fs_reg attr = *reg;
510
511   unsigned int array_elements;
512   const glsl_type *type;
513
514   if (ir->type->is_array()) {
515      array_elements = ir->type->length;
516      if (array_elements == 0) {
517	 this->fail = true;
518      }
519      type = ir->type->fields.array;
520   } else {
521      array_elements = 1;
522      type = ir->type;
523   }
524
525   int location = ir->location;
526   for (unsigned int i = 0; i < array_elements; i++) {
527      for (unsigned int j = 0; j < type->matrix_columns; j++) {
528	 if (urb_setup[location] == -1) {
529	    /* If there's no incoming setup data for this slot, don't
530	     * emit interpolation for it.
531	     */
532	    attr.reg_offset += type->vector_elements;
533	    location++;
534	    continue;
535	 }
536
537	 if (c->key.flat_shade && (location == FRAG_ATTRIB_COL0 ||
538				   location == FRAG_ATTRIB_COL1)) {
539	    /* Constant interpolation (flat shading) case. The SF has
540	     * handed us defined values in only the constant offset
541	     * field of the setup reg.
542	     */
543	    for (unsigned int c = 0; c < type->vector_elements; c++) {
544	       struct brw_reg interp = interp_reg(location, c);
545	       interp = suboffset(interp, 3);
546	       emit(fs_inst(FS_OPCODE_CINTERP, attr, fs_reg(interp)));
547	       attr.reg_offset++;
548	    }
549	 } else {
550	    /* Perspective interpolation case. */
551	    for (unsigned int c = 0; c < type->vector_elements; c++) {
552	       struct brw_reg interp = interp_reg(location, c);
553	       emit(fs_inst(FS_OPCODE_LINTERP,
554			    attr,
555			    this->delta_x,
556			    this->delta_y,
557			    fs_reg(interp)));
558	       attr.reg_offset++;
559	    }
560
561	    if (intel->gen < 6) {
562	       attr.reg_offset -= type->vector_elements;
563	       for (unsigned int c = 0; c < type->vector_elements; c++) {
564		  emit(fs_inst(BRW_OPCODE_MUL,
565			       attr,
566			       attr,
567			       this->pixel_w));
568		  attr.reg_offset++;
569	       }
570	    }
571	 }
572	 location++;
573      }
574   }
575
576   return reg;
577}
578
579fs_reg *
580fs_visitor::emit_frontfacing_interpolation(ir_variable *ir)
581{
582   fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
583
584   /* The frontfacing comes in as a bit in the thread payload. */
585   if (intel->gen >= 6) {
586      emit(fs_inst(BRW_OPCODE_ASR,
587		   *reg,
588		   fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
589		   fs_reg(15)));
590      emit(fs_inst(BRW_OPCODE_NOT,
591		   *reg,
592		   *reg));
593      emit(fs_inst(BRW_OPCODE_AND,
594		   *reg,
595		   *reg,
596		   fs_reg(1)));
597   } else {
598      struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
599      /* bit 31 is "primitive is back face", so checking < (1 << 31) gives
600       * us front face
601       */
602      fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP,
603				   *reg,
604				   fs_reg(r1_6ud),
605				   fs_reg(1u << 31)));
606      inst->conditional_mod = BRW_CONDITIONAL_L;
607      emit(fs_inst(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u)));
608   }
609
610   return reg;
611}
612
613fs_inst *
614fs_visitor::emit_math(fs_opcodes opcode, fs_reg dst, fs_reg src)
615{
616   switch (opcode) {
617   case FS_OPCODE_RCP:
618   case FS_OPCODE_RSQ:
619   case FS_OPCODE_SQRT:
620   case FS_OPCODE_EXP2:
621   case FS_OPCODE_LOG2:
622   case FS_OPCODE_SIN:
623   case FS_OPCODE_COS:
624      break;
625   default:
626      assert(!"not reached: bad math opcode");
627      return NULL;
628   }
629
630   /* Can't do hstride == 0 args to gen6 math, so expand it out.  We
631    * might be able to do better by doing execsize = 1 math and then
632    * expanding that result out, but we would need to be careful with
633    * masking.
634    *
635    * The hardware ignores source modifiers (negate and abs) on math
636    * instructions, so we also move to a temp to set those up.
637    */
638   if (intel->gen >= 6 && (src.file == UNIFORM ||
639			   src.abs ||
640			   src.negate)) {
641      fs_reg expanded = fs_reg(this, glsl_type::float_type);
642      emit(fs_inst(BRW_OPCODE_MOV, expanded, src));
643      src = expanded;
644   }
645
646   fs_inst *inst = emit(fs_inst(opcode, dst, src));
647
648   if (intel->gen < 6) {
649      inst->base_mrf = 2;
650      inst->mlen = 1;
651   }
652
653   return inst;
654}
655
656fs_inst *
657fs_visitor::emit_math(fs_opcodes opcode, fs_reg dst, fs_reg src0, fs_reg src1)
658{
659   int base_mrf = 2;
660   fs_inst *inst;
661
662   assert(opcode == FS_OPCODE_POW);
663
664   if (intel->gen >= 6) {
665      /* Can't do hstride == 0 args to gen6 math, so expand it out. */
666      if (src0.file == UNIFORM) {
667	 fs_reg expanded = fs_reg(this, glsl_type::float_type);
668	 emit(fs_inst(BRW_OPCODE_MOV, expanded, src0));
669	 src0 = expanded;
670      }
671
672      if (src1.file == UNIFORM) {
673	 fs_reg expanded = fs_reg(this, glsl_type::float_type);
674	 emit(fs_inst(BRW_OPCODE_MOV, expanded, src1));
675	 src1 = expanded;
676      }
677
678      inst = emit(fs_inst(opcode, dst, src0, src1));
679   } else {
680      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + 1), src1));
681      inst = emit(fs_inst(opcode, dst, src0, reg_null_f));
682
683      inst->base_mrf = base_mrf;
684      inst->mlen = 2;
685   }
686   return inst;
687}
688
689void
690fs_visitor::visit(ir_variable *ir)
691{
692   fs_reg *reg = NULL;
693
694   if (variable_storage(ir))
695      return;
696
697   if (strcmp(ir->name, "gl_FragColor") == 0) {
698      this->frag_color = ir;
699   } else if (strcmp(ir->name, "gl_FragData") == 0) {
700      this->frag_data = ir;
701   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
702      this->frag_depth = ir;
703   }
704
705   if (ir->mode == ir_var_in) {
706      if (!strcmp(ir->name, "gl_FragCoord")) {
707	 reg = emit_fragcoord_interpolation(ir);
708      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
709	 reg = emit_frontfacing_interpolation(ir);
710      } else {
711	 reg = emit_general_interpolation(ir);
712      }
713      assert(reg);
714      hash_table_insert(this->variable_ht, reg, ir);
715      return;
716   }
717
718   if (ir->mode == ir_var_uniform) {
719      int param_index = c->prog_data.nr_params;
720
721      if (!strncmp(ir->name, "gl_", 3)) {
722	 setup_builtin_uniform_values(ir);
723      } else {
724	 setup_uniform_values(ir->location, ir->type);
725      }
726
727      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
728      reg->type = brw_type_for_base_type(ir->type);
729   }
730
731   if (!reg)
732      reg = new(this->mem_ctx) fs_reg(this, ir->type);
733
734   hash_table_insert(this->variable_ht, reg, ir);
735}
736
737void
738fs_visitor::visit(ir_dereference_variable *ir)
739{
740   fs_reg *reg = variable_storage(ir->var);
741   this->result = *reg;
742}
743
744void
745fs_visitor::visit(ir_dereference_record *ir)
746{
747   const glsl_type *struct_type = ir->record->type;
748
749   ir->record->accept(this);
750
751   unsigned int offset = 0;
752   for (unsigned int i = 0; i < struct_type->length; i++) {
753      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
754	 break;
755      offset += type_size(struct_type->fields.structure[i].type);
756   }
757   this->result.reg_offset += offset;
758   this->result.type = brw_type_for_base_type(ir->type);
759}
760
761void
762fs_visitor::visit(ir_dereference_array *ir)
763{
764   ir_constant *index;
765   int element_size;
766
767   ir->array->accept(this);
768   index = ir->array_index->as_constant();
769
770   element_size = type_size(ir->type);
771   this->result.type = brw_type_for_base_type(ir->type);
772
773   if (index) {
774      assert(this->result.file == UNIFORM ||
775	     (this->result.file == GRF &&
776	      this->result.reg != 0));
777      this->result.reg_offset += index->value.i[0] * element_size;
778   } else {
779      assert(!"FINISHME: non-constant array element");
780   }
781}
782
783/* Instruction selection: Produce a MOV.sat instead of
784 * MIN(MAX(val, 0), 1) when possible.
785 */
786bool
787fs_visitor::try_emit_saturate(ir_expression *ir)
788{
789   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
790
791   if (!sat_val)
792      return false;
793
794   sat_val->accept(this);
795   fs_reg src = this->result;
796
797   this->result = fs_reg(this, ir->type);
798   fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, src));
799   inst->saturate = true;
800
801   return true;
802}
803
804static uint32_t
805brw_conditional_for_comparison(unsigned int op)
806{
807   switch (op) {
808   case ir_binop_less:
809      return BRW_CONDITIONAL_L;
810   case ir_binop_greater:
811      return BRW_CONDITIONAL_G;
812   case ir_binop_lequal:
813      return BRW_CONDITIONAL_LE;
814   case ir_binop_gequal:
815      return BRW_CONDITIONAL_GE;
816   case ir_binop_equal:
817   case ir_binop_all_equal: /* same as equal for scalars */
818      return BRW_CONDITIONAL_Z;
819   case ir_binop_nequal:
820   case ir_binop_any_nequal: /* same as nequal for scalars */
821      return BRW_CONDITIONAL_NZ;
822   default:
823      assert(!"not reached: bad operation for comparison");
824      return BRW_CONDITIONAL_NZ;
825   }
826}
827
828void
829fs_visitor::visit(ir_expression *ir)
830{
831   unsigned int operand;
832   fs_reg op[2], temp;
833   fs_inst *inst;
834
835   assert(ir->get_num_operands() <= 2);
836
837   if (try_emit_saturate(ir))
838      return;
839
840   for (operand = 0; operand < ir->get_num_operands(); operand++) {
841      ir->operands[operand]->accept(this);
842      if (this->result.file == BAD_FILE) {
843	 ir_print_visitor v;
844	 printf("Failed to get tree for expression operand:\n");
845	 ir->operands[operand]->accept(&v);
846	 this->fail = true;
847      }
848      op[operand] = this->result;
849
850      /* Matrix expression operands should have been broken down to vector
851       * operations already.
852       */
853      assert(!ir->operands[operand]->type->is_matrix());
854      /* And then those vector operands should have been broken down to scalar.
855       */
856      assert(!ir->operands[operand]->type->is_vector());
857   }
858
859   /* Storage for our result.  If our result goes into an assignment, it will
860    * just get copy-propagated out, so no worries.
861    */
862   this->result = fs_reg(this, ir->type);
863
864   switch (ir->operation) {
865   case ir_unop_logic_not:
866      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
867       * ones complement of the whole register, not just bit 0.
868       */
869      emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1)));
870      break;
871   case ir_unop_neg:
872      op[0].negate = !op[0].negate;
873      this->result = op[0];
874      break;
875   case ir_unop_abs:
876      op[0].abs = true;
877      op[0].negate = false;
878      this->result = op[0];
879      break;
880   case ir_unop_sign:
881      temp = fs_reg(this, ir->type);
882
883      emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(0.0f)));
884
885      inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f)));
886      inst->conditional_mod = BRW_CONDITIONAL_G;
887      inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(1.0f)));
888      inst->predicated = true;
889
890      inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f)));
891      inst->conditional_mod = BRW_CONDITIONAL_L;
892      inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f)));
893      inst->predicated = true;
894
895      break;
896   case ir_unop_rcp:
897      emit_math(FS_OPCODE_RCP, this->result, op[0]);
898      break;
899
900   case ir_unop_exp2:
901      emit_math(FS_OPCODE_EXP2, this->result, op[0]);
902      break;
903   case ir_unop_log2:
904      emit_math(FS_OPCODE_LOG2, this->result, op[0]);
905      break;
906   case ir_unop_exp:
907   case ir_unop_log:
908      assert(!"not reached: should be handled by ir_explog_to_explog2");
909      break;
910   case ir_unop_sin:
911   case ir_unop_sin_reduced:
912      emit_math(FS_OPCODE_SIN, this->result, op[0]);
913      break;
914   case ir_unop_cos:
915   case ir_unop_cos_reduced:
916      emit_math(FS_OPCODE_COS, this->result, op[0]);
917      break;
918
919   case ir_unop_dFdx:
920      emit(fs_inst(FS_OPCODE_DDX, this->result, op[0]));
921      break;
922   case ir_unop_dFdy:
923      emit(fs_inst(FS_OPCODE_DDY, this->result, op[0]));
924      break;
925
926   case ir_binop_add:
927      emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], op[1]));
928      break;
929   case ir_binop_sub:
930      assert(!"not reached: should be handled by ir_sub_to_add_neg");
931      break;
932
933   case ir_binop_mul:
934      emit(fs_inst(BRW_OPCODE_MUL, this->result, op[0], op[1]));
935      break;
936   case ir_binop_div:
937      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
938      break;
939   case ir_binop_mod:
940      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
941      break;
942
943   case ir_binop_less:
944   case ir_binop_greater:
945   case ir_binop_lequal:
946   case ir_binop_gequal:
947   case ir_binop_equal:
948   case ir_binop_all_equal:
949   case ir_binop_nequal:
950   case ir_binop_any_nequal:
951      temp = this->result;
952      /* original gen4 does implicit conversion before comparison. */
953      if (intel->gen < 5)
954	 temp.type = op[0].type;
955
956      inst = emit(fs_inst(BRW_OPCODE_CMP, temp, op[0], op[1]));
957      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
958      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
959      break;
960
961   case ir_binop_logic_xor:
962      emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1]));
963      break;
964
965   case ir_binop_logic_or:
966      emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1]));
967      break;
968
969   case ir_binop_logic_and:
970      emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1]));
971      break;
972
973   case ir_binop_dot:
974   case ir_unop_any:
975      assert(!"not reached: should be handled by brw_fs_channel_expressions");
976      break;
977
978   case ir_unop_noise:
979      assert(!"not reached: should be handled by lower_noise");
980      break;
981
982   case ir_quadop_vector:
983      assert(!"not reached: should be handled by lower_quadop_vector");
984      break;
985
986   case ir_unop_sqrt:
987      emit_math(FS_OPCODE_SQRT, this->result, op[0]);
988      break;
989
990   case ir_unop_rsq:
991      emit_math(FS_OPCODE_RSQ, this->result, op[0]);
992      break;
993
994   case ir_unop_i2f:
995   case ir_unop_b2f:
996   case ir_unop_b2i:
997   case ir_unop_f2i:
998      emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
999      break;
1000   case ir_unop_f2b:
1001   case ir_unop_i2b:
1002      temp = this->result;
1003      /* original gen4 does implicit conversion before comparison. */
1004      if (intel->gen < 5)
1005	 temp.type = op[0].type;
1006
1007      inst = emit(fs_inst(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f)));
1008      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1009      inst = emit(fs_inst(BRW_OPCODE_AND, this->result,
1010			  this->result, fs_reg(1)));
1011      break;
1012
1013   case ir_unop_trunc:
1014      emit(fs_inst(BRW_OPCODE_RNDZ, this->result, op[0]));
1015      break;
1016   case ir_unop_ceil:
1017      op[0].negate = !op[0].negate;
1018      inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1019      this->result.negate = true;
1020      break;
1021   case ir_unop_floor:
1022      inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1023      break;
1024   case ir_unop_fract:
1025      inst = emit(fs_inst(BRW_OPCODE_FRC, this->result, op[0]));
1026      break;
1027   case ir_unop_round_even:
1028      emit(fs_inst(BRW_OPCODE_RNDE, this->result, op[0]));
1029      break;
1030
1031   case ir_binop_min:
1032      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1033      inst->conditional_mod = BRW_CONDITIONAL_L;
1034
1035      inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
1036      inst->predicated = true;
1037      break;
1038   case ir_binop_max:
1039      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1040      inst->conditional_mod = BRW_CONDITIONAL_G;
1041
1042      inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
1043      inst->predicated = true;
1044      break;
1045
1046   case ir_binop_pow:
1047      emit_math(FS_OPCODE_POW, this->result, op[0], op[1]);
1048      break;
1049
1050   case ir_unop_bit_not:
1051      inst = emit(fs_inst(BRW_OPCODE_NOT, this->result, op[0]));
1052      break;
1053   case ir_binop_bit_and:
1054      inst = emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1]));
1055      break;
1056   case ir_binop_bit_xor:
1057      inst = emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1]));
1058      break;
1059   case ir_binop_bit_or:
1060      inst = emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1]));
1061      break;
1062
1063   case ir_unop_u2f:
1064   case ir_binop_lshift:
1065   case ir_binop_rshift:
1066      assert(!"GLSL 1.30 features unsupported");
1067      break;
1068   }
1069}
1070
1071void
1072fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
1073				   const glsl_type *type, bool predicated)
1074{
1075   switch (type->base_type) {
1076   case GLSL_TYPE_FLOAT:
1077   case GLSL_TYPE_UINT:
1078   case GLSL_TYPE_INT:
1079   case GLSL_TYPE_BOOL:
1080      for (unsigned int i = 0; i < type->components(); i++) {
1081	 l.type = brw_type_for_base_type(type);
1082	 r.type = brw_type_for_base_type(type);
1083
1084	 fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
1085	 inst->predicated = predicated;
1086
1087	 l.reg_offset++;
1088	 r.reg_offset++;
1089      }
1090      break;
1091   case GLSL_TYPE_ARRAY:
1092      for (unsigned int i = 0; i < type->length; i++) {
1093	 emit_assignment_writes(l, r, type->fields.array, predicated);
1094      }
1095      break;
1096
1097   case GLSL_TYPE_STRUCT:
1098      for (unsigned int i = 0; i < type->length; i++) {
1099	 emit_assignment_writes(l, r, type->fields.structure[i].type,
1100				predicated);
1101      }
1102      break;
1103
1104   case GLSL_TYPE_SAMPLER:
1105      break;
1106
1107   default:
1108      assert(!"not reached");
1109      break;
1110   }
1111}
1112
1113void
1114fs_visitor::visit(ir_assignment *ir)
1115{
1116   struct fs_reg l, r;
1117   fs_inst *inst;
1118
1119   /* FINISHME: arrays on the lhs */
1120   ir->lhs->accept(this);
1121   l = this->result;
1122
1123   ir->rhs->accept(this);
1124   r = this->result;
1125
1126   assert(l.file != BAD_FILE);
1127   assert(r.file != BAD_FILE);
1128
1129   if (ir->condition) {
1130      emit_bool_to_cond_code(ir->condition);
1131   }
1132
1133   if (ir->lhs->type->is_scalar() ||
1134       ir->lhs->type->is_vector()) {
1135      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
1136	 if (ir->write_mask & (1 << i)) {
1137	    inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
1138	    if (ir->condition)
1139	       inst->predicated = true;
1140	    r.reg_offset++;
1141	 }
1142	 l.reg_offset++;
1143      }
1144   } else {
1145      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
1146   }
1147}
1148
1149fs_inst *
1150fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate)
1151{
1152   int mlen;
1153   int base_mrf = 1;
1154   bool simd16 = false;
1155   fs_reg orig_dst;
1156
1157   /* g0 header. */
1158   mlen = 1;
1159
1160   if (ir->shadow_comparitor) {
1161      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1162	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
1163		      coordinate));
1164	 coordinate.reg_offset++;
1165      }
1166      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1167      mlen += 3;
1168
1169      if (ir->op == ir_tex) {
1170	 /* There's no plain shadow compare message, so we use shadow
1171	  * compare with a bias of 0.0.
1172	  */
1173	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1174		      fs_reg(0.0f)));
1175	 mlen++;
1176      } else if (ir->op == ir_txb) {
1177	 ir->lod_info.bias->accept(this);
1178	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1179		      this->result));
1180	 mlen++;
1181      } else {
1182	 assert(ir->op == ir_txl);
1183	 ir->lod_info.lod->accept(this);
1184	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1185		      this->result));
1186	 mlen++;
1187      }
1188
1189      ir->shadow_comparitor->accept(this);
1190      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1191      mlen++;
1192   } else if (ir->op == ir_tex) {
1193      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1194	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
1195		      coordinate));
1196	 coordinate.reg_offset++;
1197      }
1198      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1199      mlen += 3;
1200   } else {
1201      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1202       * instructions.  We'll need to do SIMD16 here.
1203       */
1204      assert(ir->op == ir_txb || ir->op == ir_txl);
1205
1206      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1207	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2),
1208		      coordinate));
1209	 coordinate.reg_offset++;
1210      }
1211
1212      /* lod/bias appears after u/v/r. */
1213      mlen += 6;
1214
1215      if (ir->op == ir_txb) {
1216	 ir->lod_info.bias->accept(this);
1217	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1218		      this->result));
1219	 mlen++;
1220      } else {
1221	 ir->lod_info.lod->accept(this);
1222	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1223		      this->result));
1224	 mlen++;
1225      }
1226
1227      /* The unused upper half. */
1228      mlen++;
1229
1230      /* Now, since we're doing simd16, the return is 2 interleaved
1231       * vec4s where the odd-indexed ones are junk. We'll need to move
1232       * this weirdness around to the expected layout.
1233       */
1234      simd16 = true;
1235      orig_dst = dst;
1236      dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
1237						       2));
1238      dst.type = BRW_REGISTER_TYPE_F;
1239   }
1240
1241   fs_inst *inst = NULL;
1242   switch (ir->op) {
1243   case ir_tex:
1244      inst = emit(fs_inst(FS_OPCODE_TEX, dst));
1245      break;
1246   case ir_txb:
1247      inst = emit(fs_inst(FS_OPCODE_TXB, dst));
1248      break;
1249   case ir_txl:
1250      inst = emit(fs_inst(FS_OPCODE_TXL, dst));
1251      break;
1252   case ir_txd:
1253   case ir_txf:
1254      assert(!"GLSL 1.30 features unsupported");
1255      break;
1256   }
1257   inst->base_mrf = base_mrf;
1258   inst->mlen = mlen;
1259
1260   if (simd16) {
1261      for (int i = 0; i < 4; i++) {
1262	 emit(fs_inst(BRW_OPCODE_MOV, orig_dst, dst));
1263	 orig_dst.reg_offset++;
1264	 dst.reg_offset += 2;
1265      }
1266   }
1267
1268   return inst;
1269}
1270
1271fs_inst *
1272fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate)
1273{
1274   /* gen5's SIMD8 sampler has slots for u, v, r, array index, then
1275    * optional parameters like shadow comparitor or LOD bias.  If
1276    * optional parameters aren't present, those base slots are
1277    * optional and don't need to be included in the message.
1278    *
1279    * We don't fill in the unnecessary slots regardless, which may
1280    * look surprising in the disassembly.
1281    */
1282   int mlen = 1; /* g0 header always present. */
1283   int base_mrf = 1;
1284
1285   for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1286      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
1287		   coordinate));
1288      coordinate.reg_offset++;
1289   }
1290   mlen += ir->coordinate->type->vector_elements;
1291
1292   if (ir->shadow_comparitor) {
1293      mlen = MAX2(mlen, 5);
1294
1295      ir->shadow_comparitor->accept(this);
1296      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1297      mlen++;
1298   }
1299
1300   fs_inst *inst = NULL;
1301   switch (ir->op) {
1302   case ir_tex:
1303      inst = emit(fs_inst(FS_OPCODE_TEX, dst));
1304      break;
1305   case ir_txb:
1306      ir->lod_info.bias->accept(this);
1307      mlen = MAX2(mlen, 5);
1308      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1309      mlen++;
1310
1311      inst = emit(fs_inst(FS_OPCODE_TXB, dst));
1312      break;
1313   case ir_txl:
1314      ir->lod_info.lod->accept(this);
1315      mlen = MAX2(mlen, 5);
1316      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1317      mlen++;
1318
1319      inst = emit(fs_inst(FS_OPCODE_TXL, dst));
1320      break;
1321   case ir_txd:
1322   case ir_txf:
1323      assert(!"GLSL 1.30 features unsupported");
1324      break;
1325   }
1326   inst->base_mrf = base_mrf;
1327   inst->mlen = mlen;
1328
1329   return inst;
1330}
1331
1332void
1333fs_visitor::visit(ir_texture *ir)
1334{
1335   int sampler;
1336   fs_inst *inst = NULL;
1337
1338   ir->coordinate->accept(this);
1339   fs_reg coordinate = this->result;
1340
1341   /* Should be lowered by do_lower_texture_projection */
1342   assert(!ir->projector);
1343
1344   sampler = _mesa_get_sampler_uniform_value(ir->sampler,
1345					     ctx->Shader.CurrentFragmentProgram,
1346					     &brw->fragment_program->Base);
1347   sampler = c->fp->program.Base.SamplerUnits[sampler];
1348
1349   /* The 965 requires the EU to do the normalization of GL rectangle
1350    * texture coordinates.  We use the program parameter state
1351    * tracking to get the scaling factor.
1352    */
1353   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1354      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1355      int tokens[STATE_LENGTH] = {
1356	 STATE_INTERNAL,
1357	 STATE_TEXRECT_SCALE,
1358	 sampler,
1359	 0,
1360	 0
1361      };
1362
1363      c->prog_data.param_convert[c->prog_data.nr_params] =
1364	 PARAM_NO_CONVERT;
1365      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1366	 PARAM_NO_CONVERT;
1367
1368      fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1369      fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1370      GLuint index = _mesa_add_state_reference(params,
1371					       (gl_state_index *)tokens);
1372
1373      this->param_index[c->prog_data.nr_params] = index;
1374      this->param_offset[c->prog_data.nr_params] = 0;
1375      c->prog_data.nr_params++;
1376      this->param_index[c->prog_data.nr_params] = index;
1377      this->param_offset[c->prog_data.nr_params] = 1;
1378      c->prog_data.nr_params++;
1379
1380      fs_reg dst = fs_reg(this, ir->coordinate->type);
1381      fs_reg src = coordinate;
1382      coordinate = dst;
1383
1384      emit(fs_inst(BRW_OPCODE_MUL, dst, src, scale_x));
1385      dst.reg_offset++;
1386      src.reg_offset++;
1387      emit(fs_inst(BRW_OPCODE_MUL, dst, src, scale_y));
1388   }
1389
1390   /* Writemasking doesn't eliminate channels on SIMD8 texture
1391    * samples, so don't worry about them.
1392    */
1393   fs_reg dst = fs_reg(this, glsl_type::vec4_type);
1394
1395   if (intel->gen < 5) {
1396      inst = emit_texture_gen4(ir, dst, coordinate);
1397   } else {
1398      inst = emit_texture_gen5(ir, dst, coordinate);
1399   }
1400
1401   inst->sampler = sampler;
1402
1403   this->result = dst;
1404
1405   if (ir->shadow_comparitor)
1406      inst->shadow_compare = true;
1407
1408   if (c->key.tex_swizzles[inst->sampler] != SWIZZLE_NOOP) {
1409      fs_reg swizzle_dst = fs_reg(this, glsl_type::vec4_type);
1410
1411      for (int i = 0; i < 4; i++) {
1412	 int swiz = GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1413	 fs_reg l = swizzle_dst;
1414	 l.reg_offset += i;
1415
1416	 if (swiz == SWIZZLE_ZERO) {
1417	    emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(0.0f)));
1418	 } else if (swiz == SWIZZLE_ONE) {
1419	    emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(1.0f)));
1420	 } else {
1421	    fs_reg r = dst;
1422	    r.reg_offset += GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1423	    emit(fs_inst(BRW_OPCODE_MOV, l, r));
1424	 }
1425      }
1426      this->result = swizzle_dst;
1427   }
1428}
1429
1430void
1431fs_visitor::visit(ir_swizzle *ir)
1432{
1433   ir->val->accept(this);
1434   fs_reg val = this->result;
1435
1436   if (ir->type->vector_elements == 1) {
1437      this->result.reg_offset += ir->mask.x;
1438      return;
1439   }
1440
1441   fs_reg result = fs_reg(this, ir->type);
1442   this->result = result;
1443
1444   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1445      fs_reg channel = val;
1446      int swiz = 0;
1447
1448      switch (i) {
1449      case 0:
1450	 swiz = ir->mask.x;
1451	 break;
1452      case 1:
1453	 swiz = ir->mask.y;
1454	 break;
1455      case 2:
1456	 swiz = ir->mask.z;
1457	 break;
1458      case 3:
1459	 swiz = ir->mask.w;
1460	 break;
1461      }
1462
1463      channel.reg_offset += swiz;
1464      emit(fs_inst(BRW_OPCODE_MOV, result, channel));
1465      result.reg_offset++;
1466   }
1467}
1468
1469void
1470fs_visitor::visit(ir_discard *ir)
1471{
1472   fs_reg temp = fs_reg(this, glsl_type::uint_type);
1473
1474   assert(ir->condition == NULL); /* FINISHME */
1475
1476   emit(fs_inst(FS_OPCODE_DISCARD_NOT, temp, reg_null_d));
1477   emit(fs_inst(FS_OPCODE_DISCARD_AND, reg_null_d, temp));
1478   kill_emitted = true;
1479}
1480
1481void
1482fs_visitor::visit(ir_constant *ir)
1483{
1484   /* Set this->result to reg at the bottom of the function because some code
1485    * paths will cause this visitor to be applied to other fields.  This will
1486    * cause the value stored in this->result to be modified.
1487    *
1488    * Make reg constant so that it doesn't get accidentally modified along the
1489    * way.  Yes, I actually had this problem. :(
1490    */
1491   const fs_reg reg(this, ir->type);
1492   fs_reg dst_reg = reg;
1493
1494   if (ir->type->is_array()) {
1495      const unsigned size = type_size(ir->type->fields.array);
1496
1497      for (unsigned i = 0; i < ir->type->length; i++) {
1498	 ir->array_elements[i]->accept(this);
1499	 fs_reg src_reg = this->result;
1500
1501	 dst_reg.type = src_reg.type;
1502	 for (unsigned j = 0; j < size; j++) {
1503	    emit(fs_inst(BRW_OPCODE_MOV, dst_reg, src_reg));
1504	    src_reg.reg_offset++;
1505	    dst_reg.reg_offset++;
1506	 }
1507      }
1508   } else if (ir->type->is_record()) {
1509      foreach_list(node, &ir->components) {
1510	 ir_instruction *const field = (ir_instruction *) node;
1511	 const unsigned size = type_size(field->type);
1512
1513	 field->accept(this);
1514	 fs_reg src_reg = this->result;
1515
1516	 dst_reg.type = src_reg.type;
1517	 for (unsigned j = 0; j < size; j++) {
1518	    emit(fs_inst(BRW_OPCODE_MOV, dst_reg, src_reg));
1519	    src_reg.reg_offset++;
1520	    dst_reg.reg_offset++;
1521	 }
1522      }
1523   } else {
1524      const unsigned size = type_size(ir->type);
1525
1526      for (unsigned i = 0; i < size; i++) {
1527	 switch (ir->type->base_type) {
1528	 case GLSL_TYPE_FLOAT:
1529	    emit(fs_inst(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i])));
1530	    break;
1531	 case GLSL_TYPE_UINT:
1532	    emit(fs_inst(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i])));
1533	    break;
1534	 case GLSL_TYPE_INT:
1535	    emit(fs_inst(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i])));
1536	    break;
1537	 case GLSL_TYPE_BOOL:
1538	    emit(fs_inst(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i])));
1539	    break;
1540	 default:
1541	    assert(!"Non-float/uint/int/bool constant");
1542	 }
1543	 dst_reg.reg_offset++;
1544      }
1545   }
1546
1547   this->result = reg;
1548}
1549
1550void
1551fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1552{
1553   ir_expression *expr = ir->as_expression();
1554
1555   if (expr) {
1556      fs_reg op[2];
1557      fs_inst *inst;
1558
1559      assert(expr->get_num_operands() <= 2);
1560      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1561	 assert(expr->operands[i]->type->is_scalar());
1562
1563	 expr->operands[i]->accept(this);
1564	 op[i] = this->result;
1565      }
1566
1567      switch (expr->operation) {
1568      case ir_unop_logic_not:
1569	 inst = emit(fs_inst(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1)));
1570	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1571	 break;
1572
1573      case ir_binop_logic_xor:
1574	 inst = emit(fs_inst(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]));
1575	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1576	 break;
1577
1578      case ir_binop_logic_or:
1579	 inst = emit(fs_inst(BRW_OPCODE_OR, reg_null_d, op[0], op[1]));
1580	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1581	 break;
1582
1583      case ir_binop_logic_and:
1584	 inst = emit(fs_inst(BRW_OPCODE_AND, reg_null_d, op[0], op[1]));
1585	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1586	 break;
1587
1588      case ir_unop_f2b:
1589	 if (intel->gen >= 6) {
1590	    inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_d,
1591				op[0], fs_reg(0.0f)));
1592	 } else {
1593	    inst = emit(fs_inst(BRW_OPCODE_MOV, reg_null_f, op[0]));
1594	 }
1595	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1596	 break;
1597
1598      case ir_unop_i2b:
1599	 if (intel->gen >= 6) {
1600	    inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0)));
1601	 } else {
1602	    inst = emit(fs_inst(BRW_OPCODE_MOV, reg_null_d, op[0]));
1603	 }
1604	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1605	 break;
1606
1607      case ir_binop_greater:
1608      case ir_binop_gequal:
1609      case ir_binop_less:
1610      case ir_binop_lequal:
1611      case ir_binop_equal:
1612      case ir_binop_all_equal:
1613      case ir_binop_nequal:
1614      case ir_binop_any_nequal:
1615	 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]));
1616	 inst->conditional_mod =
1617	    brw_conditional_for_comparison(expr->operation);
1618	 break;
1619
1620      default:
1621	 assert(!"not reached");
1622	 this->fail = true;
1623	 break;
1624      }
1625      return;
1626   }
1627
1628   ir->accept(this);
1629
1630   if (intel->gen >= 6) {
1631      fs_inst *inst = emit(fs_inst(BRW_OPCODE_AND, reg_null_d,
1632				   this->result, fs_reg(1)));
1633      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1634   } else {
1635      fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, reg_null_d, this->result));
1636      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1637   }
1638}
1639
1640/**
1641 * Emit a gen6 IF statement with the comparison folded into the IF
1642 * instruction.
1643 */
1644void
1645fs_visitor::emit_if_gen6(ir_if *ir)
1646{
1647   ir_expression *expr = ir->condition->as_expression();
1648
1649   if (expr) {
1650      fs_reg op[2];
1651      fs_inst *inst;
1652      fs_reg temp;
1653
1654      assert(expr->get_num_operands() <= 2);
1655      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1656	 assert(expr->operands[i]->type->is_scalar());
1657
1658	 expr->operands[i]->accept(this);
1659	 op[i] = this->result;
1660      }
1661
1662      switch (expr->operation) {
1663      case ir_unop_logic_not:
1664	 inst = emit(fs_inst(BRW_OPCODE_IF, temp, op[0], fs_reg(0)));
1665	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1666	 return;
1667
1668      case ir_binop_logic_xor:
1669	 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], op[1]));
1670	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1671	 return;
1672
1673      case ir_binop_logic_or:
1674	 temp = fs_reg(this, glsl_type::bool_type);
1675	 emit(fs_inst(BRW_OPCODE_OR, temp, op[0], op[1]));
1676	 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0)));
1677	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1678	 return;
1679
1680      case ir_binop_logic_and:
1681	 temp = fs_reg(this, glsl_type::bool_type);
1682	 emit(fs_inst(BRW_OPCODE_AND, temp, op[0], op[1]));
1683	 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0)));
1684	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1685	 return;
1686
1687      case ir_unop_f2b:
1688	 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0)));
1689	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1690	 return;
1691
1692      case ir_unop_i2b:
1693	 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0)));
1694	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1695	 return;
1696
1697      case ir_binop_greater:
1698      case ir_binop_gequal:
1699      case ir_binop_less:
1700      case ir_binop_lequal:
1701      case ir_binop_equal:
1702      case ir_binop_all_equal:
1703      case ir_binop_nequal:
1704      case ir_binop_any_nequal:
1705	 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], op[1]));
1706	 inst->conditional_mod =
1707	    brw_conditional_for_comparison(expr->operation);
1708	 return;
1709      default:
1710	 assert(!"not reached");
1711	 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0)));
1712	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1713	 this->fail = true;
1714	 return;
1715      }
1716      return;
1717   }
1718
1719   ir->condition->accept(this);
1720
1721   fs_inst *inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0)));
1722   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1723}
1724
1725void
1726fs_visitor::visit(ir_if *ir)
1727{
1728   fs_inst *inst;
1729
1730   /* Don't point the annotation at the if statement, because then it plus
1731    * the then and else blocks get printed.
1732    */
1733   this->base_ir = ir->condition;
1734
1735   if (intel->gen >= 6) {
1736      emit_if_gen6(ir);
1737   } else {
1738      emit_bool_to_cond_code(ir->condition);
1739
1740      inst = emit(fs_inst(BRW_OPCODE_IF));
1741      inst->predicated = true;
1742   }
1743
1744   foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1745      ir_instruction *ir = (ir_instruction *)iter.get();
1746      this->base_ir = ir;
1747
1748      ir->accept(this);
1749   }
1750
1751   if (!ir->else_instructions.is_empty()) {
1752      emit(fs_inst(BRW_OPCODE_ELSE));
1753
1754      foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1755	 ir_instruction *ir = (ir_instruction *)iter.get();
1756	 this->base_ir = ir;
1757
1758	 ir->accept(this);
1759      }
1760   }
1761
1762   emit(fs_inst(BRW_OPCODE_ENDIF));
1763}
1764
1765void
1766fs_visitor::visit(ir_loop *ir)
1767{
1768   fs_reg counter = reg_undef;
1769
1770   if (ir->counter) {
1771      this->base_ir = ir->counter;
1772      ir->counter->accept(this);
1773      counter = *(variable_storage(ir->counter));
1774
1775      if (ir->from) {
1776	 this->base_ir = ir->from;
1777	 ir->from->accept(this);
1778
1779	 emit(fs_inst(BRW_OPCODE_MOV, counter, this->result));
1780      }
1781   }
1782
1783   emit(fs_inst(BRW_OPCODE_DO));
1784
1785   if (ir->to) {
1786      this->base_ir = ir->to;
1787      ir->to->accept(this);
1788
1789      fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_cmp,
1790				   counter, this->result));
1791      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1792
1793      inst = emit(fs_inst(BRW_OPCODE_BREAK));
1794      inst->predicated = true;
1795   }
1796
1797   foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1798      ir_instruction *ir = (ir_instruction *)iter.get();
1799
1800      this->base_ir = ir;
1801      ir->accept(this);
1802   }
1803
1804   if (ir->increment) {
1805      this->base_ir = ir->increment;
1806      ir->increment->accept(this);
1807      emit(fs_inst(BRW_OPCODE_ADD, counter, counter, this->result));
1808   }
1809
1810   emit(fs_inst(BRW_OPCODE_WHILE));
1811}
1812
1813void
1814fs_visitor::visit(ir_loop_jump *ir)
1815{
1816   switch (ir->mode) {
1817   case ir_loop_jump::jump_break:
1818      emit(fs_inst(BRW_OPCODE_BREAK));
1819      break;
1820   case ir_loop_jump::jump_continue:
1821      emit(fs_inst(BRW_OPCODE_CONTINUE));
1822      break;
1823   }
1824}
1825
1826void
1827fs_visitor::visit(ir_call *ir)
1828{
1829   assert(!"FINISHME");
1830}
1831
1832void
1833fs_visitor::visit(ir_return *ir)
1834{
1835   assert(!"FINISHME");
1836}
1837
1838void
1839fs_visitor::visit(ir_function *ir)
1840{
1841   /* Ignore function bodies other than main() -- we shouldn't see calls to
1842    * them since they should all be inlined before we get to ir_to_mesa.
1843    */
1844   if (strcmp(ir->name, "main") == 0) {
1845      const ir_function_signature *sig;
1846      exec_list empty;
1847
1848      sig = ir->matching_signature(&empty);
1849
1850      assert(sig);
1851
1852      foreach_iter(exec_list_iterator, iter, sig->body) {
1853	 ir_instruction *ir = (ir_instruction *)iter.get();
1854	 this->base_ir = ir;
1855
1856	 ir->accept(this);
1857      }
1858   }
1859}
1860
1861void
1862fs_visitor::visit(ir_function_signature *ir)
1863{
1864   assert(!"not reached");
1865   (void)ir;
1866}
1867
1868fs_inst *
1869fs_visitor::emit(fs_inst inst)
1870{
1871   fs_inst *list_inst = new(mem_ctx) fs_inst;
1872   *list_inst = inst;
1873
1874   list_inst->annotation = this->current_annotation;
1875   list_inst->ir = this->base_ir;
1876
1877   this->instructions.push_tail(list_inst);
1878
1879   return list_inst;
1880}
1881
1882/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1883void
1884fs_visitor::emit_dummy_fs()
1885{
1886   /* Everyone's favorite color. */
1887   emit(fs_inst(BRW_OPCODE_MOV,
1888		fs_reg(MRF, 2),
1889		fs_reg(1.0f)));
1890   emit(fs_inst(BRW_OPCODE_MOV,
1891		fs_reg(MRF, 3),
1892		fs_reg(0.0f)));
1893   emit(fs_inst(BRW_OPCODE_MOV,
1894		fs_reg(MRF, 4),
1895		fs_reg(1.0f)));
1896   emit(fs_inst(BRW_OPCODE_MOV,
1897		fs_reg(MRF, 5),
1898		fs_reg(0.0f)));
1899
1900   fs_inst *write;
1901   write = emit(fs_inst(FS_OPCODE_FB_WRITE,
1902			fs_reg(0),
1903			fs_reg(0)));
1904   write->base_mrf = 0;
1905}
1906
1907/* The register location here is relative to the start of the URB
1908 * data.  It will get adjusted to be a real location before
1909 * generate_code() time.
1910 */
1911struct brw_reg
1912fs_visitor::interp_reg(int location, int channel)
1913{
1914   int regnr = urb_setup[location] * 2 + channel / 2;
1915   int stride = (channel & 1) * 4;
1916
1917   assert(urb_setup[location] != -1);
1918
1919   return brw_vec1_grf(regnr, stride);
1920}
1921
1922/** Emits the interpolation for the varying inputs. */
1923void
1924fs_visitor::emit_interpolation_setup_gen4()
1925{
1926   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1927
1928   this->current_annotation = "compute pixel centers";
1929   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1930   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1931   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1932   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1933   emit(fs_inst(BRW_OPCODE_ADD,
1934		this->pixel_x,
1935		fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1936		fs_reg(brw_imm_v(0x10101010))));
1937   emit(fs_inst(BRW_OPCODE_ADD,
1938		this->pixel_y,
1939		fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1940		fs_reg(brw_imm_v(0x11001100))));
1941
1942   this->current_annotation = "compute pixel deltas from v0";
1943   if (brw->has_pln) {
1944      this->delta_x = fs_reg(this, glsl_type::vec2_type);
1945      this->delta_y = this->delta_x;
1946      this->delta_y.reg_offset++;
1947   } else {
1948      this->delta_x = fs_reg(this, glsl_type::float_type);
1949      this->delta_y = fs_reg(this, glsl_type::float_type);
1950   }
1951   emit(fs_inst(BRW_OPCODE_ADD,
1952		this->delta_x,
1953		this->pixel_x,
1954		fs_reg(negate(brw_vec1_grf(1, 0)))));
1955   emit(fs_inst(BRW_OPCODE_ADD,
1956		this->delta_y,
1957		this->pixel_y,
1958		fs_reg(negate(brw_vec1_grf(1, 1)))));
1959
1960   this->current_annotation = "compute pos.w and 1/pos.w";
1961   /* Compute wpos.w.  It's always in our setup, since it's needed to
1962    * interpolate the other attributes.
1963    */
1964   this->wpos_w = fs_reg(this, glsl_type::float_type);
1965   emit(fs_inst(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1966		interp_reg(FRAG_ATTRIB_WPOS, 3)));
1967   /* Compute the pixel 1/W value from wpos.w. */
1968   this->pixel_w = fs_reg(this, glsl_type::float_type);
1969   emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w);
1970   this->current_annotation = NULL;
1971}
1972
1973/** Emits the interpolation for the varying inputs. */
1974void
1975fs_visitor::emit_interpolation_setup_gen6()
1976{
1977   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1978
1979   /* If the pixel centers end up used, the setup is the same as for gen4. */
1980   this->current_annotation = "compute pixel centers";
1981   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1982   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1983   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1984   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1985   emit(fs_inst(BRW_OPCODE_ADD,
1986		int_pixel_x,
1987		fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1988		fs_reg(brw_imm_v(0x10101010))));
1989   emit(fs_inst(BRW_OPCODE_ADD,
1990		int_pixel_y,
1991		fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1992		fs_reg(brw_imm_v(0x11001100))));
1993
1994   /* As of gen6, we can no longer mix float and int sources.  We have
1995    * to turn the integer pixel centers into floats for their actual
1996    * use.
1997    */
1998   this->pixel_x = fs_reg(this, glsl_type::float_type);
1999   this->pixel_y = fs_reg(this, glsl_type::float_type);
2000   emit(fs_inst(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x));
2001   emit(fs_inst(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y));
2002
2003   this->current_annotation = "compute 1/pos.w";
2004   this->wpos_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
2005   this->pixel_w = fs_reg(this, glsl_type::float_type);
2006   emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w);
2007
2008   this->delta_x = fs_reg(brw_vec8_grf(2, 0));
2009   this->delta_y = fs_reg(brw_vec8_grf(3, 0));
2010
2011   this->current_annotation = NULL;
2012}
2013
2014void
2015fs_visitor::emit_fb_writes()
2016{
2017   this->current_annotation = "FB write header";
2018   GLboolean header_present = GL_TRUE;
2019   int nr = 0;
2020
2021   if (intel->gen >= 6 &&
2022       !this->kill_emitted &&
2023       c->key.nr_color_regions == 1) {
2024      header_present = false;
2025   }
2026
2027   if (header_present) {
2028      /* m0, m1 header */
2029      nr += 2;
2030   }
2031
2032   if (c->aa_dest_stencil_reg) {
2033      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2034		   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0))));
2035   }
2036
2037   /* Reserve space for color. It'll be filled in per MRT below. */
2038   int color_mrf = nr;
2039   nr += 4;
2040
2041   if (c->source_depth_to_render_target) {
2042      if (c->computes_depth) {
2043	 /* Hand over gl_FragDepth. */
2044	 assert(this->frag_depth);
2045	 fs_reg depth = *(variable_storage(this->frag_depth));
2046
2047	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++), depth));
2048      } else {
2049	 /* Pass through the payload depth. */
2050	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2051		      fs_reg(brw_vec8_grf(c->source_depth_reg, 0))));
2052      }
2053   }
2054
2055   if (c->dest_depth_reg) {
2056      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2057		   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0))));
2058   }
2059
2060   fs_reg color = reg_undef;
2061   if (this->frag_color)
2062      color = *(variable_storage(this->frag_color));
2063   else if (this->frag_data) {
2064      color = *(variable_storage(this->frag_data));
2065      color.type = BRW_REGISTER_TYPE_F;
2066   }
2067
2068   for (int target = 0; target < c->key.nr_color_regions; target++) {
2069      this->current_annotation = talloc_asprintf(this->mem_ctx,
2070						 "FB write target %d",
2071						 target);
2072      if (this->frag_color || this->frag_data) {
2073	 for (int i = 0; i < 4; i++) {
2074	    emit(fs_inst(BRW_OPCODE_MOV,
2075			 fs_reg(MRF, color_mrf + i),
2076			 color));
2077	    color.reg_offset++;
2078	 }
2079      }
2080
2081      if (this->frag_color)
2082	 color.reg_offset -= 4;
2083
2084      fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
2085				   reg_undef, reg_undef));
2086      inst->target = target;
2087      inst->base_mrf = 0;
2088      inst->mlen = nr;
2089      if (target == c->key.nr_color_regions - 1)
2090	 inst->eot = true;
2091      inst->header_present = header_present;
2092   }
2093
2094   if (c->key.nr_color_regions == 0) {
2095      fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
2096				   reg_undef, reg_undef));
2097      inst->base_mrf = 0;
2098      inst->mlen = nr;
2099      inst->eot = true;
2100      inst->header_present = header_present;
2101   }
2102
2103   this->current_annotation = NULL;
2104}
2105
2106void
2107fs_visitor::generate_fb_write(fs_inst *inst)
2108{
2109   GLboolean eot = inst->eot;
2110   struct brw_reg implied_header;
2111
2112   /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
2113    * move, here's g1.
2114    */
2115   brw_push_insn_state(p);
2116   brw_set_mask_control(p, BRW_MASK_DISABLE);
2117   brw_set_compression_control(p, BRW_COMPRESSION_NONE);
2118
2119   if (inst->header_present) {
2120      if (intel->gen >= 6) {
2121	 brw_MOV(p,
2122		 brw_message_reg(inst->base_mrf),
2123		 brw_vec8_grf(0, 0));
2124
2125	 if (inst->target > 0) {
2126	    /* Set the render target index for choosing BLEND_STATE. */
2127	    brw_MOV(p, retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 0, 2),
2128			      BRW_REGISTER_TYPE_UD),
2129		    brw_imm_ud(inst->target));
2130	 }
2131
2132	 /* Clear viewport index, render target array index. */
2133	 brw_AND(p, retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 0, 0),
2134			   BRW_REGISTER_TYPE_UD),
2135		 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2136		 brw_imm_ud(0xf7ff));
2137
2138	 implied_header = brw_null_reg();
2139      } else {
2140	 implied_header = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
2141      }
2142
2143      brw_MOV(p,
2144	      brw_message_reg(inst->base_mrf + 1),
2145	      brw_vec8_grf(1, 0));
2146   } else {
2147      implied_header = brw_null_reg();
2148   }
2149
2150   brw_pop_insn_state(p);
2151
2152   brw_fb_WRITE(p,
2153		8, /* dispatch_width */
2154		retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW),
2155		inst->base_mrf,
2156		implied_header,
2157		inst->target,
2158		inst->mlen,
2159		0,
2160		eot,
2161		inst->header_present);
2162}
2163
2164void
2165fs_visitor::generate_linterp(fs_inst *inst,
2166			     struct brw_reg dst, struct brw_reg *src)
2167{
2168   struct brw_reg delta_x = src[0];
2169   struct brw_reg delta_y = src[1];
2170   struct brw_reg interp = src[2];
2171
2172   if (brw->has_pln &&
2173       delta_y.nr == delta_x.nr + 1 &&
2174       (intel->gen >= 6 || (delta_x.nr & 1) == 0)) {
2175      brw_PLN(p, dst, interp, delta_x);
2176   } else {
2177      brw_LINE(p, brw_null_reg(), interp, delta_x);
2178      brw_MAC(p, dst, suboffset(interp, 1), delta_y);
2179   }
2180}
2181
2182void
2183fs_visitor::generate_math(fs_inst *inst,
2184			  struct brw_reg dst, struct brw_reg *src)
2185{
2186   int op;
2187
2188   switch (inst->opcode) {
2189   case FS_OPCODE_RCP:
2190      op = BRW_MATH_FUNCTION_INV;
2191      break;
2192   case FS_OPCODE_RSQ:
2193      op = BRW_MATH_FUNCTION_RSQ;
2194      break;
2195   case FS_OPCODE_SQRT:
2196      op = BRW_MATH_FUNCTION_SQRT;
2197      break;
2198   case FS_OPCODE_EXP2:
2199      op = BRW_MATH_FUNCTION_EXP;
2200      break;
2201   case FS_OPCODE_LOG2:
2202      op = BRW_MATH_FUNCTION_LOG;
2203      break;
2204   case FS_OPCODE_POW:
2205      op = BRW_MATH_FUNCTION_POW;
2206      break;
2207   case FS_OPCODE_SIN:
2208      op = BRW_MATH_FUNCTION_SIN;
2209      break;
2210   case FS_OPCODE_COS:
2211      op = BRW_MATH_FUNCTION_COS;
2212      break;
2213   default:
2214      assert(!"not reached: unknown math function");
2215      op = 0;
2216      break;
2217   }
2218
2219   if (intel->gen >= 6) {
2220      assert(inst->mlen == 0);
2221
2222      if (inst->opcode == FS_OPCODE_POW) {
2223	 brw_math2(p, dst, op, src[0], src[1]);
2224      } else {
2225	 brw_math(p, dst,
2226		  op,
2227		  inst->saturate ? BRW_MATH_SATURATE_SATURATE :
2228		  BRW_MATH_SATURATE_NONE,
2229		  0, src[0],
2230		  BRW_MATH_DATA_VECTOR,
2231		  BRW_MATH_PRECISION_FULL);
2232      }
2233   } else {
2234      assert(inst->mlen >= 1);
2235
2236      brw_math(p, dst,
2237	       op,
2238	       inst->saturate ? BRW_MATH_SATURATE_SATURATE :
2239	       BRW_MATH_SATURATE_NONE,
2240	       inst->base_mrf, src[0],
2241	       BRW_MATH_DATA_VECTOR,
2242	       BRW_MATH_PRECISION_FULL);
2243   }
2244}
2245
2246void
2247fs_visitor::generate_tex(fs_inst *inst, struct brw_reg dst)
2248{
2249   int msg_type = -1;
2250   int rlen = 4;
2251   uint32_t simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
2252
2253   if (intel->gen >= 5) {
2254      switch (inst->opcode) {
2255      case FS_OPCODE_TEX:
2256	 if (inst->shadow_compare) {
2257	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_COMPARE_GEN5;
2258	 } else {
2259	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_GEN5;
2260	 }
2261	 break;
2262      case FS_OPCODE_TXB:
2263	 if (inst->shadow_compare) {
2264	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE_GEN5;
2265	 } else {
2266	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5;
2267	 }
2268	 break;
2269      }
2270   } else {
2271      switch (inst->opcode) {
2272      case FS_OPCODE_TEX:
2273	 /* Note that G45 and older determines shadow compare and dispatch width
2274	  * from message length for most messages.
2275	  */
2276	 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
2277	 if (inst->shadow_compare) {
2278	    assert(inst->mlen == 6);
2279	 } else {
2280	    assert(inst->mlen <= 4);
2281	 }
2282	 break;
2283      case FS_OPCODE_TXB:
2284	 if (inst->shadow_compare) {
2285	    assert(inst->mlen == 6);
2286	    msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
2287	 } else {
2288	    assert(inst->mlen == 9);
2289	    msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
2290	    simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
2291	 }
2292	 break;
2293      }
2294   }
2295   assert(msg_type != -1);
2296
2297   if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
2298      rlen = 8;
2299      dst = vec16(dst);
2300   }
2301
2302   brw_SAMPLE(p,
2303	      retype(dst, BRW_REGISTER_TYPE_UW),
2304	      inst->base_mrf,
2305	      retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
2306              SURF_INDEX_TEXTURE(inst->sampler),
2307	      inst->sampler,
2308	      WRITEMASK_XYZW,
2309	      msg_type,
2310	      rlen,
2311	      inst->mlen,
2312	      0,
2313	      1,
2314	      simd_mode);
2315}
2316
2317
2318/* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
2319 * looking like:
2320 *
2321 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
2322 *
2323 * and we're trying to produce:
2324 *
2325 *           DDX                     DDY
2326 * dst: (ss0.tr - ss0.tl)     (ss0.tl - ss0.bl)
2327 *      (ss0.tr - ss0.tl)     (ss0.tr - ss0.br)
2328 *      (ss0.br - ss0.bl)     (ss0.tl - ss0.bl)
2329 *      (ss0.br - ss0.bl)     (ss0.tr - ss0.br)
2330 *      (ss1.tr - ss1.tl)     (ss1.tl - ss1.bl)
2331 *      (ss1.tr - ss1.tl)     (ss1.tr - ss1.br)
2332 *      (ss1.br - ss1.bl)     (ss1.tl - ss1.bl)
2333 *      (ss1.br - ss1.bl)     (ss1.tr - ss1.br)
2334 *
2335 * and add another set of two more subspans if in 16-pixel dispatch mode.
2336 *
2337 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
2338 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
2339 * pair. But for DDY, it's harder, as we want to produce the pairs swizzled
2340 * between each other.  We could probably do it like ddx and swizzle the right
2341 * order later, but bail for now and just produce
2342 * ((ss0.tl - ss0.bl)x4 (ss1.tl - ss1.bl)x4)
2343 */
2344void
2345fs_visitor::generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2346{
2347   struct brw_reg src0 = brw_reg(src.file, src.nr, 1,
2348				 BRW_REGISTER_TYPE_F,
2349				 BRW_VERTICAL_STRIDE_2,
2350				 BRW_WIDTH_2,
2351				 BRW_HORIZONTAL_STRIDE_0,
2352				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2353   struct brw_reg src1 = brw_reg(src.file, src.nr, 0,
2354				 BRW_REGISTER_TYPE_F,
2355				 BRW_VERTICAL_STRIDE_2,
2356				 BRW_WIDTH_2,
2357				 BRW_HORIZONTAL_STRIDE_0,
2358				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2359   brw_ADD(p, dst, src0, negate(src1));
2360}
2361
2362void
2363fs_visitor::generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2364{
2365   struct brw_reg src0 = brw_reg(src.file, src.nr, 0,
2366				 BRW_REGISTER_TYPE_F,
2367				 BRW_VERTICAL_STRIDE_4,
2368				 BRW_WIDTH_4,
2369				 BRW_HORIZONTAL_STRIDE_0,
2370				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2371   struct brw_reg src1 = brw_reg(src.file, src.nr, 2,
2372				 BRW_REGISTER_TYPE_F,
2373				 BRW_VERTICAL_STRIDE_4,
2374				 BRW_WIDTH_4,
2375				 BRW_HORIZONTAL_STRIDE_0,
2376				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2377   brw_ADD(p, dst, src0, negate(src1));
2378}
2379
2380void
2381fs_visitor::generate_discard_not(fs_inst *inst, struct brw_reg mask)
2382{
2383   if (intel->gen >= 6) {
2384      /* Gen6 no longer has the mask reg for us to just read the
2385       * active channels from.  However, cmp updates just the channels
2386       * of the flag reg that are enabled, so we can get at the
2387       * channel enables that way.  In this step, make a reg of ones
2388       * we'll compare to.
2389       */
2390      brw_MOV(p, mask, brw_imm_ud(1));
2391   } else {
2392      brw_push_insn_state(p);
2393      brw_set_mask_control(p, BRW_MASK_DISABLE);
2394      brw_NOT(p, mask, brw_mask_reg(1)); /* IMASK */
2395      brw_pop_insn_state(p);
2396   }
2397}
2398
2399void
2400fs_visitor::generate_discard_and(fs_inst *inst, struct brw_reg mask)
2401{
2402   if (intel->gen >= 6) {
2403      struct brw_reg f0 = brw_flag_reg();
2404      struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
2405
2406      brw_push_insn_state(p);
2407      brw_set_mask_control(p, BRW_MASK_DISABLE);
2408      brw_MOV(p, f0, brw_imm_uw(0xffff)); /* inactive channels undiscarded */
2409      brw_pop_insn_state(p);
2410
2411      brw_CMP(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
2412	      BRW_CONDITIONAL_Z, mask, brw_imm_ud(0)); /* active channels fail test */
2413      /* Undo CMP's whacking of predication*/
2414      brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2415
2416      brw_push_insn_state(p);
2417      brw_set_mask_control(p, BRW_MASK_DISABLE);
2418      brw_AND(p, g1, f0, g1);
2419      brw_pop_insn_state(p);
2420   } else {
2421      struct brw_reg g0 = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
2422
2423      mask = brw_uw1_reg(mask.file, mask.nr, 0);
2424
2425      brw_push_insn_state(p);
2426      brw_set_mask_control(p, BRW_MASK_DISABLE);
2427      brw_AND(p, g0, mask, g0);
2428      brw_pop_insn_state(p);
2429   }
2430}
2431
2432void
2433fs_visitor::generate_spill(fs_inst *inst, struct brw_reg src)
2434{
2435   assert(inst->mlen != 0);
2436
2437   brw_MOV(p,
2438	   retype(brw_message_reg(inst->base_mrf + 1), BRW_REGISTER_TYPE_UD),
2439	   retype(src, BRW_REGISTER_TYPE_UD));
2440   brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf), 1,
2441				 inst->offset);
2442}
2443
2444void
2445fs_visitor::generate_unspill(fs_inst *inst, struct brw_reg dst)
2446{
2447   assert(inst->mlen != 0);
2448
2449   /* Clear any post destination dependencies that would be ignored by
2450    * the block read.  See the B-Spec for pre-gen5 send instruction.
2451    *
2452    * This could use a better solution, since texture sampling and
2453    * math reads could potentially run into it as well -- anywhere
2454    * that we have a SEND with a destination that is a register that
2455    * was written but not read within the last N instructions (what's
2456    * N?  unsure).  This is rare because of dead code elimination, but
2457    * not impossible.
2458    */
2459   if (intel->gen == 4 && !intel->is_g4x)
2460      brw_MOV(p, brw_null_reg(), dst);
2461
2462   brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf), 1,
2463				inst->offset);
2464
2465   if (intel->gen == 4 && !intel->is_g4x) {
2466      /* gen4 errata: destination from a send can't be used as a
2467       * destination until it's been read.  Just read it so we don't
2468       * have to worry.
2469       */
2470      brw_MOV(p, brw_null_reg(), dst);
2471   }
2472}
2473
2474
2475void
2476fs_visitor::generate_pull_constant_load(fs_inst *inst, struct brw_reg dst)
2477{
2478   assert(inst->mlen != 0);
2479
2480   /* Clear any post destination dependencies that would be ignored by
2481    * the block read.  See the B-Spec for pre-gen5 send instruction.
2482    *
2483    * This could use a better solution, since texture sampling and
2484    * math reads could potentially run into it as well -- anywhere
2485    * that we have a SEND with a destination that is a register that
2486    * was written but not read within the last N instructions (what's
2487    * N?  unsure).  This is rare because of dead code elimination, but
2488    * not impossible.
2489    */
2490   if (intel->gen == 4 && !intel->is_g4x)
2491      brw_MOV(p, brw_null_reg(), dst);
2492
2493   brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
2494			inst->offset, SURF_INDEX_FRAG_CONST_BUFFER);
2495
2496   if (intel->gen == 4 && !intel->is_g4x) {
2497      /* gen4 errata: destination from a send can't be used as a
2498       * destination until it's been read.  Just read it so we don't
2499       * have to worry.
2500       */
2501      brw_MOV(p, brw_null_reg(), dst);
2502   }
2503}
2504
2505/**
2506 * To be called after the last _mesa_add_state_reference() call, to
2507 * set up prog_data.param[] for assign_curb_setup() and
2508 * setup_pull_constants().
2509 */
2510void
2511fs_visitor::setup_paramvalues_refs()
2512{
2513   /* Set up the pointers to ParamValues now that that array is finalized. */
2514   for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
2515      c->prog_data.param[i] =
2516	 fp->Base.Parameters->ParameterValues[this->param_index[i]] +
2517	 this->param_offset[i];
2518   }
2519}
2520
2521void
2522fs_visitor::assign_curb_setup()
2523{
2524   c->prog_data.first_curbe_grf = c->nr_payload_regs;
2525   c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
2526
2527   /* Map the offsets in the UNIFORM file to fixed HW regs. */
2528   foreach_iter(exec_list_iterator, iter, this->instructions) {
2529      fs_inst *inst = (fs_inst *)iter.get();
2530
2531      for (unsigned int i = 0; i < 3; i++) {
2532	 if (inst->src[i].file == UNIFORM) {
2533	    int constant_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
2534	    struct brw_reg brw_reg = brw_vec1_grf(c->prog_data.first_curbe_grf +
2535						  constant_nr / 8,
2536						  constant_nr % 8);
2537
2538	    inst->src[i].file = FIXED_HW_REG;
2539	    inst->src[i].fixed_hw_reg = retype(brw_reg, inst->src[i].type);
2540	 }
2541      }
2542   }
2543}
2544
2545void
2546fs_visitor::calculate_urb_setup()
2547{
2548   for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2549      urb_setup[i] = -1;
2550   }
2551
2552   int urb_next = 0;
2553   /* Figure out where each of the incoming setup attributes lands. */
2554   if (intel->gen >= 6) {
2555      for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2556	 if (brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(i)) {
2557	    urb_setup[i] = urb_next++;
2558	 }
2559      }
2560   } else {
2561      /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
2562      for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) {
2563	 if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
2564	    int fp_index;
2565
2566	    if (i >= VERT_RESULT_VAR0)
2567	       fp_index = i - (VERT_RESULT_VAR0 - FRAG_ATTRIB_VAR0);
2568	    else if (i <= VERT_RESULT_TEX7)
2569	       fp_index = i;
2570	    else
2571	       fp_index = -1;
2572
2573	    if (fp_index >= 0)
2574	       urb_setup[fp_index] = urb_next++;
2575	 }
2576      }
2577   }
2578
2579   /* Each attribute is 4 setup channels, each of which is half a reg. */
2580   c->prog_data.urb_read_length = urb_next * 2;
2581}
2582
2583void
2584fs_visitor::assign_urb_setup()
2585{
2586   int urb_start = c->prog_data.first_curbe_grf + c->prog_data.curb_read_length;
2587
2588   /* Offset all the urb_setup[] index by the actual position of the
2589    * setup regs, now that the location of the constants has been chosen.
2590    */
2591   foreach_iter(exec_list_iterator, iter, this->instructions) {
2592      fs_inst *inst = (fs_inst *)iter.get();
2593
2594      if (inst->opcode == FS_OPCODE_LINTERP) {
2595	 assert(inst->src[2].file == FIXED_HW_REG);
2596	 inst->src[2].fixed_hw_reg.nr += urb_start;
2597      }
2598
2599      if (inst->opcode == FS_OPCODE_CINTERP) {
2600	 assert(inst->src[0].file == FIXED_HW_REG);
2601	 inst->src[0].fixed_hw_reg.nr += urb_start;
2602      }
2603   }
2604
2605   this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
2606}
2607
2608/**
2609 * Split large virtual GRFs into separate components if we can.
2610 *
2611 * This is mostly duplicated with what brw_fs_vector_splitting does,
2612 * but that's really conservative because it's afraid of doing
2613 * splitting that doesn't result in real progress after the rest of
2614 * the optimization phases, which would cause infinite looping in
2615 * optimization.  We can do it once here, safely.  This also has the
2616 * opportunity to split interpolated values, or maybe even uniforms,
2617 * which we don't have at the IR level.
2618 *
2619 * We want to split, because virtual GRFs are what we register
2620 * allocate and spill (due to contiguousness requirements for some
2621 * instructions), and they're what we naturally generate in the
2622 * codegen process, but most virtual GRFs don't actually need to be
2623 * contiguous sets of GRFs.  If we split, we'll end up with reduced
2624 * live intervals and better dead code elimination and coalescing.
2625 */
2626void
2627fs_visitor::split_virtual_grfs()
2628{
2629   int num_vars = this->virtual_grf_next;
2630   bool split_grf[num_vars];
2631   int new_virtual_grf[num_vars];
2632
2633   /* Try to split anything > 0 sized. */
2634   for (int i = 0; i < num_vars; i++) {
2635      if (this->virtual_grf_sizes[i] != 1)
2636	 split_grf[i] = true;
2637      else
2638	 split_grf[i] = false;
2639   }
2640
2641   if (brw->has_pln) {
2642      /* PLN opcodes rely on the delta_xy being contiguous. */
2643      split_grf[this->delta_x.reg] = false;
2644   }
2645
2646   foreach_iter(exec_list_iterator, iter, this->instructions) {
2647      fs_inst *inst = (fs_inst *)iter.get();
2648
2649      /* Texturing produces 4 contiguous registers, so no splitting. */
2650      if (inst->is_tex()) {
2651	 split_grf[inst->dst.reg] = false;
2652      }
2653   }
2654
2655   /* Allocate new space for split regs.  Note that the virtual
2656    * numbers will be contiguous.
2657    */
2658   for (int i = 0; i < num_vars; i++) {
2659      if (split_grf[i]) {
2660	 new_virtual_grf[i] = virtual_grf_alloc(1);
2661	 for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
2662	    int reg = virtual_grf_alloc(1);
2663	    assert(reg == new_virtual_grf[i] + j - 1);
2664	    (void) reg;
2665	 }
2666	 this->virtual_grf_sizes[i] = 1;
2667      }
2668   }
2669
2670   foreach_iter(exec_list_iterator, iter, this->instructions) {
2671      fs_inst *inst = (fs_inst *)iter.get();
2672
2673      if (inst->dst.file == GRF &&
2674	  split_grf[inst->dst.reg] &&
2675	  inst->dst.reg_offset != 0) {
2676	 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
2677			  inst->dst.reg_offset - 1);
2678	 inst->dst.reg_offset = 0;
2679      }
2680      for (int i = 0; i < 3; i++) {
2681	 if (inst->src[i].file == GRF &&
2682	     split_grf[inst->src[i].reg] &&
2683	     inst->src[i].reg_offset != 0) {
2684	    inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
2685				inst->src[i].reg_offset - 1);
2686	    inst->src[i].reg_offset = 0;
2687	 }
2688      }
2689   }
2690   this->live_intervals_valid = false;
2691}
2692
2693/**
2694 * Choose accesses from the UNIFORM file to demote to using the pull
2695 * constant buffer.
2696 *
2697 * We allow a fragment shader to have more than the specified minimum
2698 * maximum number of fragment shader uniform components (64).  If
2699 * there are too many of these, they'd fill up all of register space.
2700 * So, this will push some of them out to the pull constant buffer and
2701 * update the program to load them.
2702 */
2703void
2704fs_visitor::setup_pull_constants()
2705{
2706   /* Only allow 16 registers (128 uniform components) as push constants. */
2707   unsigned int max_uniform_components = 16 * 8;
2708   if (c->prog_data.nr_params <= max_uniform_components)
2709      return;
2710
2711   /* Just demote the end of the list.  We could probably do better
2712    * here, demoting things that are rarely used in the program first.
2713    */
2714   int pull_uniform_base = max_uniform_components;
2715   int pull_uniform_count = c->prog_data.nr_params - pull_uniform_base;
2716
2717   foreach_iter(exec_list_iterator, iter, this->instructions) {
2718      fs_inst *inst = (fs_inst *)iter.get();
2719
2720      for (int i = 0; i < 3; i++) {
2721	 if (inst->src[i].file != UNIFORM)
2722	    continue;
2723
2724	 int uniform_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
2725	 if (uniform_nr < pull_uniform_base)
2726	    continue;
2727
2728	 fs_reg dst = fs_reg(this, glsl_type::float_type);
2729	 fs_inst *pull = new(mem_ctx) fs_inst(FS_OPCODE_PULL_CONSTANT_LOAD,
2730					      dst);
2731	 pull->offset = ((uniform_nr - pull_uniform_base) * 4) & ~15;
2732	 pull->ir = inst->ir;
2733	 pull->annotation = inst->annotation;
2734	 pull->base_mrf = 14;
2735	 pull->mlen = 1;
2736
2737	 inst->insert_before(pull);
2738
2739	 inst->src[i].file = GRF;
2740	 inst->src[i].reg = dst.reg;
2741	 inst->src[i].reg_offset = 0;
2742	 inst->src[i].smear = (uniform_nr - pull_uniform_base) & 3;
2743      }
2744   }
2745
2746   for (int i = 0; i < pull_uniform_count; i++) {
2747      c->prog_data.pull_param[i] = c->prog_data.param[pull_uniform_base + i];
2748      c->prog_data.pull_param_convert[i] =
2749	 c->prog_data.param_convert[pull_uniform_base + i];
2750   }
2751   c->prog_data.nr_params -= pull_uniform_count;
2752   c->prog_data.nr_pull_params = pull_uniform_count;
2753}
2754
2755void
2756fs_visitor::calculate_live_intervals()
2757{
2758   int num_vars = this->virtual_grf_next;
2759   int *def = talloc_array(mem_ctx, int, num_vars);
2760   int *use = talloc_array(mem_ctx, int, num_vars);
2761   int loop_depth = 0;
2762   int loop_start = 0;
2763   int bb_header_ip = 0;
2764
2765   if (this->live_intervals_valid)
2766      return;
2767
2768   for (int i = 0; i < num_vars; i++) {
2769      def[i] = MAX_INSTRUCTION;
2770      use[i] = -1;
2771   }
2772
2773   int ip = 0;
2774   foreach_iter(exec_list_iterator, iter, this->instructions) {
2775      fs_inst *inst = (fs_inst *)iter.get();
2776
2777      if (inst->opcode == BRW_OPCODE_DO) {
2778	 if (loop_depth++ == 0)
2779	    loop_start = ip;
2780      } else if (inst->opcode == BRW_OPCODE_WHILE) {
2781	 loop_depth--;
2782
2783	 if (loop_depth == 0) {
2784	    /* Patches up the use of vars marked for being live across
2785	     * the whole loop.
2786	     */
2787	    for (int i = 0; i < num_vars; i++) {
2788	       if (use[i] == loop_start) {
2789		  use[i] = ip;
2790	       }
2791	    }
2792	 }
2793      } else {
2794	 for (unsigned int i = 0; i < 3; i++) {
2795	    if (inst->src[i].file == GRF && inst->src[i].reg != 0) {
2796	       int reg = inst->src[i].reg;
2797
2798	       if (!loop_depth || (this->virtual_grf_sizes[reg] == 1 &&
2799				   def[reg] >= bb_header_ip)) {
2800		  use[reg] = ip;
2801	       } else {
2802		  def[reg] = MIN2(loop_start, def[reg]);
2803		  use[reg] = loop_start;
2804
2805		  /* Nobody else is going to go smash our start to
2806		   * later in the loop now, because def[reg] now
2807		   * points before the bb header.
2808		   */
2809	       }
2810	    }
2811	 }
2812	 if (inst->dst.file == GRF && inst->dst.reg != 0) {
2813	    int reg = inst->dst.reg;
2814
2815	    if (!loop_depth || (this->virtual_grf_sizes[reg] == 1 &&
2816				!inst->predicated)) {
2817	       def[reg] = MIN2(def[reg], ip);
2818	    } else {
2819	       def[reg] = MIN2(def[reg], loop_start);
2820	    }
2821	 }
2822      }
2823
2824      ip++;
2825
2826      /* Set the basic block header IP.  This is used for determining
2827       * if a complete def of single-register virtual GRF in a loop
2828       * dominates a use in the same basic block.  It's a quick way to
2829       * reduce the live interval range of most register used in a
2830       * loop.
2831       */
2832      if (inst->opcode == BRW_OPCODE_IF ||
2833	  inst->opcode == BRW_OPCODE_ELSE ||
2834	  inst->opcode == BRW_OPCODE_ENDIF ||
2835	  inst->opcode == BRW_OPCODE_DO ||
2836	  inst->opcode == BRW_OPCODE_WHILE ||
2837	  inst->opcode == BRW_OPCODE_BREAK ||
2838	  inst->opcode == BRW_OPCODE_CONTINUE) {
2839	 bb_header_ip = ip;
2840      }
2841   }
2842
2843   talloc_free(this->virtual_grf_def);
2844   talloc_free(this->virtual_grf_use);
2845   this->virtual_grf_def = def;
2846   this->virtual_grf_use = use;
2847
2848   this->live_intervals_valid = true;
2849}
2850
2851/**
2852 * Attempts to move immediate constants into the immediate
2853 * constant slot of following instructions.
2854 *
2855 * Immediate constants are a bit tricky -- they have to be in the last
2856 * operand slot, you can't do abs/negate on them,
2857 */
2858
2859bool
2860fs_visitor::propagate_constants()
2861{
2862   bool progress = false;
2863
2864   calculate_live_intervals();
2865
2866   foreach_iter(exec_list_iterator, iter, this->instructions) {
2867      fs_inst *inst = (fs_inst *)iter.get();
2868
2869      if (inst->opcode != BRW_OPCODE_MOV ||
2870	  inst->predicated ||
2871	  inst->dst.file != GRF || inst->src[0].file != IMM ||
2872	  inst->dst.type != inst->src[0].type)
2873	 continue;
2874
2875      /* Don't bother with cases where we should have had the
2876       * operation on the constant folded in GLSL already.
2877       */
2878      if (inst->saturate)
2879	 continue;
2880
2881      /* Found a move of a constant to a GRF.  Find anything else using the GRF
2882       * before it's written, and replace it with the constant if we can.
2883       */
2884      exec_list_iterator scan_iter = iter;
2885      scan_iter.next();
2886      for (; scan_iter.has_next(); scan_iter.next()) {
2887	 fs_inst *scan_inst = (fs_inst *)scan_iter.get();
2888
2889	 if (scan_inst->opcode == BRW_OPCODE_DO ||
2890	     scan_inst->opcode == BRW_OPCODE_WHILE ||
2891	     scan_inst->opcode == BRW_OPCODE_ELSE ||
2892	     scan_inst->opcode == BRW_OPCODE_ENDIF) {
2893	    break;
2894	 }
2895
2896	 for (int i = 2; i >= 0; i--) {
2897	    if (scan_inst->src[i].file != GRF ||
2898		scan_inst->src[i].reg != inst->dst.reg ||
2899		scan_inst->src[i].reg_offset != inst->dst.reg_offset)
2900	       continue;
2901
2902	    /* Don't bother with cases where we should have had the
2903	     * operation on the constant folded in GLSL already.
2904	     */
2905	    if (scan_inst->src[i].negate || scan_inst->src[i].abs)
2906	       continue;
2907
2908	    switch (scan_inst->opcode) {
2909	    case BRW_OPCODE_MOV:
2910	       scan_inst->src[i] = inst->src[0];
2911	       progress = true;
2912	       break;
2913
2914	    case BRW_OPCODE_MUL:
2915	    case BRW_OPCODE_ADD:
2916	       if (i == 1) {
2917		  scan_inst->src[i] = inst->src[0];
2918		  progress = true;
2919	       } else if (i == 0 && scan_inst->src[1].file != IMM) {
2920		  /* Fit this constant in by commuting the operands */
2921		  scan_inst->src[0] = scan_inst->src[1];
2922		  scan_inst->src[1] = inst->src[0];
2923		  progress = true;
2924	       }
2925	       break;
2926	    case BRW_OPCODE_CMP:
2927	    case BRW_OPCODE_SEL:
2928	       if (i == 1) {
2929		  scan_inst->src[i] = inst->src[0];
2930		  progress = true;
2931	       }
2932	    }
2933	 }
2934
2935	 if (scan_inst->dst.file == GRF &&
2936	     scan_inst->dst.reg == inst->dst.reg &&
2937	     (scan_inst->dst.reg_offset == inst->dst.reg_offset ||
2938	      scan_inst->is_tex())) {
2939	    break;
2940	 }
2941      }
2942   }
2943
2944   if (progress)
2945       this->live_intervals_valid = false;
2946
2947   return progress;
2948}
2949/**
2950 * Must be called after calculate_live_intervales() to remove unused
2951 * writes to registers -- register allocation will fail otherwise
2952 * because something deffed but not used won't be considered to
2953 * interfere with other regs.
2954 */
2955bool
2956fs_visitor::dead_code_eliminate()
2957{
2958   bool progress = false;
2959   int pc = 0;
2960
2961   calculate_live_intervals();
2962
2963   foreach_iter(exec_list_iterator, iter, this->instructions) {
2964      fs_inst *inst = (fs_inst *)iter.get();
2965
2966      if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) {
2967	 inst->remove();
2968	 progress = true;
2969      }
2970
2971      pc++;
2972   }
2973
2974   if (progress)
2975      live_intervals_valid = false;
2976
2977   return progress;
2978}
2979
2980bool
2981fs_visitor::register_coalesce()
2982{
2983   bool progress = false;
2984   int if_depth = 0;
2985   int loop_depth = 0;
2986
2987   foreach_iter(exec_list_iterator, iter, this->instructions) {
2988      fs_inst *inst = (fs_inst *)iter.get();
2989
2990      /* Make sure that we dominate the instructions we're going to
2991       * scan for interfering with our coalescing, or we won't have
2992       * scanned enough to see if anything interferes with our
2993       * coalescing.  We don't dominate the following instructions if
2994       * we're in a loop or an if block.
2995       */
2996      switch (inst->opcode) {
2997      case BRW_OPCODE_DO:
2998	 loop_depth++;
2999	 break;
3000      case BRW_OPCODE_WHILE:
3001	 loop_depth--;
3002	 break;
3003      case BRW_OPCODE_IF:
3004	 if_depth++;
3005	 break;
3006      case BRW_OPCODE_ENDIF:
3007	 if_depth--;
3008	 break;
3009      }
3010      if (loop_depth || if_depth)
3011	 continue;
3012
3013      if (inst->opcode != BRW_OPCODE_MOV ||
3014	  inst->predicated ||
3015	  inst->saturate ||
3016	  inst->dst.file != GRF || inst->src[0].file != GRF ||
3017	  inst->dst.type != inst->src[0].type)
3018	 continue;
3019
3020      /* Found a move of a GRF to a GRF.  Let's see if we can coalesce
3021       * them: check for no writes to either one until the exit of the
3022       * program.
3023       */
3024      bool interfered = false;
3025      exec_list_iterator scan_iter = iter;
3026      scan_iter.next();
3027      for (; scan_iter.has_next(); scan_iter.next()) {
3028	 fs_inst *scan_inst = (fs_inst *)scan_iter.get();
3029
3030	 if (scan_inst->dst.file == GRF) {
3031	    if (scan_inst->dst.reg == inst->dst.reg &&
3032		(scan_inst->dst.reg_offset == inst->dst.reg_offset ||
3033		 scan_inst->is_tex())) {
3034	       interfered = true;
3035	       break;
3036	    }
3037	    if (scan_inst->dst.reg == inst->src[0].reg &&
3038		(scan_inst->dst.reg_offset == inst->src[0].reg_offset ||
3039		 scan_inst->is_tex())) {
3040	       interfered = true;
3041	       break;
3042	    }
3043	 }
3044      }
3045      if (interfered) {
3046	 continue;
3047      }
3048
3049      /* Rewrite the later usage to point at the source of the move to
3050       * be removed.
3051       */
3052      for (exec_list_iterator scan_iter = iter; scan_iter.has_next();
3053	   scan_iter.next()) {
3054	 fs_inst *scan_inst = (fs_inst *)scan_iter.get();
3055
3056	 for (int i = 0; i < 3; i++) {
3057	    if (scan_inst->src[i].file == GRF &&
3058		scan_inst->src[i].reg == inst->dst.reg &&
3059		scan_inst->src[i].reg_offset == inst->dst.reg_offset) {
3060	       scan_inst->src[i].reg = inst->src[0].reg;
3061	       scan_inst->src[i].reg_offset = inst->src[0].reg_offset;
3062	       scan_inst->src[i].abs |= inst->src[0].abs;
3063	       scan_inst->src[i].negate ^= inst->src[0].negate;
3064	       scan_inst->src[i].smear = inst->src[0].smear;
3065	    }
3066	 }
3067      }
3068
3069      inst->remove();
3070      progress = true;
3071   }
3072
3073   if (progress)
3074      live_intervals_valid = false;
3075
3076   return progress;
3077}
3078
3079
3080bool
3081fs_visitor::compute_to_mrf()
3082{
3083   bool progress = false;
3084   int next_ip = 0;
3085
3086   calculate_live_intervals();
3087
3088   foreach_iter(exec_list_iterator, iter, this->instructions) {
3089      fs_inst *inst = (fs_inst *)iter.get();
3090
3091      int ip = next_ip;
3092      next_ip++;
3093
3094      if (inst->opcode != BRW_OPCODE_MOV ||
3095	  inst->predicated ||
3096	  inst->dst.file != MRF || inst->src[0].file != GRF ||
3097	  inst->dst.type != inst->src[0].type ||
3098	  inst->src[0].abs || inst->src[0].negate || inst->src[0].smear != -1)
3099	 continue;
3100
3101      /* Can't compute-to-MRF this GRF if someone else was going to
3102       * read it later.
3103       */
3104      if (this->virtual_grf_use[inst->src[0].reg] > ip)
3105	 continue;
3106
3107      /* Found a move of a GRF to a MRF.  Let's see if we can go
3108       * rewrite the thing that made this GRF to write into the MRF.
3109       */
3110      fs_inst *scan_inst;
3111      for (scan_inst = (fs_inst *)inst->prev;
3112	   scan_inst->prev != NULL;
3113	   scan_inst = (fs_inst *)scan_inst->prev) {
3114	 if (scan_inst->dst.file == GRF &&
3115	     scan_inst->dst.reg == inst->src[0].reg) {
3116	    /* Found the last thing to write our reg we want to turn
3117	     * into a compute-to-MRF.
3118	     */
3119
3120	    if (scan_inst->is_tex()) {
3121	       /* texturing writes several continuous regs, so we can't
3122		* compute-to-mrf that.
3123		*/
3124	       break;
3125	    }
3126
3127	    /* If it's predicated, it (probably) didn't populate all
3128	     * the channels.
3129	     */
3130	    if (scan_inst->predicated)
3131	       break;
3132
3133	    /* SEND instructions can't have MRF as a destination. */
3134	    if (scan_inst->mlen)
3135	       break;
3136
3137	    if (intel->gen >= 6) {
3138	       /* gen6 math instructions must have the destination be
3139		* GRF, so no compute-to-MRF for them.
3140		*/
3141	       if (scan_inst->opcode == FS_OPCODE_RCP ||
3142		   scan_inst->opcode == FS_OPCODE_RSQ ||
3143		   scan_inst->opcode == FS_OPCODE_SQRT ||
3144		   scan_inst->opcode == FS_OPCODE_EXP2 ||
3145		   scan_inst->opcode == FS_OPCODE_LOG2 ||
3146		   scan_inst->opcode == FS_OPCODE_SIN ||
3147		   scan_inst->opcode == FS_OPCODE_COS ||
3148		   scan_inst->opcode == FS_OPCODE_POW) {
3149		  break;
3150	       }
3151	    }
3152
3153	    if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
3154	       /* Found the creator of our MRF's source value. */
3155	       scan_inst->dst.file = MRF;
3156	       scan_inst->dst.hw_reg = inst->dst.hw_reg;
3157	       scan_inst->saturate |= inst->saturate;
3158	       inst->remove();
3159	       progress = true;
3160	    }
3161	    break;
3162	 }
3163
3164	 /* We don't handle flow control here.  Most computation of
3165	  * values that end up in MRFs are shortly before the MRF
3166	  * write anyway.
3167	  */
3168	 if (scan_inst->opcode == BRW_OPCODE_DO ||
3169	     scan_inst->opcode == BRW_OPCODE_WHILE ||
3170	     scan_inst->opcode == BRW_OPCODE_ELSE ||
3171	     scan_inst->opcode == BRW_OPCODE_ENDIF) {
3172	    break;
3173	 }
3174
3175	 /* You can't read from an MRF, so if someone else reads our
3176	  * MRF's source GRF that we wanted to rewrite, that stops us.
3177	  */
3178	 bool interfered = false;
3179	 for (int i = 0; i < 3; i++) {
3180	    if (scan_inst->src[i].file == GRF &&
3181		scan_inst->src[i].reg == inst->src[0].reg &&
3182		scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
3183	       interfered = true;
3184	    }
3185	 }
3186	 if (interfered)
3187	    break;
3188
3189	 if (scan_inst->dst.file == MRF &&
3190	     scan_inst->dst.hw_reg == inst->dst.hw_reg) {
3191	    /* Somebody else wrote our MRF here, so we can't can't
3192	     * compute-to-MRF before that.
3193	     */
3194	    break;
3195	 }
3196
3197	 if (scan_inst->mlen > 0) {
3198	    /* Found a SEND instruction, which means that there are
3199	     * live values in MRFs from base_mrf to base_mrf +
3200	     * scan_inst->mlen - 1.  Don't go pushing our MRF write up
3201	     * above it.
3202	     */
3203	    if (inst->dst.hw_reg >= scan_inst->base_mrf &&
3204		inst->dst.hw_reg < scan_inst->base_mrf + scan_inst->mlen) {
3205	       break;
3206	    }
3207	 }
3208      }
3209   }
3210
3211   return progress;
3212}
3213
3214/**
3215 * Walks through basic blocks, locking for repeated MRF writes and
3216 * removing the later ones.
3217 */
3218bool
3219fs_visitor::remove_duplicate_mrf_writes()
3220{
3221   fs_inst *last_mrf_move[16];
3222   bool progress = false;
3223
3224   memset(last_mrf_move, 0, sizeof(last_mrf_move));
3225
3226   foreach_iter(exec_list_iterator, iter, this->instructions) {
3227      fs_inst *inst = (fs_inst *)iter.get();
3228
3229      switch (inst->opcode) {
3230      case BRW_OPCODE_DO:
3231      case BRW_OPCODE_WHILE:
3232      case BRW_OPCODE_IF:
3233      case BRW_OPCODE_ELSE:
3234      case BRW_OPCODE_ENDIF:
3235	 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3236	 continue;
3237      default:
3238	 break;
3239      }
3240
3241      if (inst->opcode == BRW_OPCODE_MOV &&
3242	  inst->dst.file == MRF) {
3243	 fs_inst *prev_inst = last_mrf_move[inst->dst.hw_reg];
3244	 if (prev_inst && inst->equals(prev_inst)) {
3245	    inst->remove();
3246	    progress = true;
3247	    continue;
3248	 }
3249      }
3250
3251      /* Clear out the last-write records for MRFs that were overwritten. */
3252      if (inst->dst.file == MRF) {
3253	 last_mrf_move[inst->dst.hw_reg] = NULL;
3254      }
3255
3256      if (inst->mlen > 0) {
3257	 /* Found a SEND instruction, which will include two or fewer
3258	  * implied MRF writes.  We could do better here.
3259	  */
3260	 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3261	    last_mrf_move[inst->base_mrf + i] = NULL;
3262	 }
3263      }
3264
3265      /* Clear out any MRF move records whose sources got overwritten. */
3266      if (inst->dst.file == GRF) {
3267	 for (unsigned int i = 0; i < Elements(last_mrf_move); i++) {
3268	    if (last_mrf_move[i] &&
3269		last_mrf_move[i]->src[0].reg == inst->dst.reg) {
3270	       last_mrf_move[i] = NULL;
3271	    }
3272	 }
3273      }
3274
3275      if (inst->opcode == BRW_OPCODE_MOV &&
3276	  inst->dst.file == MRF &&
3277	  inst->src[0].file == GRF &&
3278	  !inst->predicated) {
3279	 last_mrf_move[inst->dst.hw_reg] = inst;
3280      }
3281   }
3282
3283   return progress;
3284}
3285
3286bool
3287fs_visitor::virtual_grf_interferes(int a, int b)
3288{
3289   int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
3290   int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
3291
3292   /* We can't handle dead register writes here, without iterating
3293    * over the whole instruction stream to find every single dead
3294    * write to that register to compare to the live interval of the
3295    * other register.  Just assert that dead_code_eliminate() has been
3296    * called.
3297    */
3298   assert((this->virtual_grf_use[a] != -1 ||
3299	   this->virtual_grf_def[a] == MAX_INSTRUCTION) &&
3300	  (this->virtual_grf_use[b] != -1 ||
3301	   this->virtual_grf_def[b] == MAX_INSTRUCTION));
3302
3303   return start < end;
3304}
3305
3306static struct brw_reg brw_reg_from_fs_reg(fs_reg *reg)
3307{
3308   struct brw_reg brw_reg;
3309
3310   switch (reg->file) {
3311   case GRF:
3312   case ARF:
3313   case MRF:
3314      if (reg->smear == -1) {
3315	 brw_reg = brw_vec8_reg(reg->file,
3316				reg->hw_reg, 0);
3317      } else {
3318	 brw_reg = brw_vec1_reg(reg->file,
3319				reg->hw_reg, reg->smear);
3320      }
3321      brw_reg = retype(brw_reg, reg->type);
3322      break;
3323   case IMM:
3324      switch (reg->type) {
3325      case BRW_REGISTER_TYPE_F:
3326	 brw_reg = brw_imm_f(reg->imm.f);
3327	 break;
3328      case BRW_REGISTER_TYPE_D:
3329	 brw_reg = brw_imm_d(reg->imm.i);
3330	 break;
3331      case BRW_REGISTER_TYPE_UD:
3332	 brw_reg = brw_imm_ud(reg->imm.u);
3333	 break;
3334      default:
3335	 assert(!"not reached");
3336	 brw_reg = brw_null_reg();
3337	 break;
3338      }
3339      break;
3340   case FIXED_HW_REG:
3341      brw_reg = reg->fixed_hw_reg;
3342      break;
3343   case BAD_FILE:
3344      /* Probably unused. */
3345      brw_reg = brw_null_reg();
3346      break;
3347   case UNIFORM:
3348      assert(!"not reached");
3349      brw_reg = brw_null_reg();
3350      break;
3351   default:
3352      assert(!"not reached");
3353      brw_reg = brw_null_reg();
3354      break;
3355   }
3356   if (reg->abs)
3357      brw_reg = brw_abs(brw_reg);
3358   if (reg->negate)
3359      brw_reg = negate(brw_reg);
3360
3361   return brw_reg;
3362}
3363
3364void
3365fs_visitor::generate_code()
3366{
3367   int last_native_inst = 0;
3368   struct brw_instruction *if_stack[16], *loop_stack[16];
3369   int if_stack_depth = 0, loop_stack_depth = 0;
3370   int if_depth_in_loop[16];
3371   const char *last_annotation_string = NULL;
3372   ir_instruction *last_annotation_ir = NULL;
3373
3374   if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
3375      printf("Native code for fragment shader %d:\n",
3376	     ctx->Shader.CurrentFragmentProgram->Name);
3377   }
3378
3379   if_depth_in_loop[loop_stack_depth] = 0;
3380
3381   memset(&if_stack, 0, sizeof(if_stack));
3382   foreach_iter(exec_list_iterator, iter, this->instructions) {
3383      fs_inst *inst = (fs_inst *)iter.get();
3384      struct brw_reg src[3], dst;
3385
3386      if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
3387	 if (last_annotation_ir != inst->ir) {
3388	    last_annotation_ir = inst->ir;
3389	    if (last_annotation_ir) {
3390	       printf("   ");
3391	       last_annotation_ir->print();
3392	       printf("\n");
3393	    }
3394	 }
3395	 if (last_annotation_string != inst->annotation) {
3396	    last_annotation_string = inst->annotation;
3397	    if (last_annotation_string)
3398	       printf("   %s\n", last_annotation_string);
3399	 }
3400      }
3401
3402      for (unsigned int i = 0; i < 3; i++) {
3403	 src[i] = brw_reg_from_fs_reg(&inst->src[i]);
3404      }
3405      dst = brw_reg_from_fs_reg(&inst->dst);
3406
3407      brw_set_conditionalmod(p, inst->conditional_mod);
3408      brw_set_predicate_control(p, inst->predicated);
3409      brw_set_saturate(p, inst->saturate);
3410
3411      switch (inst->opcode) {
3412      case BRW_OPCODE_MOV:
3413	 brw_MOV(p, dst, src[0]);
3414	 break;
3415      case BRW_OPCODE_ADD:
3416	 brw_ADD(p, dst, src[0], src[1]);
3417	 break;
3418      case BRW_OPCODE_MUL:
3419	 brw_MUL(p, dst, src[0], src[1]);
3420	 break;
3421
3422      case BRW_OPCODE_FRC:
3423	 brw_FRC(p, dst, src[0]);
3424	 break;
3425      case BRW_OPCODE_RNDD:
3426	 brw_RNDD(p, dst, src[0]);
3427	 break;
3428      case BRW_OPCODE_RNDE:
3429	 brw_RNDE(p, dst, src[0]);
3430	 break;
3431      case BRW_OPCODE_RNDZ:
3432	 brw_RNDZ(p, dst, src[0]);
3433	 break;
3434
3435      case BRW_OPCODE_AND:
3436	 brw_AND(p, dst, src[0], src[1]);
3437	 break;
3438      case BRW_OPCODE_OR:
3439	 brw_OR(p, dst, src[0], src[1]);
3440	 break;
3441      case BRW_OPCODE_XOR:
3442	 brw_XOR(p, dst, src[0], src[1]);
3443	 break;
3444      case BRW_OPCODE_NOT:
3445	 brw_NOT(p, dst, src[0]);
3446	 break;
3447      case BRW_OPCODE_ASR:
3448	 brw_ASR(p, dst, src[0], src[1]);
3449	 break;
3450      case BRW_OPCODE_SHR:
3451	 brw_SHR(p, dst, src[0], src[1]);
3452	 break;
3453      case BRW_OPCODE_SHL:
3454	 brw_SHL(p, dst, src[0], src[1]);
3455	 break;
3456
3457      case BRW_OPCODE_CMP:
3458	 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
3459	 break;
3460      case BRW_OPCODE_SEL:
3461	 brw_SEL(p, dst, src[0], src[1]);
3462	 break;
3463
3464      case BRW_OPCODE_IF:
3465	 assert(if_stack_depth < 16);
3466	 if (inst->src[0].file != BAD_FILE) {
3467	    assert(intel->gen >= 6);
3468	    if_stack[if_stack_depth] = brw_IF_gen6(p, inst->conditional_mod, src[0], src[1]);
3469	 } else {
3470	    if_stack[if_stack_depth] = brw_IF(p, BRW_EXECUTE_8);
3471	 }
3472	 if_depth_in_loop[loop_stack_depth]++;
3473	 if_stack_depth++;
3474	 break;
3475
3476      case BRW_OPCODE_ELSE:
3477	 if_stack[if_stack_depth - 1] =
3478	    brw_ELSE(p, if_stack[if_stack_depth - 1]);
3479	 break;
3480      case BRW_OPCODE_ENDIF:
3481	 if_stack_depth--;
3482	 brw_ENDIF(p , if_stack[if_stack_depth]);
3483	 if_depth_in_loop[loop_stack_depth]--;
3484	 break;
3485
3486      case BRW_OPCODE_DO:
3487	 loop_stack[loop_stack_depth++] = brw_DO(p, BRW_EXECUTE_8);
3488	 if_depth_in_loop[loop_stack_depth] = 0;
3489	 break;
3490
3491      case BRW_OPCODE_BREAK:
3492	 brw_BREAK(p, if_depth_in_loop[loop_stack_depth]);
3493	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
3494	 break;
3495      case BRW_OPCODE_CONTINUE:
3496	 /* FINISHME: We need to write the loop instruction support still. */
3497	 if (intel->gen >= 6)
3498	    brw_CONT_gen6(p, loop_stack[loop_stack_depth - 1]);
3499	 else
3500	    brw_CONT(p, if_depth_in_loop[loop_stack_depth]);
3501	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
3502	 break;
3503
3504      case BRW_OPCODE_WHILE: {
3505	 struct brw_instruction *inst0, *inst1;
3506	 GLuint br = 1;
3507
3508	 if (intel->gen >= 5)
3509	    br = 2;
3510
3511	 assert(loop_stack_depth > 0);
3512	 loop_stack_depth--;
3513	 inst0 = inst1 = brw_WHILE(p, loop_stack[loop_stack_depth]);
3514	 if (intel->gen < 6) {
3515	    /* patch all the BREAK/CONT instructions from last BGNLOOP */
3516	    while (inst0 > loop_stack[loop_stack_depth]) {
3517	       inst0--;
3518	       if (inst0->header.opcode == BRW_OPCODE_BREAK &&
3519		   inst0->bits3.if_else.jump_count == 0) {
3520		  inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
3521	    }
3522	       else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
3523			inst0->bits3.if_else.jump_count == 0) {
3524		  inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
3525	       }
3526	    }
3527	 }
3528      }
3529	 break;
3530
3531      case FS_OPCODE_RCP:
3532      case FS_OPCODE_RSQ:
3533      case FS_OPCODE_SQRT:
3534      case FS_OPCODE_EXP2:
3535      case FS_OPCODE_LOG2:
3536      case FS_OPCODE_POW:
3537      case FS_OPCODE_SIN:
3538      case FS_OPCODE_COS:
3539	 generate_math(inst, dst, src);
3540	 break;
3541      case FS_OPCODE_CINTERP:
3542	 brw_MOV(p, dst, src[0]);
3543	 break;
3544      case FS_OPCODE_LINTERP:
3545	 generate_linterp(inst, dst, src);
3546	 break;
3547      case FS_OPCODE_TEX:
3548      case FS_OPCODE_TXB:
3549      case FS_OPCODE_TXL:
3550	 generate_tex(inst, dst);
3551	 break;
3552      case FS_OPCODE_DISCARD_NOT:
3553	 generate_discard_not(inst, dst);
3554	 break;
3555      case FS_OPCODE_DISCARD_AND:
3556	 generate_discard_and(inst, src[0]);
3557	 break;
3558      case FS_OPCODE_DDX:
3559	 generate_ddx(inst, dst, src[0]);
3560	 break;
3561      case FS_OPCODE_DDY:
3562	 generate_ddy(inst, dst, src[0]);
3563	 break;
3564
3565      case FS_OPCODE_SPILL:
3566	 generate_spill(inst, src[0]);
3567	 break;
3568
3569      case FS_OPCODE_UNSPILL:
3570	 generate_unspill(inst, dst);
3571	 break;
3572
3573      case FS_OPCODE_PULL_CONSTANT_LOAD:
3574	 generate_pull_constant_load(inst, dst);
3575	 break;
3576
3577      case FS_OPCODE_FB_WRITE:
3578	 generate_fb_write(inst);
3579	 break;
3580      default:
3581	 if (inst->opcode < (int)ARRAY_SIZE(brw_opcodes)) {
3582	    _mesa_problem(ctx, "Unsupported opcode `%s' in FS",
3583			  brw_opcodes[inst->opcode].name);
3584	 } else {
3585	    _mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode);
3586	 }
3587	 this->fail = true;
3588      }
3589
3590      if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
3591	 for (unsigned int i = last_native_inst; i < p->nr_insn; i++) {
3592	    if (0) {
3593	       printf("0x%08x 0x%08x 0x%08x 0x%08x ",
3594		      ((uint32_t *)&p->store[i])[3],
3595		      ((uint32_t *)&p->store[i])[2],
3596		      ((uint32_t *)&p->store[i])[1],
3597		      ((uint32_t *)&p->store[i])[0]);
3598	    }
3599	    brw_disasm(stdout, &p->store[i], intel->gen);
3600	 }
3601      }
3602
3603      last_native_inst = p->nr_insn;
3604   }
3605
3606   brw_set_uip_jip(p);
3607
3608   /* OK, while the INTEL_DEBUG=wm above is very nice for debugging FS
3609    * emit issues, it doesn't get the jump distances into the output,
3610    * which is often something we want to debug.  So this is here in
3611    * case you're doing that.
3612    */
3613   if (0) {
3614      if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
3615	 for (unsigned int i = 0; i < p->nr_insn; i++) {
3616	    printf("0x%08x 0x%08x 0x%08x 0x%08x ",
3617		   ((uint32_t *)&p->store[i])[3],
3618		   ((uint32_t *)&p->store[i])[2],
3619		   ((uint32_t *)&p->store[i])[1],
3620		   ((uint32_t *)&p->store[i])[0]);
3621	    brw_disasm(stdout, &p->store[i], intel->gen);
3622	 }
3623      }
3624   }
3625}
3626
3627GLboolean
3628brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c)
3629{
3630   struct intel_context *intel = &brw->intel;
3631   struct gl_context *ctx = &intel->ctx;
3632   struct gl_shader_program *prog = ctx->Shader.CurrentFragmentProgram;
3633
3634   if (!prog)
3635      return GL_FALSE;
3636
3637   struct brw_shader *shader =
3638     (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
3639   if (!shader)
3640      return GL_FALSE;
3641
3642   /* We always use 8-wide mode, at least for now.  For one, flow
3643    * control only works in 8-wide.  Also, when we're fragment shader
3644    * bound, we're almost always under register pressure as well, so
3645    * 8-wide would save us from the performance cliff of spilling
3646    * regs.
3647    */
3648   c->dispatch_width = 8;
3649
3650   if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
3651      printf("GLSL IR for native fragment shader %d:\n", prog->Name);
3652      _mesa_print_ir(shader->ir, NULL);
3653      printf("\n");
3654   }
3655
3656   /* Now the main event: Visit the shader IR and generate our FS IR for it.
3657    */
3658   fs_visitor v(c, shader);
3659
3660   if (0) {
3661      v.emit_dummy_fs();
3662   } else {
3663      v.calculate_urb_setup();
3664      if (intel->gen < 6)
3665	 v.emit_interpolation_setup_gen4();
3666      else
3667	 v.emit_interpolation_setup_gen6();
3668
3669      /* Generate FS IR for main().  (the visitor only descends into
3670       * functions called "main").
3671       */
3672      foreach_iter(exec_list_iterator, iter, *shader->ir) {
3673	 ir_instruction *ir = (ir_instruction *)iter.get();
3674	 v.base_ir = ir;
3675	 ir->accept(&v);
3676      }
3677
3678      v.emit_fb_writes();
3679
3680      v.split_virtual_grfs();
3681
3682      v.setup_paramvalues_refs();
3683      v.setup_pull_constants();
3684      v.assign_curb_setup();
3685      v.assign_urb_setup();
3686
3687      bool progress;
3688      do {
3689	 progress = false;
3690
3691	 progress = v.remove_duplicate_mrf_writes() || progress;
3692
3693	 progress = v.propagate_constants() || progress;
3694	 progress = v.register_coalesce() || progress;
3695	 progress = v.compute_to_mrf() || progress;
3696	 progress = v.dead_code_eliminate() || progress;
3697      } while (progress);
3698
3699      if (0) {
3700	 /* Debug of register spilling: Go spill everything. */
3701	 int virtual_grf_count = v.virtual_grf_next;
3702	 for (int i = 1; i < virtual_grf_count; i++) {
3703	    v.spill_reg(i);
3704	 }
3705      }
3706
3707      if (0)
3708	 v.assign_regs_trivial();
3709      else {
3710	 while (!v.assign_regs()) {
3711	    if (v.fail)
3712	       break;
3713	 }
3714      }
3715   }
3716
3717   if (!v.fail)
3718      v.generate_code();
3719
3720   assert(!v.fail); /* FINISHME: Cleanly fail, tested at link time, etc. */
3721
3722   if (v.fail)
3723      return GL_FALSE;
3724
3725   c->prog_data.total_grf = v.grf_used;
3726
3727   return GL_TRUE;
3728}
3729