brw_fs.cpp revision 3fb5377ba57aea356a81c521c0cf1975dc290b61
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28extern "C" {
29
30#include <sys/types.h>
31
32#include "main/macros.h"
33#include "main/shaderobj.h"
34#include "program/prog_parameter.h"
35#include "program/prog_print.h"
36#include "program/prog_optimize.h"
37#include "program/hash_table.h"
38#include "brw_context.h"
39#include "brw_eu.h"
40#include "brw_wm.h"
41#include "talloc.h"
42}
43#include "../glsl/glsl_types.h"
44#include "../glsl/ir_optimization.h"
45#include "../glsl/ir_print_visitor.h"
46
47enum register_file {
48   ARF = BRW_ARCHITECTURE_REGISTER_FILE,
49   GRF = BRW_GENERAL_REGISTER_FILE,
50   MRF = BRW_MESSAGE_REGISTER_FILE,
51   IMM = BRW_IMMEDIATE_VALUE,
52   FIXED_HW_REG, /* a struct brw_reg */
53   UNIFORM, /* prog_data->params[hw_reg] */
54   BAD_FILE
55};
56
57enum fs_opcodes {
58   FS_OPCODE_FB_WRITE = 256,
59   FS_OPCODE_RCP,
60   FS_OPCODE_RSQ,
61   FS_OPCODE_SQRT,
62   FS_OPCODE_EXP2,
63   FS_OPCODE_LOG2,
64   FS_OPCODE_POW,
65   FS_OPCODE_SIN,
66   FS_OPCODE_COS,
67   FS_OPCODE_DDX,
68   FS_OPCODE_DDY,
69   FS_OPCODE_LINTERP,
70   FS_OPCODE_TEX,
71   FS_OPCODE_TXB,
72   FS_OPCODE_TXL,
73   FS_OPCODE_DISCARD,
74};
75
76static int using_new_fs = -1;
77
78struct gl_shader *
79brw_new_shader(GLcontext *ctx, GLuint name, GLuint type)
80{
81   struct brw_shader *shader;
82
83   shader = talloc_zero(NULL, struct brw_shader);
84   if (shader) {
85      shader->base.Type = type;
86      shader->base.Name = name;
87      _mesa_init_shader(ctx, &shader->base);
88   }
89
90   return &shader->base;
91}
92
93struct gl_shader_program *
94brw_new_shader_program(GLcontext *ctx, GLuint name)
95{
96   struct brw_shader_program *prog;
97   prog = talloc_zero(NULL, struct brw_shader_program);
98   if (prog) {
99      prog->base.Name = name;
100      _mesa_init_shader_program(ctx, &prog->base);
101   }
102   return &prog->base;
103}
104
105GLboolean
106brw_compile_shader(GLcontext *ctx, struct gl_shader *shader)
107{
108   if (!_mesa_ir_compile_shader(ctx, shader))
109      return GL_FALSE;
110
111   return GL_TRUE;
112}
113
114GLboolean
115brw_link_shader(GLcontext *ctx, struct gl_shader_program *prog)
116{
117   if (using_new_fs == -1)
118      using_new_fs = getenv("INTEL_NEW_FS") != NULL;
119
120   for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
121      struct brw_shader *shader = (struct brw_shader *)prog->_LinkedShaders[i];
122
123      if (using_new_fs && shader->base.Type == GL_FRAGMENT_SHADER) {
124	 void *mem_ctx = talloc_new(NULL);
125	 bool progress;
126
127	 if (shader->ir)
128	    talloc_free(shader->ir);
129	 shader->ir = new(shader) exec_list;
130	 clone_ir_list(mem_ctx, shader->ir, shader->base.ir);
131
132	 do_mat_op_to_vec(shader->ir);
133	 do_mod_to_fract(shader->ir);
134	 do_div_to_mul_rcp(shader->ir);
135	 do_sub_to_add_neg(shader->ir);
136	 do_explog_to_explog2(shader->ir);
137
138	 brw_do_channel_expressions(shader->ir);
139	 brw_do_vector_splitting(shader->ir);
140
141	 do {
142	    progress = false;
143
144	    progress = do_common_optimization(shader->ir, true) || progress;
145	 } while (progress);
146
147	 validate_ir_tree(shader->ir);
148
149	 reparent_ir(shader->ir, shader->ir);
150	 talloc_free(mem_ctx);
151      }
152   }
153
154   if (!_mesa_ir_link_shader(ctx, prog))
155      return GL_FALSE;
156
157   return GL_TRUE;
158}
159
160static int
161type_size(const struct glsl_type *type)
162{
163   unsigned int size, i;
164
165   switch (type->base_type) {
166   case GLSL_TYPE_UINT:
167   case GLSL_TYPE_INT:
168   case GLSL_TYPE_FLOAT:
169   case GLSL_TYPE_BOOL:
170      return type->components();
171   case GLSL_TYPE_ARRAY:
172      /* FINISHME: uniform/varying arrays. */
173      return type_size(type->fields.array) * type->length;
174   case GLSL_TYPE_STRUCT:
175      size = 0;
176      for (i = 0; i < type->length; i++) {
177	 size += type_size(type->fields.structure[i].type);
178      }
179      return size;
180   case GLSL_TYPE_SAMPLER:
181      /* Samplers take up no register space, since they're baked in at
182       * link time.
183       */
184      return 0;
185   default:
186      assert(!"not reached");
187      return 0;
188   }
189}
190
191class fs_reg {
192public:
193   /* Callers of this talloc-based new need not call delete. It's
194    * easier to just talloc_free 'ctx' (or any of its ancestors). */
195   static void* operator new(size_t size, void *ctx)
196   {
197      void *node;
198
199      node = talloc_size(ctx, size);
200      assert(node != NULL);
201
202      return node;
203   }
204
205   void init()
206   {
207      this->reg = 0;
208      this->reg_offset = 0;
209      this->negate = 0;
210      this->abs = 0;
211      this->hw_reg = -1;
212   }
213
214   /** Generic unset register constructor. */
215   fs_reg()
216   {
217      init();
218      this->file = BAD_FILE;
219   }
220
221   /** Immediate value constructor. */
222   fs_reg(float f)
223   {
224      init();
225      this->file = IMM;
226      this->type = BRW_REGISTER_TYPE_F;
227      this->imm.f = f;
228   }
229
230   /** Immediate value constructor. */
231   fs_reg(int32_t i)
232   {
233      init();
234      this->file = IMM;
235      this->type = BRW_REGISTER_TYPE_D;
236      this->imm.i = i;
237   }
238
239   /** Immediate value constructor. */
240   fs_reg(uint32_t u)
241   {
242      init();
243      this->file = IMM;
244      this->type = BRW_REGISTER_TYPE_UD;
245      this->imm.u = u;
246   }
247
248   /** Fixed brw_reg Immediate value constructor. */
249   fs_reg(struct brw_reg fixed_hw_reg)
250   {
251      init();
252      this->file = FIXED_HW_REG;
253      this->fixed_hw_reg = fixed_hw_reg;
254      this->type = fixed_hw_reg.type;
255   }
256
257   fs_reg(enum register_file file, int hw_reg);
258   fs_reg(class fs_visitor *v, const struct glsl_type *type);
259
260   /** Register file: ARF, GRF, MRF, IMM. */
261   enum register_file file;
262   /** Abstract register number.  0 = fixed hw reg */
263   int reg;
264   /** Offset within the abstract register. */
265   int reg_offset;
266   /** HW register number.  Generally unset until register allocation. */
267   int hw_reg;
268   /** Register type.  BRW_REGISTER_TYPE_* */
269   int type;
270   bool negate;
271   bool abs;
272   struct brw_reg fixed_hw_reg;
273
274   /** Value for file == BRW_IMMMEDIATE_FILE */
275   union {
276      int32_t i;
277      uint32_t u;
278      float f;
279   } imm;
280};
281
282static const fs_reg reg_undef;
283static const fs_reg reg_null(ARF, BRW_ARF_NULL);
284
285class fs_inst : public exec_node {
286public:
287   /* Callers of this talloc-based new need not call delete. It's
288    * easier to just talloc_free 'ctx' (or any of its ancestors). */
289   static void* operator new(size_t size, void *ctx)
290   {
291      void *node;
292
293      node = talloc_zero_size(ctx, size);
294      assert(node != NULL);
295
296      return node;
297   }
298
299   void init()
300   {
301      this->opcode = BRW_OPCODE_NOP;
302      this->saturate = false;
303      this->conditional_mod = BRW_CONDITIONAL_NONE;
304      this->predicated = false;
305      this->sampler = 0;
306      this->shadow_compare = false;
307   }
308
309   fs_inst()
310   {
311      init();
312   }
313
314   fs_inst(int opcode)
315   {
316      init();
317      this->opcode = opcode;
318   }
319
320   fs_inst(int opcode, fs_reg dst, fs_reg src0)
321   {
322      init();
323      this->opcode = opcode;
324      this->dst = dst;
325      this->src[0] = src0;
326   }
327
328   fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1)
329   {
330      init();
331      this->opcode = opcode;
332      this->dst = dst;
333      this->src[0] = src0;
334      this->src[1] = src1;
335   }
336
337   fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1, fs_reg src2)
338   {
339      init();
340      this->opcode = opcode;
341      this->dst = dst;
342      this->src[0] = src0;
343      this->src[1] = src1;
344      this->src[2] = src2;
345   }
346
347   int opcode; /* BRW_OPCODE_* or FS_OPCODE_* */
348   fs_reg dst;
349   fs_reg src[3];
350   bool saturate;
351   bool predicated;
352   int conditional_mod; /**< BRW_CONDITIONAL_* */
353
354   int mlen; /** SEND message length */
355   int sampler;
356   bool shadow_compare;
357
358   /** @{
359    * Annotation for the generated IR.  One of the two can be set.
360    */
361   ir_instruction *ir;
362   const char *annotation;
363   /** @} */
364};
365
366class fs_visitor : public ir_visitor
367{
368public:
369
370   fs_visitor(struct brw_wm_compile *c, struct brw_shader *shader)
371   {
372      this->c = c;
373      this->p = &c->func;
374      this->brw = p->brw;
375      this->intel = &brw->intel;
376      this->ctx = &intel->ctx;
377      this->mem_ctx = talloc_new(NULL);
378      this->shader = shader;
379      this->fail = false;
380      this->next_abstract_grf = 1;
381      this->variable_ht = hash_table_ctor(0,
382					  hash_table_pointer_hash,
383					  hash_table_pointer_compare);
384
385      this->frag_color = NULL;
386      this->frag_data = NULL;
387      this->frag_depth = NULL;
388      this->first_non_payload_grf = 0;
389
390      this->current_annotation = NULL;
391      this->annotation_string = NULL;
392      this->annotation_ir = NULL;
393   }
394   ~fs_visitor()
395   {
396      talloc_free(this->mem_ctx);
397      hash_table_dtor(this->variable_ht);
398   }
399
400   fs_reg *variable_storage(ir_variable *var);
401
402   void visit(ir_variable *ir);
403   void visit(ir_assignment *ir);
404   void visit(ir_dereference_variable *ir);
405   void visit(ir_dereference_record *ir);
406   void visit(ir_dereference_array *ir);
407   void visit(ir_expression *ir);
408   void visit(ir_texture *ir);
409   void visit(ir_if *ir);
410   void visit(ir_constant *ir);
411   void visit(ir_swizzle *ir);
412   void visit(ir_return *ir);
413   void visit(ir_loop *ir);
414   void visit(ir_loop_jump *ir);
415   void visit(ir_discard *ir);
416   void visit(ir_call *ir);
417   void visit(ir_function *ir);
418   void visit(ir_function_signature *ir);
419
420   fs_inst *emit(fs_inst inst);
421   void assign_curb_setup();
422   void assign_urb_setup();
423   void assign_regs();
424   void generate_code();
425   void generate_fb_write(fs_inst *inst);
426   void generate_linterp(fs_inst *inst, struct brw_reg dst,
427			 struct brw_reg *src);
428   void generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
429   void generate_math(fs_inst *inst, struct brw_reg dst, struct brw_reg *src);
430   void generate_discard(fs_inst *inst);
431
432   void emit_dummy_fs();
433   void emit_interpolation();
434   void emit_pinterp(int location);
435   void emit_fb_writes();
436
437   struct brw_reg interp_reg(int location, int channel);
438
439   struct brw_context *brw;
440   struct intel_context *intel;
441   GLcontext *ctx;
442   struct brw_wm_compile *c;
443   struct brw_compile *p;
444   struct brw_shader *shader;
445   void *mem_ctx;
446   exec_list instructions;
447   int next_abstract_grf;
448   struct hash_table *variable_ht;
449   ir_variable *frag_color, *frag_data, *frag_depth;
450   int first_non_payload_grf;
451
452   /** @{ debug annotation info */
453   const char *current_annotation;
454   ir_instruction *base_ir;
455   const char **annotation_string;
456   ir_instruction **annotation_ir;
457   /** @} */
458
459   bool fail;
460
461   /* Result of last visit() method. */
462   fs_reg result;
463
464   fs_reg pixel_x;
465   fs_reg pixel_y;
466   fs_reg pixel_w;
467   fs_reg delta_x;
468   fs_reg delta_y;
469   fs_reg interp_attrs[64];
470
471   int grf_used;
472
473};
474
475/** Fixed HW reg constructor. */
476fs_reg::fs_reg(enum register_file file, int hw_reg)
477{
478   init();
479   this->file = file;
480   this->hw_reg = hw_reg;
481   this->type = BRW_REGISTER_TYPE_F;
482}
483
484/** Automatic reg constructor. */
485fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
486{
487   init();
488
489   this->file = GRF;
490   this->reg = v->next_abstract_grf;
491   this->reg_offset = 0;
492   v->next_abstract_grf += type_size(type);
493
494   switch (type->base_type) {
495   case GLSL_TYPE_FLOAT:
496      this->type = BRW_REGISTER_TYPE_F;
497      break;
498   case GLSL_TYPE_INT:
499   case GLSL_TYPE_BOOL:
500      this->type = BRW_REGISTER_TYPE_D;
501      break;
502   case GLSL_TYPE_UINT:
503      this->type = BRW_REGISTER_TYPE_UD;
504      break;
505   default:
506      assert(!"not reached");
507      this->type =  BRW_REGISTER_TYPE_F;
508      break;
509   }
510}
511
512fs_reg *
513fs_visitor::variable_storage(ir_variable *var)
514{
515   return (fs_reg *)hash_table_find(this->variable_ht, var);
516}
517
518void
519fs_visitor::visit(ir_variable *ir)
520{
521   fs_reg *reg = NULL;
522
523   if (strcmp(ir->name, "gl_FragColor") == 0) {
524      this->frag_color = ir;
525   } else if (strcmp(ir->name, "gl_FragData") == 0) {
526      this->frag_data = ir;
527   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
528      this->frag_depth = ir;
529      assert(!"FINISHME: this hangs currently.");
530   }
531
532   if (ir->mode == ir_var_in) {
533      reg = &this->interp_attrs[ir->location];
534   }
535
536   if (ir->mode == ir_var_uniform) {
537      const float *vec_values;
538      int param_index = c->prog_data.nr_params;
539
540      /* FINISHME: This is wildly incomplete. */
541      assert(ir->type->is_scalar() || ir->type->is_vector() ||
542	     ir->type->is_sampler());
543
544      const struct gl_program *fp = &this->brw->fragment_program->Base;
545      /* Our support for uniforms is piggy-backed on the struct
546       * gl_fragment_program, because that's where the values actually
547       * get stored, rather than in some global gl_shader_program uniform
548       * store.
549       */
550      vec_values = fp->Parameters->ParameterValues[ir->location];
551      for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
552	 c->prog_data.param[c->prog_data.nr_params++] = &vec_values[i];
553      }
554
555      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
556   }
557
558   if (!reg)
559      reg = new(this->mem_ctx) fs_reg(this, ir->type);
560
561   hash_table_insert(this->variable_ht, reg, ir);
562}
563
564void
565fs_visitor::visit(ir_dereference_variable *ir)
566{
567   fs_reg *reg = variable_storage(ir->var);
568   this->result = *reg;
569}
570
571void
572fs_visitor::visit(ir_dereference_record *ir)
573{
574   assert(!"FINISHME");
575}
576
577void
578fs_visitor::visit(ir_dereference_array *ir)
579{
580   ir_constant *index;
581   int element_size;
582
583   ir->array->accept(this);
584   index = ir->array_index->as_constant();
585
586   if (ir->type->is_matrix()) {
587      element_size = ir->type->vector_elements;
588   } else {
589      element_size = type_size(ir->type);
590   }
591
592   if (index) {
593      assert(this->result.file == UNIFORM ||
594	     (this->result.file == GRF &&
595	      this->result.reg != 0));
596      this->result.reg_offset += index->value.i[0] * element_size;
597   } else {
598      assert(!"FINISHME: non-constant matrix column");
599   }
600}
601
602void
603fs_visitor::visit(ir_expression *ir)
604{
605   unsigned int operand;
606   fs_reg op[2], temp;
607   fs_reg result;
608   fs_inst *inst;
609
610   for (operand = 0; operand < ir->get_num_operands(); operand++) {
611      ir->operands[operand]->accept(this);
612      if (this->result.file == BAD_FILE) {
613	 ir_print_visitor v;
614	 printf("Failed to get tree for expression operand:\n");
615	 ir->operands[operand]->accept(&v);
616	 this->fail = true;
617      }
618      op[operand] = this->result;
619
620      /* Matrix expression operands should have been broken down to vector
621       * operations already.
622       */
623      assert(!ir->operands[operand]->type->is_matrix());
624      /* And then those vector operands should have been broken down to scalar.
625       */
626      assert(!ir->operands[operand]->type->is_vector());
627   }
628
629   /* Storage for our result.  If our result goes into an assignment, it will
630    * just get copy-propagated out, so no worries.
631    */
632   this->result = fs_reg(this, ir->type);
633
634   switch (ir->operation) {
635   case ir_unop_logic_not:
636      emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], fs_reg(-1)));
637      break;
638   case ir_unop_neg:
639      op[0].negate = ~op[0].negate;
640      this->result = op[0];
641      break;
642   case ir_unop_abs:
643      op[0].abs = true;
644      this->result = op[0];
645      break;
646   case ir_unop_sign:
647      temp = fs_reg(this, ir->type);
648
649      emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(0.0f)));
650
651      inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
652      inst->conditional_mod = BRW_CONDITIONAL_G;
653      inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(1.0f)));
654      inst->predicated = true;
655
656      inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
657      inst->conditional_mod = BRW_CONDITIONAL_L;
658      inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f)));
659      inst->predicated = true;
660
661      break;
662   case ir_unop_rcp:
663      emit(fs_inst(FS_OPCODE_RCP, this->result, op[0]));
664      break;
665
666   case ir_unop_exp2:
667      emit(fs_inst(FS_OPCODE_EXP2, this->result, op[0]));
668      break;
669   case ir_unop_log2:
670      emit(fs_inst(FS_OPCODE_LOG2, this->result, op[0]));
671      break;
672   case ir_unop_exp:
673   case ir_unop_log:
674      assert(!"not reached: should be handled by ir_explog_to_explog2");
675      break;
676   case ir_unop_sin:
677      emit(fs_inst(FS_OPCODE_SIN, this->result, op[0]));
678      break;
679   case ir_unop_cos:
680      emit(fs_inst(FS_OPCODE_COS, this->result, op[0]));
681      break;
682
683   case ir_unop_dFdx:
684      emit(fs_inst(FS_OPCODE_DDX, this->result, op[0]));
685      break;
686   case ir_unop_dFdy:
687      emit(fs_inst(FS_OPCODE_DDY, this->result, op[0]));
688      break;
689
690   case ir_binop_add:
691      emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], op[1]));
692      break;
693   case ir_binop_sub:
694      assert(!"not reached: should be handled by ir_sub_to_add_neg");
695      break;
696
697   case ir_binop_mul:
698      emit(fs_inst(BRW_OPCODE_MUL, this->result, op[0], op[1]));
699      break;
700   case ir_binop_div:
701      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
702      break;
703   case ir_binop_mod:
704      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
705      break;
706
707   case ir_binop_less:
708      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
709      inst->conditional_mod = BRW_CONDITIONAL_L;
710      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
711      break;
712   case ir_binop_greater:
713      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
714      inst->conditional_mod = BRW_CONDITIONAL_G;
715      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
716      break;
717   case ir_binop_lequal:
718      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
719      inst->conditional_mod = BRW_CONDITIONAL_LE;
720      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
721      break;
722   case ir_binop_gequal:
723      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
724      inst->conditional_mod = BRW_CONDITIONAL_GE;
725      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
726      break;
727   case ir_binop_equal:
728      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
729      inst->conditional_mod = BRW_CONDITIONAL_Z;
730      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
731      break;
732   case ir_binop_nequal:
733      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
734      inst->conditional_mod = BRW_CONDITIONAL_NZ;
735      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
736      break;
737
738   case ir_binop_logic_xor:
739      emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1]));
740      break;
741
742   case ir_binop_logic_or:
743      emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1]));
744      break;
745
746   case ir_binop_logic_and:
747      emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1]));
748      break;
749
750   case ir_binop_dot:
751   case ir_binop_cross:
752   case ir_unop_any:
753      assert(!"not reached: should be handled by brw_channel_expressions");
754      break;
755
756   case ir_unop_sqrt:
757      emit(fs_inst(FS_OPCODE_SQRT, this->result, op[0]));
758      break;
759
760   case ir_unop_rsq:
761      emit(fs_inst(FS_OPCODE_RSQ, this->result, op[0]));
762      break;
763
764   case ir_unop_i2f:
765   case ir_unop_b2f:
766   case ir_unop_b2i:
767      emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
768      break;
769   case ir_unop_f2i:
770      emit(fs_inst(BRW_OPCODE_RNDZ, this->result, op[0]));
771      break;
772   case ir_unop_f2b:
773   case ir_unop_i2b:
774      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0.0f)));
775      inst->conditional_mod = BRW_CONDITIONAL_NZ;
776
777   case ir_unop_trunc:
778      emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
779      break;
780   case ir_unop_ceil:
781      op[0].negate = ~op[0].negate;
782      inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
783      this->result.negate = true;
784      break;
785   case ir_unop_floor:
786      inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
787      break;
788   case ir_unop_fract:
789      inst = emit(fs_inst(BRW_OPCODE_FRC, this->result, op[0]));
790      break;
791
792   case ir_binop_min:
793      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
794      inst->conditional_mod = BRW_CONDITIONAL_L;
795
796      inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
797      inst->predicated = true;
798      break;
799   case ir_binop_max:
800      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
801      inst->conditional_mod = BRW_CONDITIONAL_G;
802
803      inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
804      inst->predicated = true;
805      break;
806
807   case ir_binop_pow:
808      inst = emit(fs_inst(FS_OPCODE_POW, this->result, op[0], op[1]));
809      break;
810
811   case ir_unop_bit_not:
812   case ir_unop_u2f:
813   case ir_binop_lshift:
814   case ir_binop_rshift:
815   case ir_binop_bit_and:
816   case ir_binop_bit_xor:
817   case ir_binop_bit_or:
818      assert(!"GLSL 1.30 features unsupported");
819      break;
820   }
821}
822
823void
824fs_visitor::visit(ir_assignment *ir)
825{
826   struct fs_reg l, r;
827   int i;
828   int write_mask;
829   fs_inst *inst;
830
831   /* FINISHME: arrays on the lhs */
832   ir->lhs->accept(this);
833   l = this->result;
834
835   ir->rhs->accept(this);
836   r = this->result;
837
838   /* FINISHME: This should really set to the correct maximal writemask for each
839    * FINISHME: component written (in the loops below).  This case can only
840    * FINISHME: occur for matrices, arrays, and structures.
841    */
842   if (ir->write_mask == 0) {
843      assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
844      write_mask = WRITEMASK_XYZW;
845   } else {
846      assert(ir->lhs->type->is_vector() || ir->lhs->type->is_scalar());
847      write_mask = ir->write_mask;
848   }
849
850   assert(l.file != BAD_FILE);
851   assert(r.file != BAD_FILE);
852
853   if (ir->condition) {
854      /* Get the condition bool into the predicate. */
855      ir->condition->accept(this);
856      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, fs_reg(0)));
857      inst->conditional_mod = BRW_CONDITIONAL_NZ;
858   }
859
860   for (i = 0; i < type_size(ir->lhs->type); i++) {
861      if (i >= 4 || (write_mask & (1 << i))) {
862	 inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
863	 if (ir->condition)
864	    inst->predicated = true;
865      }
866      l.reg_offset++;
867      r.reg_offset++;
868   }
869}
870
871void
872fs_visitor::visit(ir_texture *ir)
873{
874   int base_mrf = 2;
875   fs_inst *inst = NULL;
876   unsigned int mlen = 0;
877
878   ir->coordinate->accept(this);
879   fs_reg coordinate = this->result;
880
881   if (ir->projector) {
882      fs_reg inv_proj = fs_reg(this, glsl_type::float_type);
883
884      ir->projector->accept(this);
885      emit(fs_inst(FS_OPCODE_RCP, inv_proj, this->result));
886
887      fs_reg proj_coordinate = fs_reg(this, ir->coordinate->type);
888      for (unsigned int i = 0; i < ir->coordinate->type->vector_elements; i++) {
889	 emit(fs_inst(BRW_OPCODE_MUL, proj_coordinate, coordinate, inv_proj));
890	 coordinate.reg_offset++;
891	 proj_coordinate.reg_offset++;
892      }
893      proj_coordinate.reg_offset = 0;
894
895      coordinate = proj_coordinate;
896   }
897
898   for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
899      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate));
900      coordinate.reg_offset++;
901   }
902
903   /* Pre-Ironlake, the 8-wide sampler always took u,v,r. */
904   if (intel->gen < 5)
905      mlen = 3;
906
907   if (ir->shadow_comparitor) {
908      /* For shadow comparisons, we have to supply u,v,r. */
909      mlen = 3;
910
911      ir->shadow_comparitor->accept(this);
912      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
913      mlen++;
914   }
915
916   /* Do we ever want to handle writemasking on texture samples?  Is it
917    * performance relevant?
918    */
919   fs_reg dst = fs_reg(this, glsl_type::vec4_type);
920
921   switch (ir->op) {
922   case ir_tex:
923      inst = emit(fs_inst(FS_OPCODE_TEX, dst, fs_reg(MRF, base_mrf)));
924      break;
925   case ir_txb:
926      ir->lod_info.bias->accept(this);
927      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
928      mlen++;
929
930      inst = emit(fs_inst(FS_OPCODE_TXB, dst, fs_reg(MRF, base_mrf)));
931      break;
932   case ir_txl:
933      ir->lod_info.lod->accept(this);
934      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
935      mlen++;
936
937      inst = emit(fs_inst(FS_OPCODE_TXL, dst, fs_reg(MRF, base_mrf)));
938      break;
939   case ir_txd:
940   case ir_txf:
941      assert(!"GLSL 1.30 features unsupported");
942      break;
943   }
944
945   this->result = dst;
946
947   if (ir->shadow_comparitor)
948      inst->shadow_compare = true;
949   inst->mlen = mlen;
950}
951
952void
953fs_visitor::visit(ir_swizzle *ir)
954{
955   ir->val->accept(this);
956   fs_reg val = this->result;
957
958   fs_reg result = fs_reg(this, ir->type);
959   this->result = result;
960
961   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
962      fs_reg channel = val;
963      int swiz = 0;
964
965      switch (i) {
966      case 0:
967	 swiz = ir->mask.x;
968	 break;
969      case 1:
970	 swiz = ir->mask.y;
971	 break;
972      case 2:
973	 swiz = ir->mask.z;
974	 break;
975      case 3:
976	 swiz = ir->mask.w;
977	 break;
978      }
979
980      channel.reg_offset += swiz;
981      emit(fs_inst(BRW_OPCODE_MOV, result, channel));
982      result.reg_offset++;
983   }
984}
985
986void
987fs_visitor::visit(ir_discard *ir)
988{
989   assert(ir->condition == NULL); /* FINISHME */
990
991   emit(fs_inst(FS_OPCODE_DISCARD));
992}
993
994void
995fs_visitor::visit(ir_constant *ir)
996{
997   fs_reg reg(this, ir->type);
998   this->result = reg;
999
1000   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1001      switch (ir->type->base_type) {
1002      case GLSL_TYPE_FLOAT:
1003	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.f[i])));
1004	 break;
1005      case GLSL_TYPE_UINT:
1006	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.u[i])));
1007	 break;
1008      case GLSL_TYPE_INT:
1009	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.i[i])));
1010	 break;
1011      case GLSL_TYPE_BOOL:
1012	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg((int)ir->value.b[i])));
1013	 break;
1014      default:
1015	 assert(!"Non-float/uint/int/bool constant");
1016      }
1017      reg.reg_offset++;
1018   }
1019}
1020
1021void
1022fs_visitor::visit(ir_if *ir)
1023{
1024   fs_inst *inst;
1025
1026   /* Don't point the annotation at the if statement, because then it plus
1027    * the then and else blocks get printed.
1028    */
1029   this->base_ir = ir->condition;
1030
1031   /* Generate the condition into the condition code. */
1032   ir->condition->accept(this);
1033   inst = emit(fs_inst(BRW_OPCODE_MOV, fs_reg(brw_null_reg()), this->result));
1034   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1035
1036   inst = emit(fs_inst(BRW_OPCODE_IF));
1037   inst->predicated = true;
1038
1039   foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1040      ir_instruction *ir = (ir_instruction *)iter.get();
1041      this->base_ir = ir;
1042
1043      ir->accept(this);
1044   }
1045
1046   if (!ir->else_instructions.is_empty()) {
1047      emit(fs_inst(BRW_OPCODE_ELSE));
1048
1049      foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1050	 ir_instruction *ir = (ir_instruction *)iter.get();
1051	 this->base_ir = ir;
1052
1053	 ir->accept(this);
1054      }
1055   }
1056
1057   emit(fs_inst(BRW_OPCODE_ENDIF));
1058}
1059
1060void
1061fs_visitor::visit(ir_loop *ir)
1062{
1063   assert(!ir->from);
1064   assert(!ir->to);
1065   assert(!ir->increment);
1066   assert(!ir->counter);
1067
1068   emit(fs_inst(BRW_OPCODE_DO));
1069
1070   /* Start a safety counter.  If the user messed up their loop
1071    * counting, we don't want to hang the GPU.
1072    */
1073   fs_reg max_iter = fs_reg(this, glsl_type::int_type);
1074   emit(fs_inst(BRW_OPCODE_MOV, max_iter, fs_reg(10000)));
1075
1076   foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1077      ir_instruction *ir = (ir_instruction *)iter.get();
1078      fs_inst *inst;
1079
1080      this->base_ir = ir;
1081      ir->accept(this);
1082
1083      /* Check the maximum loop iters counter. */
1084      inst = emit(fs_inst(BRW_OPCODE_ADD, max_iter, max_iter, fs_reg(-1)));
1085      inst->conditional_mod = BRW_CONDITIONAL_Z;
1086
1087      inst = emit(fs_inst(BRW_OPCODE_BREAK));
1088      inst->predicated = true;
1089   }
1090
1091   emit(fs_inst(BRW_OPCODE_WHILE));
1092}
1093
1094void
1095fs_visitor::visit(ir_loop_jump *ir)
1096{
1097   switch (ir->mode) {
1098   case ir_loop_jump::jump_break:
1099      emit(fs_inst(BRW_OPCODE_BREAK));
1100      break;
1101   case ir_loop_jump::jump_continue:
1102      emit(fs_inst(BRW_OPCODE_CONTINUE));
1103      break;
1104   }
1105}
1106
1107void
1108fs_visitor::visit(ir_call *ir)
1109{
1110   assert(!"FINISHME");
1111}
1112
1113void
1114fs_visitor::visit(ir_return *ir)
1115{
1116   assert(!"FINISHME");
1117}
1118
1119void
1120fs_visitor::visit(ir_function *ir)
1121{
1122   /* Ignore function bodies other than main() -- we shouldn't see calls to
1123    * them since they should all be inlined before we get to ir_to_mesa.
1124    */
1125   if (strcmp(ir->name, "main") == 0) {
1126      const ir_function_signature *sig;
1127      exec_list empty;
1128
1129      sig = ir->matching_signature(&empty);
1130
1131      assert(sig);
1132
1133      foreach_iter(exec_list_iterator, iter, sig->body) {
1134	 ir_instruction *ir = (ir_instruction *)iter.get();
1135	 this->base_ir = ir;
1136
1137	 ir->accept(this);
1138      }
1139   }
1140}
1141
1142void
1143fs_visitor::visit(ir_function_signature *ir)
1144{
1145   assert(!"not reached");
1146   (void)ir;
1147}
1148
1149fs_inst *
1150fs_visitor::emit(fs_inst inst)
1151{
1152   fs_inst *list_inst = new(mem_ctx) fs_inst;
1153   *list_inst = inst;
1154
1155   list_inst->annotation = this->current_annotation;
1156   list_inst->ir = this->base_ir;
1157
1158   this->instructions.push_tail(list_inst);
1159
1160   return list_inst;
1161}
1162
1163/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1164void
1165fs_visitor::emit_dummy_fs()
1166{
1167   /* Everyone's favorite color. */
1168   emit(fs_inst(BRW_OPCODE_MOV,
1169		fs_reg(MRF, 2),
1170		fs_reg(1.0f)));
1171   emit(fs_inst(BRW_OPCODE_MOV,
1172		fs_reg(MRF, 3),
1173		fs_reg(0.0f)));
1174   emit(fs_inst(BRW_OPCODE_MOV,
1175		fs_reg(MRF, 4),
1176		fs_reg(1.0f)));
1177   emit(fs_inst(BRW_OPCODE_MOV,
1178		fs_reg(MRF, 5),
1179		fs_reg(0.0f)));
1180
1181   fs_inst *write;
1182   write = emit(fs_inst(FS_OPCODE_FB_WRITE,
1183			fs_reg(0),
1184			fs_reg(0)));
1185}
1186
1187/* The register location here is relative to the start of the URB
1188 * data.  It will get adjusted to be a real location before
1189 * generate_code() time.
1190 */
1191struct brw_reg
1192fs_visitor::interp_reg(int location, int channel)
1193{
1194   int regnr = location * 2 + channel / 2;
1195   int stride = (channel & 1) * 4;
1196
1197   return brw_vec1_grf(regnr, stride);
1198}
1199
1200/** Emits the interpolation for the varying inputs. */
1201void
1202fs_visitor::emit_interpolation()
1203{
1204   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1205   /* For now, the source regs for the setup URB data will be unset,
1206    * since we don't know until codegen how many push constants we'll
1207    * use, and therefore what the setup URB offset is.
1208    */
1209   fs_reg src_reg = reg_undef;
1210
1211   this->current_annotation = "compute pixel centers";
1212   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1213   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1214   emit(fs_inst(BRW_OPCODE_ADD,
1215		this->pixel_x,
1216		fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1217		fs_reg(brw_imm_v(0x10101010))));
1218   emit(fs_inst(BRW_OPCODE_ADD,
1219		this->pixel_y,
1220		fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1221		fs_reg(brw_imm_v(0x11001100))));
1222
1223   this->current_annotation = "compute pixel deltas from v0";
1224   this->delta_x = fs_reg(this, glsl_type::float_type);
1225   this->delta_y = fs_reg(this, glsl_type::float_type);
1226   emit(fs_inst(BRW_OPCODE_ADD,
1227		this->delta_x,
1228		this->pixel_x,
1229		fs_reg(negate(brw_vec1_grf(1, 0)))));
1230   emit(fs_inst(BRW_OPCODE_ADD,
1231		this->delta_y,
1232		this->pixel_y,
1233		fs_reg(brw_vec1_grf(1, 1))));
1234
1235   this->current_annotation = "compute pos.w and 1/pos.w";
1236   /* Compute wpos.  Unlike many other varying inputs, we usually need it
1237    * to produce 1/w, and the varying variable wouldn't show up.
1238    */
1239   fs_reg wpos = fs_reg(this, glsl_type::vec4_type);
1240   this->interp_attrs[FRAG_ATTRIB_WPOS] = wpos;
1241   emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_x)); /* FINISHME: ARB_fcc */
1242   wpos.reg_offset++;
1243   emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_y)); /* FINISHME: ARB_fcc */
1244   wpos.reg_offset++;
1245   emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
1246		interp_reg(FRAG_ATTRIB_WPOS, 2)));
1247   wpos.reg_offset++;
1248   emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
1249		interp_reg(FRAG_ATTRIB_WPOS, 3)));
1250   /* Compute the pixel W value from wpos.w. */
1251   this->pixel_w = fs_reg(this, glsl_type::float_type);
1252   emit(fs_inst(FS_OPCODE_RCP, this->pixel_w, wpos));
1253
1254   /* FINISHME: gl_FrontFacing */
1255
1256   foreach_iter(exec_list_iterator, iter, *this->shader->ir) {
1257      ir_instruction *ir = (ir_instruction *)iter.get();
1258      ir_variable *var = ir->as_variable();
1259
1260      if (!var)
1261	 continue;
1262
1263      if (var->mode != ir_var_in)
1264	 continue;
1265
1266      /* If it's already set up (WPOS), skip. */
1267      if (var->location == 0)
1268	 continue;
1269
1270      this->current_annotation = talloc_asprintf(this->mem_ctx,
1271						 "interpolate %s "
1272						 "(FRAG_ATTRIB[%d])",
1273						 var->name,
1274						 var->location);
1275      emit_pinterp(var->location);
1276   }
1277   this->current_annotation = NULL;
1278}
1279
1280void
1281fs_visitor::emit_pinterp(int location)
1282{
1283   fs_reg interp_attr = fs_reg(this, glsl_type::vec4_type);
1284   this->interp_attrs[location] = interp_attr;
1285
1286   for (unsigned int i = 0; i < 4; i++) {
1287      struct brw_reg interp = interp_reg(location, i);
1288      emit(fs_inst(FS_OPCODE_LINTERP,
1289		   interp_attr,
1290		   this->delta_x,
1291		   this->delta_y,
1292		   fs_reg(interp)));
1293      interp_attr.reg_offset++;
1294   }
1295   interp_attr.reg_offset -= 4;
1296
1297   for (unsigned int i = 0; i < 4; i++) {
1298      emit(fs_inst(BRW_OPCODE_MUL,
1299		   interp_attr,
1300		   interp_attr,
1301		   this->pixel_w));
1302      interp_attr.reg_offset++;
1303   }
1304}
1305
1306void
1307fs_visitor::emit_fb_writes()
1308{
1309   this->current_annotation = "FB write";
1310
1311   assert(this->frag_color || !"FINISHME: MRT");
1312   fs_reg color = *(variable_storage(this->frag_color));
1313
1314   for (int i = 0; i < 4; i++) {
1315      emit(fs_inst(BRW_OPCODE_MOV,
1316		   fs_reg(MRF, 2 + i),
1317		   color));
1318      color.reg_offset++;
1319   }
1320
1321   emit(fs_inst(FS_OPCODE_FB_WRITE,
1322		fs_reg(0),
1323		fs_reg(0)));
1324
1325   this->current_annotation = NULL;
1326}
1327
1328void
1329fs_visitor::generate_fb_write(fs_inst *inst)
1330{
1331   GLboolean eot = 1; /* FINISHME: MRT */
1332   /* FINISHME: AADS */
1333
1334   /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
1335    * move, here's g1.
1336    */
1337   brw_push_insn_state(p);
1338   brw_set_mask_control(p, BRW_MASK_DISABLE);
1339   brw_set_compression_control(p, BRW_COMPRESSION_NONE);
1340   brw_MOV(p,
1341	   brw_message_reg(1),
1342	   brw_vec8_grf(1, 0));
1343   brw_pop_insn_state(p);
1344
1345   int nr = 2 + 4;
1346
1347   brw_fb_WRITE(p,
1348		8, /* dispatch_width */
1349		retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW),
1350		0, /* base MRF */
1351		retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
1352		0, /* FINISHME: MRT target */
1353		nr,
1354		0,
1355		eot);
1356}
1357
1358void
1359fs_visitor::generate_linterp(fs_inst *inst,
1360			     struct brw_reg dst, struct brw_reg *src)
1361{
1362   struct brw_reg delta_x = src[0];
1363   struct brw_reg delta_y = src[1];
1364   struct brw_reg interp = src[2];
1365
1366   if (brw->has_pln &&
1367       delta_y.nr == delta_x.nr + 1 &&
1368       (intel->gen >= 6 || (delta_x.nr & 1) == 0)) {
1369      brw_PLN(p, dst, interp, delta_x);
1370   } else {
1371      brw_LINE(p, brw_null_reg(), interp, delta_x);
1372      brw_MAC(p, dst, suboffset(interp, 1), delta_y);
1373   }
1374}
1375
1376void
1377fs_visitor::generate_math(fs_inst *inst,
1378			  struct brw_reg dst, struct brw_reg *src)
1379{
1380   int op;
1381
1382   switch (inst->opcode) {
1383   case FS_OPCODE_RCP:
1384      op = BRW_MATH_FUNCTION_INV;
1385      break;
1386   case FS_OPCODE_RSQ:
1387      op = BRW_MATH_FUNCTION_RSQ;
1388      break;
1389   case FS_OPCODE_SQRT:
1390      op = BRW_MATH_FUNCTION_SQRT;
1391      break;
1392   case FS_OPCODE_EXP2:
1393      op = BRW_MATH_FUNCTION_EXP;
1394      break;
1395   case FS_OPCODE_LOG2:
1396      op = BRW_MATH_FUNCTION_LOG;
1397      break;
1398   case FS_OPCODE_POW:
1399      op = BRW_MATH_FUNCTION_POW;
1400      break;
1401   case FS_OPCODE_SIN:
1402      op = BRW_MATH_FUNCTION_SIN;
1403      break;
1404   case FS_OPCODE_COS:
1405      op = BRW_MATH_FUNCTION_COS;
1406      break;
1407   default:
1408      assert(!"not reached: unknown math function");
1409      op = 0;
1410      break;
1411   }
1412
1413   if (inst->opcode == FS_OPCODE_POW) {
1414      brw_MOV(p, brw_message_reg(3), src[1]);
1415   }
1416
1417   brw_math(p, dst,
1418	    op,
1419	    inst->saturate ? BRW_MATH_SATURATE_SATURATE :
1420	    BRW_MATH_SATURATE_NONE,
1421	    2, src[0],
1422	    BRW_MATH_DATA_VECTOR,
1423	    BRW_MATH_PRECISION_FULL);
1424}
1425
1426void
1427fs_visitor::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
1428{
1429   int msg_type = -1;
1430   int rlen = 4;
1431
1432   if (intel->gen == 5) {
1433      switch (inst->opcode) {
1434      case FS_OPCODE_TEX:
1435	 if (inst->shadow_compare) {
1436	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_COMPARE_GEN5;
1437	 } else {
1438	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_GEN5;
1439	 }
1440	 break;
1441      case FS_OPCODE_TXB:
1442	 if (inst->shadow_compare) {
1443	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE_GEN5;
1444	 } else {
1445	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5;
1446	 }
1447	 break;
1448      }
1449   } else {
1450      switch (inst->opcode) {
1451      case FS_OPCODE_TEX:
1452	 /* Note that G45 and older determines shadow compare and dispatch width
1453	  * from message length for most messages.
1454	  */
1455	 if (inst->shadow_compare) {
1456	    msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1457	 } else {
1458	    msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1459	 }
1460      case FS_OPCODE_TXB:
1461	 if (inst->shadow_compare) {
1462	    assert(!"FINISHME: shadow compare with bias.");
1463	    msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1464	 } else {
1465	    msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1466	    rlen = 8;
1467	 }
1468	 break;
1469      }
1470   }
1471   assert(msg_type != -1);
1472
1473   /* g0 header. */
1474   src.nr--;
1475
1476   brw_SAMPLE(p,
1477	      retype(dst, BRW_REGISTER_TYPE_UW),
1478	      src.nr,
1479	      retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
1480              SURF_INDEX_TEXTURE(inst->sampler),
1481	      inst->sampler,
1482	      WRITEMASK_XYZW,
1483	      msg_type,
1484	      rlen,
1485	      inst->mlen + 1,
1486	      0,
1487	      1,
1488	      BRW_SAMPLER_SIMD_MODE_SIMD8);
1489}
1490
1491void
1492fs_visitor::generate_discard(fs_inst *inst)
1493{
1494   struct brw_reg g0 = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
1495   brw_push_insn_state(p);
1496   brw_set_mask_control(p, BRW_MASK_DISABLE);
1497   brw_NOT(p, c->emit_mask_reg, brw_mask_reg(1)); /* IMASK */
1498   brw_AND(p, g0, c->emit_mask_reg, g0);
1499   brw_pop_insn_state(p);
1500}
1501
1502static void
1503trivial_assign_reg(int header_size, fs_reg *reg)
1504{
1505   if (reg->file == GRF && reg->reg != 0) {
1506      reg->hw_reg = header_size + reg->reg - 1 + reg->reg_offset;
1507      reg->reg = 0;
1508   }
1509}
1510
1511void
1512fs_visitor::assign_curb_setup()
1513{
1514   c->prog_data.first_curbe_grf = c->key.nr_payload_regs;
1515   c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
1516
1517   if (intel->gen == 5 && (c->prog_data.first_curbe_grf +
1518			   c->prog_data.curb_read_length) & 1) {
1519      /* Align the start of the interpolation coefficients so that we can use
1520       * the PLN instruction.
1521       */
1522      c->prog_data.first_curbe_grf++;
1523   }
1524
1525   /* Map the offsets in the UNIFORM file to fixed HW regs. */
1526   foreach_iter(exec_list_iterator, iter, this->instructions) {
1527      fs_inst *inst = (fs_inst *)iter.get();
1528
1529      for (unsigned int i = 0; i < 3; i++) {
1530	 if (inst->src[i].file == UNIFORM) {
1531	    int constant_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
1532	    struct brw_reg brw_reg = brw_vec1_grf(c->prog_data.first_curbe_grf +
1533						  constant_nr / 8,
1534						  constant_nr % 8);
1535
1536	    inst->src[i].file = FIXED_HW_REG;
1537	    inst->src[i].fixed_hw_reg = brw_reg;
1538	 }
1539      }
1540   }
1541}
1542
1543void
1544fs_visitor::assign_urb_setup()
1545{
1546   int urb_start = c->prog_data.first_curbe_grf + c->prog_data.curb_read_length;
1547   int interp_reg_nr[FRAG_ATTRIB_MAX];
1548
1549   c->prog_data.urb_read_length = 0;
1550
1551   /* Figure out where each of the incoming setup attributes lands. */
1552   for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
1553      interp_reg_nr[i] = -1;
1554
1555      if (i != FRAG_ATTRIB_WPOS &&
1556	  !(brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(i)))
1557	 continue;
1558
1559      /* Each attribute is 4 setup channels, each of which is half a reg. */
1560      interp_reg_nr[i] = urb_start + c->prog_data.urb_read_length;
1561      c->prog_data.urb_read_length += 2;
1562   }
1563
1564   /* Map the register numbers for FS_OPCODE_LINTERP so that it uses
1565    * the correct setup input.
1566    */
1567   foreach_iter(exec_list_iterator, iter, this->instructions) {
1568      fs_inst *inst = (fs_inst *)iter.get();
1569
1570      if (inst->opcode != FS_OPCODE_LINTERP)
1571	 continue;
1572
1573      assert(inst->src[2].file == FIXED_HW_REG);
1574
1575      int location = inst->src[2].fixed_hw_reg.nr / 2;
1576      assert(interp_reg_nr[location] != -1);
1577      inst->src[2].fixed_hw_reg.nr = (interp_reg_nr[location] +
1578				      (inst->src[2].fixed_hw_reg.nr & 1));
1579   }
1580
1581   this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
1582}
1583
1584void
1585fs_visitor::assign_regs()
1586{
1587   int header_size = this->first_non_payload_grf;
1588   int last_grf = 0;
1589
1590   /* FINISHME: trivial assignment of register numbers */
1591   foreach_iter(exec_list_iterator, iter, this->instructions) {
1592      fs_inst *inst = (fs_inst *)iter.get();
1593
1594      trivial_assign_reg(header_size, &inst->dst);
1595      trivial_assign_reg(header_size, &inst->src[0]);
1596      trivial_assign_reg(header_size, &inst->src[1]);
1597
1598      last_grf = MAX2(last_grf, inst->dst.hw_reg);
1599      last_grf = MAX2(last_grf, inst->src[0].hw_reg);
1600      last_grf = MAX2(last_grf, inst->src[1].hw_reg);
1601   }
1602
1603   this->grf_used = last_grf + 1;
1604}
1605
1606static struct brw_reg brw_reg_from_fs_reg(fs_reg *reg)
1607{
1608   struct brw_reg brw_reg;
1609
1610   switch (reg->file) {
1611   case GRF:
1612   case ARF:
1613   case MRF:
1614      brw_reg = brw_vec8_reg(reg->file,
1615			    reg->hw_reg, 0);
1616      brw_reg = retype(brw_reg, reg->type);
1617      break;
1618   case IMM:
1619      switch (reg->type) {
1620      case BRW_REGISTER_TYPE_F:
1621	 brw_reg = brw_imm_f(reg->imm.f);
1622	 break;
1623      case BRW_REGISTER_TYPE_D:
1624	 brw_reg = brw_imm_d(reg->imm.i);
1625	 break;
1626      case BRW_REGISTER_TYPE_UD:
1627	 brw_reg = brw_imm_ud(reg->imm.u);
1628	 break;
1629      default:
1630	 assert(!"not reached");
1631	 break;
1632      }
1633      break;
1634   case FIXED_HW_REG:
1635      brw_reg = reg->fixed_hw_reg;
1636      break;
1637   case BAD_FILE:
1638      /* Probably unused. */
1639      brw_reg = brw_null_reg();
1640      break;
1641   case UNIFORM:
1642      assert(!"not reached");
1643      brw_reg = brw_null_reg();
1644      break;
1645   }
1646   if (reg->abs)
1647      brw_reg = brw_abs(brw_reg);
1648   if (reg->negate)
1649      brw_reg = negate(brw_reg);
1650
1651   return brw_reg;
1652}
1653
1654void
1655fs_visitor::generate_code()
1656{
1657   unsigned int annotation_len = 0;
1658   int last_native_inst = 0;
1659   struct brw_instruction *if_stack[16], *loop_stack[16];
1660   int if_stack_depth = 0, loop_stack_depth = 0;
1661   int if_depth_in_loop[16];
1662
1663   if_depth_in_loop[loop_stack_depth] = 0;
1664
1665   memset(&if_stack, 0, sizeof(if_stack));
1666   foreach_iter(exec_list_iterator, iter, this->instructions) {
1667      fs_inst *inst = (fs_inst *)iter.get();
1668      struct brw_reg src[3], dst;
1669
1670      for (unsigned int i = 0; i < 3; i++) {
1671	 src[i] = brw_reg_from_fs_reg(&inst->src[i]);
1672      }
1673      dst = brw_reg_from_fs_reg(&inst->dst);
1674
1675      brw_set_conditionalmod(p, inst->conditional_mod);
1676      brw_set_predicate_control(p, inst->predicated);
1677
1678      switch (inst->opcode) {
1679      case BRW_OPCODE_MOV:
1680	 brw_MOV(p, dst, src[0]);
1681	 break;
1682      case BRW_OPCODE_ADD:
1683	 brw_ADD(p, dst, src[0], src[1]);
1684	 break;
1685      case BRW_OPCODE_MUL:
1686	 brw_MUL(p, dst, src[0], src[1]);
1687	 break;
1688
1689      case BRW_OPCODE_FRC:
1690	 brw_FRC(p, dst, src[0]);
1691	 break;
1692      case BRW_OPCODE_RNDD:
1693	 brw_RNDD(p, dst, src[0]);
1694	 break;
1695      case BRW_OPCODE_RNDZ:
1696	 brw_RNDZ(p, dst, src[0]);
1697	 break;
1698
1699      case BRW_OPCODE_AND:
1700	 brw_AND(p, dst, src[0], src[1]);
1701	 break;
1702      case BRW_OPCODE_OR:
1703	 brw_OR(p, dst, src[0], src[1]);
1704	 break;
1705      case BRW_OPCODE_XOR:
1706	 brw_XOR(p, dst, src[0], src[1]);
1707	 break;
1708
1709      case BRW_OPCODE_CMP:
1710	 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1711	 break;
1712      case BRW_OPCODE_SEL:
1713	 brw_SEL(p, dst, src[0], src[1]);
1714	 break;
1715
1716      case BRW_OPCODE_IF:
1717	 assert(if_stack_depth < 16);
1718	 if_stack[if_stack_depth] = brw_IF(p, BRW_EXECUTE_8);
1719	 if_stack_depth++;
1720	 break;
1721      case BRW_OPCODE_ELSE:
1722	 if_stack[if_stack_depth - 1] =
1723	    brw_ELSE(p, if_stack[if_stack_depth - 1]);
1724	 break;
1725      case BRW_OPCODE_ENDIF:
1726	 if_stack_depth--;
1727	 brw_ENDIF(p , if_stack[if_stack_depth]);
1728	 break;
1729
1730      case BRW_OPCODE_DO:
1731	 loop_stack[loop_stack_depth++] = brw_DO(p, BRW_EXECUTE_8);
1732	 if_depth_in_loop[loop_stack_depth] = 0;
1733	 break;
1734
1735      case BRW_OPCODE_BREAK:
1736	 brw_BREAK(p, if_depth_in_loop[loop_stack_depth]);
1737	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1738	 break;
1739      case BRW_OPCODE_CONTINUE:
1740	 brw_CONT(p, if_depth_in_loop[loop_stack_depth]);
1741	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1742	 break;
1743
1744      case BRW_OPCODE_WHILE: {
1745	 struct brw_instruction *inst0, *inst1;
1746	 GLuint br = 1;
1747
1748	 if (intel->gen == 5)
1749	    br = 2;
1750
1751	 assert(loop_stack_depth > 0);
1752	 loop_stack_depth--;
1753	 inst0 = inst1 = brw_WHILE(p, loop_stack[loop_stack_depth]);
1754	 /* patch all the BREAK/CONT instructions from last BGNLOOP */
1755	 while (inst0 > loop_stack[loop_stack_depth]) {
1756	    inst0--;
1757	    if (inst0->header.opcode == BRW_OPCODE_BREAK &&
1758		inst0->bits3.if_else.jump_count == 0) {
1759	       inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
1760	    }
1761	    else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
1762		     inst0->bits3.if_else.jump_count == 0) {
1763	       inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
1764	    }
1765	 }
1766      }
1767	 break;
1768
1769      case FS_OPCODE_RCP:
1770      case FS_OPCODE_RSQ:
1771      case FS_OPCODE_SQRT:
1772      case FS_OPCODE_EXP2:
1773      case FS_OPCODE_LOG2:
1774      case FS_OPCODE_POW:
1775      case FS_OPCODE_SIN:
1776      case FS_OPCODE_COS:
1777	 generate_math(inst, dst, src);
1778	 break;
1779      case FS_OPCODE_LINTERP:
1780	 generate_linterp(inst, dst, src);
1781	 break;
1782      case FS_OPCODE_TEX:
1783      case FS_OPCODE_TXB:
1784      case FS_OPCODE_TXL:
1785	 generate_tex(inst, dst, src[0]);
1786	 break;
1787      case FS_OPCODE_DISCARD:
1788	 generate_discard(inst);
1789	 break;
1790      case FS_OPCODE_FB_WRITE:
1791	 generate_fb_write(inst);
1792	 break;
1793      default:
1794	 if (inst->opcode < (int)ARRAY_SIZE(brw_opcodes)) {
1795	    _mesa_problem(ctx, "Unsupported opcode `%s' in FS",
1796			  brw_opcodes[inst->opcode].name);
1797	 } else {
1798	    _mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode);
1799	 }
1800	 this->fail = true;
1801      }
1802
1803      if (annotation_len < p->nr_insn) {
1804	 annotation_len *= 2;
1805	 if (annotation_len < 16)
1806	    annotation_len = 16;
1807
1808	 this->annotation_string = talloc_realloc(this->mem_ctx,
1809						  annotation_string,
1810						  const char *,
1811						  annotation_len);
1812	 this->annotation_ir = talloc_realloc(this->mem_ctx,
1813					      annotation_ir,
1814					      ir_instruction *,
1815					      annotation_len);
1816      }
1817
1818      for (unsigned int i = last_native_inst; i < p->nr_insn; i++) {
1819	 this->annotation_string[i] = inst->annotation;
1820	 this->annotation_ir[i] = inst->ir;
1821      }
1822      last_native_inst = p->nr_insn;
1823   }
1824}
1825
1826GLboolean
1827brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c)
1828{
1829   struct brw_compile *p = &c->func;
1830   struct intel_context *intel = &brw->intel;
1831   GLcontext *ctx = &intel->ctx;
1832   struct brw_shader *shader = NULL;
1833   struct gl_shader_program *prog = ctx->Shader.CurrentProgram;
1834
1835   if (!prog)
1836      return GL_FALSE;
1837
1838   if (!using_new_fs)
1839      return GL_FALSE;
1840
1841   for (unsigned int i = 0; i < prog->_NumLinkedShaders; i++) {
1842      if (prog->_LinkedShaders[i]->Type == GL_FRAGMENT_SHADER) {
1843	 shader = (struct brw_shader *)prog->_LinkedShaders[i];
1844	 break;
1845      }
1846   }
1847   if (!shader)
1848      return GL_FALSE;
1849
1850   /* We always use 8-wide mode, at least for now.  For one, flow
1851    * control only works in 8-wide.  Also, when we're fragment shader
1852    * bound, we're almost always under register pressure as well, so
1853    * 8-wide would save us from the performance cliff of spilling
1854    * regs.
1855    */
1856   c->dispatch_width = 8;
1857
1858   if (INTEL_DEBUG & DEBUG_WM) {
1859      printf("GLSL IR for native fragment shader %d:\n", prog->Name);
1860      _mesa_print_ir(shader->ir, NULL);
1861      printf("\n");
1862   }
1863
1864   /* Now the main event: Visit the shader IR and generate our FS IR for it.
1865    */
1866   fs_visitor v(c, shader);
1867
1868   if (0) {
1869      v.emit_dummy_fs();
1870   } else {
1871      v.emit_interpolation();
1872
1873      /* Generate FS IR for main().  (the visitor only descends into
1874       * functions called "main").
1875       */
1876      foreach_iter(exec_list_iterator, iter, *shader->ir) {
1877	 ir_instruction *ir = (ir_instruction *)iter.get();
1878	 v.base_ir = ir;
1879	 ir->accept(&v);
1880      }
1881
1882      v.emit_fb_writes();
1883      v.assign_curb_setup();
1884      v.assign_urb_setup();
1885      v.assign_regs();
1886   }
1887
1888   v.generate_code();
1889
1890   assert(!v.fail); /* FINISHME: Cleanly fail, tested at link time, etc. */
1891
1892   if (v.fail)
1893      return GL_FALSE;
1894
1895   if (INTEL_DEBUG & DEBUG_WM) {
1896      const char *last_annotation_string = NULL;
1897      ir_instruction *last_annotation_ir = NULL;
1898
1899      printf("Native code for fragment shader %d:\n", prog->Name);
1900      for (unsigned int i = 0; i < p->nr_insn; i++) {
1901	 if (last_annotation_ir != v.annotation_ir[i]) {
1902	    last_annotation_ir = v.annotation_ir[i];
1903	    if (last_annotation_ir) {
1904	       printf("   ");
1905	       last_annotation_ir->print();
1906	       printf("\n");
1907	    }
1908	 }
1909	 if (last_annotation_string != v.annotation_string[i]) {
1910	    last_annotation_string = v.annotation_string[i];
1911	    if (last_annotation_string)
1912	       printf("   %s\n", last_annotation_string);
1913	 }
1914	 brw_disasm(stdout, &p->store[i], intel->gen);
1915      }
1916      printf("\n");
1917   }
1918
1919   c->prog_data.total_grf = v.grf_used;
1920   c->prog_data.total_scratch = 0;
1921
1922   return GL_TRUE;
1923}
1924