brw_fs.cpp revision 6ef5f212343c0557c4fca272d8236226c1a7c87a
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28extern "C" {
29
30#include <sys/types.h>
31
32#include "main/macros.h"
33#include "main/shaderobj.h"
34#include "program/prog_parameter.h"
35#include "program/prog_print.h"
36#include "program/prog_optimize.h"
37#include "program/hash_table.h"
38#include "brw_context.h"
39#include "brw_eu.h"
40#include "brw_wm.h"
41#include "talloc.h"
42}
43#include "../glsl/glsl_types.h"
44#include "../glsl/ir_optimization.h"
45#include "../glsl/ir_print_visitor.h"
46
47enum register_file {
48   ARF = BRW_ARCHITECTURE_REGISTER_FILE,
49   GRF = BRW_GENERAL_REGISTER_FILE,
50   MRF = BRW_MESSAGE_REGISTER_FILE,
51   IMM = BRW_IMMEDIATE_VALUE,
52   FIXED_HW_REG, /* a struct brw_reg */
53   UNIFORM, /* prog_data->params[hw_reg] */
54   BAD_FILE
55};
56
57enum fs_opcodes {
58   FS_OPCODE_FB_WRITE = 256,
59   FS_OPCODE_RCP,
60   FS_OPCODE_RSQ,
61   FS_OPCODE_SQRT,
62   FS_OPCODE_EXP2,
63   FS_OPCODE_LOG2,
64   FS_OPCODE_POW,
65   FS_OPCODE_SIN,
66   FS_OPCODE_COS,
67   FS_OPCODE_DDX,
68   FS_OPCODE_DDY,
69   FS_OPCODE_LINTERP,
70   FS_OPCODE_TEX,
71   FS_OPCODE_TXB,
72   FS_OPCODE_TXL,
73   FS_OPCODE_DISCARD,
74};
75
76static int using_new_fs = -1;
77
78struct gl_shader *
79brw_new_shader(GLcontext *ctx, GLuint name, GLuint type)
80{
81   struct brw_shader *shader;
82
83   shader = talloc_zero(NULL, struct brw_shader);
84   if (shader) {
85      shader->base.Type = type;
86      shader->base.Name = name;
87      _mesa_init_shader(ctx, &shader->base);
88   }
89
90   return &shader->base;
91}
92
93struct gl_shader_program *
94brw_new_shader_program(GLcontext *ctx, GLuint name)
95{
96   struct brw_shader_program *prog;
97   prog = talloc_zero(NULL, struct brw_shader_program);
98   if (prog) {
99      prog->base.Name = name;
100      _mesa_init_shader_program(ctx, &prog->base);
101   }
102   return &prog->base;
103}
104
105GLboolean
106brw_compile_shader(GLcontext *ctx, struct gl_shader *shader)
107{
108   if (!_mesa_ir_compile_shader(ctx, shader))
109      return GL_FALSE;
110
111   return GL_TRUE;
112}
113
114GLboolean
115brw_link_shader(GLcontext *ctx, struct gl_shader_program *prog)
116{
117   if (using_new_fs == -1)
118      using_new_fs = getenv("INTEL_NEW_FS") != NULL;
119
120   for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
121      struct brw_shader *shader = (struct brw_shader *)prog->_LinkedShaders[i];
122
123      if (using_new_fs && shader->base.Type == GL_FRAGMENT_SHADER) {
124	 void *mem_ctx = talloc_new(NULL);
125	 bool progress;
126
127	 if (shader->ir)
128	    talloc_free(shader->ir);
129	 shader->ir = new(shader) exec_list;
130	 clone_ir_list(mem_ctx, shader->ir, shader->base.ir);
131
132	 do_mat_op_to_vec(shader->ir);
133	 do_mod_to_fract(shader->ir);
134	 do_div_to_mul_rcp(shader->ir);
135	 do_sub_to_add_neg(shader->ir);
136	 do_explog_to_explog2(shader->ir);
137
138	 brw_do_channel_expressions(shader->ir);
139	 brw_do_vector_splitting(shader->ir);
140
141	 do {
142	    progress = false;
143
144	    progress = do_common_optimization(shader->ir, true, 32) || progress;
145	 } while (progress);
146
147	 validate_ir_tree(shader->ir);
148
149	 reparent_ir(shader->ir, shader->ir);
150	 talloc_free(mem_ctx);
151      }
152   }
153
154   if (!_mesa_ir_link_shader(ctx, prog))
155      return GL_FALSE;
156
157   return GL_TRUE;
158}
159
160static int
161type_size(const struct glsl_type *type)
162{
163   unsigned int size, i;
164
165   switch (type->base_type) {
166   case GLSL_TYPE_UINT:
167   case GLSL_TYPE_INT:
168   case GLSL_TYPE_FLOAT:
169   case GLSL_TYPE_BOOL:
170      return type->components();
171   case GLSL_TYPE_ARRAY:
172      /* FINISHME: uniform/varying arrays. */
173      return type_size(type->fields.array) * type->length;
174   case GLSL_TYPE_STRUCT:
175      size = 0;
176      for (i = 0; i < type->length; i++) {
177	 size += type_size(type->fields.structure[i].type);
178      }
179      return size;
180   case GLSL_TYPE_SAMPLER:
181      /* Samplers take up no register space, since they're baked in at
182       * link time.
183       */
184      return 0;
185   default:
186      assert(!"not reached");
187      return 0;
188   }
189}
190
191class fs_reg {
192public:
193   /* Callers of this talloc-based new need not call delete. It's
194    * easier to just talloc_free 'ctx' (or any of its ancestors). */
195   static void* operator new(size_t size, void *ctx)
196   {
197      void *node;
198
199      node = talloc_size(ctx, size);
200      assert(node != NULL);
201
202      return node;
203   }
204
205   void init()
206   {
207      this->reg = 0;
208      this->reg_offset = 0;
209      this->negate = 0;
210      this->abs = 0;
211      this->hw_reg = -1;
212   }
213
214   /** Generic unset register constructor. */
215   fs_reg()
216   {
217      init();
218      this->file = BAD_FILE;
219   }
220
221   /** Immediate value constructor. */
222   fs_reg(float f)
223   {
224      init();
225      this->file = IMM;
226      this->type = BRW_REGISTER_TYPE_F;
227      this->imm.f = f;
228   }
229
230   /** Immediate value constructor. */
231   fs_reg(int32_t i)
232   {
233      init();
234      this->file = IMM;
235      this->type = BRW_REGISTER_TYPE_D;
236      this->imm.i = i;
237   }
238
239   /** Immediate value constructor. */
240   fs_reg(uint32_t u)
241   {
242      init();
243      this->file = IMM;
244      this->type = BRW_REGISTER_TYPE_UD;
245      this->imm.u = u;
246   }
247
248   /** Fixed brw_reg Immediate value constructor. */
249   fs_reg(struct brw_reg fixed_hw_reg)
250   {
251      init();
252      this->file = FIXED_HW_REG;
253      this->fixed_hw_reg = fixed_hw_reg;
254      this->type = fixed_hw_reg.type;
255   }
256
257   fs_reg(enum register_file file, int hw_reg);
258   fs_reg(class fs_visitor *v, const struct glsl_type *type);
259
260   /** Register file: ARF, GRF, MRF, IMM. */
261   enum register_file file;
262   /** Abstract register number.  0 = fixed hw reg */
263   int reg;
264   /** Offset within the abstract register. */
265   int reg_offset;
266   /** HW register number.  Generally unset until register allocation. */
267   int hw_reg;
268   /** Register type.  BRW_REGISTER_TYPE_* */
269   int type;
270   bool negate;
271   bool abs;
272   struct brw_reg fixed_hw_reg;
273
274   /** Value for file == BRW_IMMMEDIATE_FILE */
275   union {
276      int32_t i;
277      uint32_t u;
278      float f;
279   } imm;
280};
281
282static const fs_reg reg_undef;
283static const fs_reg reg_null(ARF, BRW_ARF_NULL);
284
285class fs_inst : public exec_node {
286public:
287   /* Callers of this talloc-based new need not call delete. It's
288    * easier to just talloc_free 'ctx' (or any of its ancestors). */
289   static void* operator new(size_t size, void *ctx)
290   {
291      void *node;
292
293      node = talloc_zero_size(ctx, size);
294      assert(node != NULL);
295
296      return node;
297   }
298
299   void init()
300   {
301      this->opcode = BRW_OPCODE_NOP;
302      this->saturate = false;
303      this->conditional_mod = BRW_CONDITIONAL_NONE;
304      this->predicated = false;
305      this->sampler = 0;
306      this->shadow_compare = false;
307   }
308
309   fs_inst()
310   {
311      init();
312   }
313
314   fs_inst(int opcode)
315   {
316      init();
317      this->opcode = opcode;
318   }
319
320   fs_inst(int opcode, fs_reg dst, fs_reg src0)
321   {
322      init();
323      this->opcode = opcode;
324      this->dst = dst;
325      this->src[0] = src0;
326   }
327
328   fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1)
329   {
330      init();
331      this->opcode = opcode;
332      this->dst = dst;
333      this->src[0] = src0;
334      this->src[1] = src1;
335   }
336
337   fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1, fs_reg src2)
338   {
339      init();
340      this->opcode = opcode;
341      this->dst = dst;
342      this->src[0] = src0;
343      this->src[1] = src1;
344      this->src[2] = src2;
345   }
346
347   int opcode; /* BRW_OPCODE_* or FS_OPCODE_* */
348   fs_reg dst;
349   fs_reg src[3];
350   bool saturate;
351   bool predicated;
352   int conditional_mod; /**< BRW_CONDITIONAL_* */
353
354   int mlen; /** SEND message length */
355   int sampler;
356   bool shadow_compare;
357
358   /** @{
359    * Annotation for the generated IR.  One of the two can be set.
360    */
361   ir_instruction *ir;
362   const char *annotation;
363   /** @} */
364};
365
366class fs_visitor : public ir_visitor
367{
368public:
369
370   fs_visitor(struct brw_wm_compile *c, struct brw_shader *shader)
371   {
372      this->c = c;
373      this->p = &c->func;
374      this->brw = p->brw;
375      this->intel = &brw->intel;
376      this->ctx = &intel->ctx;
377      this->mem_ctx = talloc_new(NULL);
378      this->shader = shader;
379      this->fail = false;
380      this->next_abstract_grf = 1;
381      this->variable_ht = hash_table_ctor(0,
382					  hash_table_pointer_hash,
383					  hash_table_pointer_compare);
384
385      this->frag_color = NULL;
386      this->frag_data = NULL;
387      this->frag_depth = NULL;
388      this->first_non_payload_grf = 0;
389
390      this->current_annotation = NULL;
391      this->annotation_string = NULL;
392      this->annotation_ir = NULL;
393   }
394   ~fs_visitor()
395   {
396      talloc_free(this->mem_ctx);
397      hash_table_dtor(this->variable_ht);
398   }
399
400   fs_reg *variable_storage(ir_variable *var);
401
402   void visit(ir_variable *ir);
403   void visit(ir_assignment *ir);
404   void visit(ir_dereference_variable *ir);
405   void visit(ir_dereference_record *ir);
406   void visit(ir_dereference_array *ir);
407   void visit(ir_expression *ir);
408   void visit(ir_texture *ir);
409   void visit(ir_if *ir);
410   void visit(ir_constant *ir);
411   void visit(ir_swizzle *ir);
412   void visit(ir_return *ir);
413   void visit(ir_loop *ir);
414   void visit(ir_loop_jump *ir);
415   void visit(ir_discard *ir);
416   void visit(ir_call *ir);
417   void visit(ir_function *ir);
418   void visit(ir_function_signature *ir);
419
420   fs_inst *emit(fs_inst inst);
421   void assign_curb_setup();
422   void assign_urb_setup();
423   void assign_regs();
424   void generate_code();
425   void generate_fb_write(fs_inst *inst);
426   void generate_linterp(fs_inst *inst, struct brw_reg dst,
427			 struct brw_reg *src);
428   void generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
429   void generate_math(fs_inst *inst, struct brw_reg dst, struct brw_reg *src);
430   void generate_discard(fs_inst *inst);
431
432   void emit_dummy_fs();
433   void emit_interpolation();
434   void emit_pinterp(int location);
435   void emit_fb_writes();
436
437   struct brw_reg interp_reg(int location, int channel);
438
439   struct brw_context *brw;
440   struct intel_context *intel;
441   GLcontext *ctx;
442   struct brw_wm_compile *c;
443   struct brw_compile *p;
444   struct brw_shader *shader;
445   void *mem_ctx;
446   exec_list instructions;
447   int next_abstract_grf;
448   struct hash_table *variable_ht;
449   ir_variable *frag_color, *frag_data, *frag_depth;
450   int first_non_payload_grf;
451
452   /** @{ debug annotation info */
453   const char *current_annotation;
454   ir_instruction *base_ir;
455   const char **annotation_string;
456   ir_instruction **annotation_ir;
457   /** @} */
458
459   bool fail;
460
461   /* Result of last visit() method. */
462   fs_reg result;
463
464   fs_reg pixel_x;
465   fs_reg pixel_y;
466   fs_reg pixel_w;
467   fs_reg delta_x;
468   fs_reg delta_y;
469   fs_reg interp_attrs[64];
470
471   int grf_used;
472
473};
474
475/** Fixed HW reg constructor. */
476fs_reg::fs_reg(enum register_file file, int hw_reg)
477{
478   init();
479   this->file = file;
480   this->hw_reg = hw_reg;
481   this->type = BRW_REGISTER_TYPE_F;
482}
483
484/** Automatic reg constructor. */
485fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
486{
487   init();
488
489   this->file = GRF;
490   this->reg = v->next_abstract_grf;
491   this->reg_offset = 0;
492   v->next_abstract_grf += type_size(type);
493
494   switch (type->base_type) {
495   case GLSL_TYPE_FLOAT:
496      this->type = BRW_REGISTER_TYPE_F;
497      break;
498   case GLSL_TYPE_INT:
499   case GLSL_TYPE_BOOL:
500      this->type = BRW_REGISTER_TYPE_D;
501      break;
502   case GLSL_TYPE_UINT:
503      this->type = BRW_REGISTER_TYPE_UD;
504      break;
505   default:
506      assert(!"not reached");
507      this->type =  BRW_REGISTER_TYPE_F;
508      break;
509   }
510}
511
512fs_reg *
513fs_visitor::variable_storage(ir_variable *var)
514{
515   return (fs_reg *)hash_table_find(this->variable_ht, var);
516}
517
518void
519fs_visitor::visit(ir_variable *ir)
520{
521   fs_reg *reg = NULL;
522
523   if (strcmp(ir->name, "gl_FragColor") == 0) {
524      this->frag_color = ir;
525   } else if (strcmp(ir->name, "gl_FragData") == 0) {
526      this->frag_data = ir;
527   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
528      this->frag_depth = ir;
529      assert(!"FINISHME: this hangs currently.");
530   }
531
532   if (ir->mode == ir_var_in) {
533      reg = &this->interp_attrs[ir->location];
534   }
535
536   if (ir->mode == ir_var_uniform) {
537      const float *vec_values;
538      int param_index = c->prog_data.nr_params;
539
540      /* FINISHME: This is wildly incomplete. */
541      assert(ir->type->is_scalar() || ir->type->is_vector() ||
542	     ir->type->is_sampler());
543
544      const struct gl_program *fp = &this->brw->fragment_program->Base;
545      /* Our support for uniforms is piggy-backed on the struct
546       * gl_fragment_program, because that's where the values actually
547       * get stored, rather than in some global gl_shader_program uniform
548       * store.
549       */
550      vec_values = fp->Parameters->ParameterValues[ir->location];
551      for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
552	 c->prog_data.param[c->prog_data.nr_params++] = &vec_values[i];
553      }
554
555      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
556   }
557
558   if (!reg)
559      reg = new(this->mem_ctx) fs_reg(this, ir->type);
560
561   hash_table_insert(this->variable_ht, reg, ir);
562}
563
564void
565fs_visitor::visit(ir_dereference_variable *ir)
566{
567   fs_reg *reg = variable_storage(ir->var);
568   this->result = *reg;
569}
570
571void
572fs_visitor::visit(ir_dereference_record *ir)
573{
574   assert(!"FINISHME");
575}
576
577void
578fs_visitor::visit(ir_dereference_array *ir)
579{
580   ir_constant *index;
581   int element_size;
582
583   ir->array->accept(this);
584   index = ir->array_index->as_constant();
585
586   if (ir->type->is_matrix()) {
587      element_size = ir->type->vector_elements;
588   } else {
589      element_size = type_size(ir->type);
590   }
591
592   if (index) {
593      assert(this->result.file == UNIFORM ||
594	     (this->result.file == GRF &&
595	      this->result.reg != 0));
596      this->result.reg_offset += index->value.i[0] * element_size;
597   } else {
598      assert(!"FINISHME: non-constant matrix column");
599   }
600}
601
602void
603fs_visitor::visit(ir_expression *ir)
604{
605   unsigned int operand;
606   fs_reg op[2], temp;
607   fs_reg result;
608   fs_inst *inst;
609
610   for (operand = 0; operand < ir->get_num_operands(); operand++) {
611      ir->operands[operand]->accept(this);
612      if (this->result.file == BAD_FILE) {
613	 ir_print_visitor v;
614	 printf("Failed to get tree for expression operand:\n");
615	 ir->operands[operand]->accept(&v);
616	 this->fail = true;
617      }
618      op[operand] = this->result;
619
620      /* Matrix expression operands should have been broken down to vector
621       * operations already.
622       */
623      assert(!ir->operands[operand]->type->is_matrix());
624      /* And then those vector operands should have been broken down to scalar.
625       */
626      assert(!ir->operands[operand]->type->is_vector());
627   }
628
629   /* Storage for our result.  If our result goes into an assignment, it will
630    * just get copy-propagated out, so no worries.
631    */
632   this->result = fs_reg(this, ir->type);
633
634   switch (ir->operation) {
635   case ir_unop_logic_not:
636      emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], fs_reg(-1)));
637      break;
638   case ir_unop_neg:
639      op[0].negate = ~op[0].negate;
640      this->result = op[0];
641      break;
642   case ir_unop_abs:
643      op[0].abs = true;
644      this->result = op[0];
645      break;
646   case ir_unop_sign:
647      temp = fs_reg(this, ir->type);
648
649      emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(0.0f)));
650
651      inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
652      inst->conditional_mod = BRW_CONDITIONAL_G;
653      inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(1.0f)));
654      inst->predicated = true;
655
656      inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
657      inst->conditional_mod = BRW_CONDITIONAL_L;
658      inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f)));
659      inst->predicated = true;
660
661      break;
662   case ir_unop_rcp:
663      emit(fs_inst(FS_OPCODE_RCP, this->result, op[0]));
664      break;
665
666   case ir_unop_exp2:
667      emit(fs_inst(FS_OPCODE_EXP2, this->result, op[0]));
668      break;
669   case ir_unop_log2:
670      emit(fs_inst(FS_OPCODE_LOG2, this->result, op[0]));
671      break;
672   case ir_unop_exp:
673   case ir_unop_log:
674      assert(!"not reached: should be handled by ir_explog_to_explog2");
675      break;
676   case ir_unop_sin:
677      emit(fs_inst(FS_OPCODE_SIN, this->result, op[0]));
678      break;
679   case ir_unop_cos:
680      emit(fs_inst(FS_OPCODE_COS, this->result, op[0]));
681      break;
682
683   case ir_unop_dFdx:
684      emit(fs_inst(FS_OPCODE_DDX, this->result, op[0]));
685      break;
686   case ir_unop_dFdy:
687      emit(fs_inst(FS_OPCODE_DDY, this->result, op[0]));
688      break;
689
690   case ir_binop_add:
691      emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], op[1]));
692      break;
693   case ir_binop_sub:
694      assert(!"not reached: should be handled by ir_sub_to_add_neg");
695      break;
696
697   case ir_binop_mul:
698      emit(fs_inst(BRW_OPCODE_MUL, this->result, op[0], op[1]));
699      break;
700   case ir_binop_div:
701      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
702      break;
703   case ir_binop_mod:
704      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
705      break;
706
707   case ir_binop_less:
708      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
709      inst->conditional_mod = BRW_CONDITIONAL_L;
710      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
711      break;
712   case ir_binop_greater:
713      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
714      inst->conditional_mod = BRW_CONDITIONAL_G;
715      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
716      break;
717   case ir_binop_lequal:
718      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
719      inst->conditional_mod = BRW_CONDITIONAL_LE;
720      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
721      break;
722   case ir_binop_gequal:
723      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
724      inst->conditional_mod = BRW_CONDITIONAL_GE;
725      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
726      break;
727   case ir_binop_equal:
728      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
729      inst->conditional_mod = BRW_CONDITIONAL_Z;
730      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
731      break;
732   case ir_binop_nequal:
733      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
734      inst->conditional_mod = BRW_CONDITIONAL_NZ;
735      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
736      break;
737
738   case ir_binop_logic_xor:
739      emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1]));
740      break;
741
742   case ir_binop_logic_or:
743      emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1]));
744      break;
745
746   case ir_binop_logic_and:
747      emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1]));
748      break;
749
750   case ir_binop_dot:
751   case ir_binop_cross:
752   case ir_unop_any:
753      assert(!"not reached: should be handled by brw_channel_expressions");
754      break;
755
756   case ir_unop_noise:
757      assert(!"not reached: should be handled by lower_noise");
758      break;
759
760   case ir_unop_sqrt:
761      emit(fs_inst(FS_OPCODE_SQRT, this->result, op[0]));
762      break;
763
764   case ir_unop_rsq:
765      emit(fs_inst(FS_OPCODE_RSQ, this->result, op[0]));
766      break;
767
768   case ir_unop_i2f:
769   case ir_unop_b2f:
770   case ir_unop_b2i:
771      emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
772      break;
773   case ir_unop_f2i:
774      emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
775      break;
776   case ir_unop_f2b:
777   case ir_unop_i2b:
778      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0.0f)));
779      inst->conditional_mod = BRW_CONDITIONAL_NZ;
780
781   case ir_unop_trunc:
782      emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
783      break;
784   case ir_unop_ceil:
785      op[0].negate = ~op[0].negate;
786      inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
787      this->result.negate = true;
788      break;
789   case ir_unop_floor:
790      inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
791      break;
792   case ir_unop_fract:
793      inst = emit(fs_inst(BRW_OPCODE_FRC, this->result, op[0]));
794      break;
795
796   case ir_binop_min:
797      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
798      inst->conditional_mod = BRW_CONDITIONAL_L;
799
800      inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
801      inst->predicated = true;
802      break;
803   case ir_binop_max:
804      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
805      inst->conditional_mod = BRW_CONDITIONAL_G;
806
807      inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
808      inst->predicated = true;
809      break;
810
811   case ir_binop_pow:
812      inst = emit(fs_inst(FS_OPCODE_POW, this->result, op[0], op[1]));
813      break;
814
815   case ir_unop_bit_not:
816   case ir_unop_u2f:
817   case ir_binop_lshift:
818   case ir_binop_rshift:
819   case ir_binop_bit_and:
820   case ir_binop_bit_xor:
821   case ir_binop_bit_or:
822      assert(!"GLSL 1.30 features unsupported");
823      break;
824   }
825}
826
827void
828fs_visitor::visit(ir_assignment *ir)
829{
830   struct fs_reg l, r;
831   int i;
832   int write_mask;
833   fs_inst *inst;
834
835   /* FINISHME: arrays on the lhs */
836   ir->lhs->accept(this);
837   l = this->result;
838
839   ir->rhs->accept(this);
840   r = this->result;
841
842   /* FINISHME: This should really set to the correct maximal writemask for each
843    * FINISHME: component written (in the loops below).  This case can only
844    * FINISHME: occur for matrices, arrays, and structures.
845    */
846   if (ir->write_mask == 0) {
847      assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
848      write_mask = WRITEMASK_XYZW;
849   } else {
850      assert(ir->lhs->type->is_vector() || ir->lhs->type->is_scalar());
851      write_mask = ir->write_mask;
852   }
853
854   assert(l.file != BAD_FILE);
855   assert(r.file != BAD_FILE);
856
857   if (ir->condition) {
858      /* Get the condition bool into the predicate. */
859      ir->condition->accept(this);
860      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, fs_reg(0)));
861      inst->conditional_mod = BRW_CONDITIONAL_NZ;
862   }
863
864   for (i = 0; i < type_size(ir->lhs->type); i++) {
865      if (i >= 4 || (write_mask & (1 << i))) {
866	 inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
867	 if (ir->condition)
868	    inst->predicated = true;
869      }
870      l.reg_offset++;
871      r.reg_offset++;
872   }
873}
874
875void
876fs_visitor::visit(ir_texture *ir)
877{
878   int base_mrf = 2;
879   fs_inst *inst = NULL;
880   unsigned int mlen = 0;
881
882   ir->coordinate->accept(this);
883   fs_reg coordinate = this->result;
884
885   if (ir->projector) {
886      fs_reg inv_proj = fs_reg(this, glsl_type::float_type);
887
888      ir->projector->accept(this);
889      emit(fs_inst(FS_OPCODE_RCP, inv_proj, this->result));
890
891      fs_reg proj_coordinate = fs_reg(this, ir->coordinate->type);
892      for (unsigned int i = 0; i < ir->coordinate->type->vector_elements; i++) {
893	 emit(fs_inst(BRW_OPCODE_MUL, proj_coordinate, coordinate, inv_proj));
894	 coordinate.reg_offset++;
895	 proj_coordinate.reg_offset++;
896      }
897      proj_coordinate.reg_offset = 0;
898
899      coordinate = proj_coordinate;
900   }
901
902   for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
903      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate));
904      coordinate.reg_offset++;
905   }
906
907   /* Pre-Ironlake, the 8-wide sampler always took u,v,r. */
908   if (intel->gen < 5)
909      mlen = 3;
910
911   if (ir->shadow_comparitor) {
912      /* For shadow comparisons, we have to supply u,v,r. */
913      mlen = 3;
914
915      ir->shadow_comparitor->accept(this);
916      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
917      mlen++;
918   }
919
920   /* Do we ever want to handle writemasking on texture samples?  Is it
921    * performance relevant?
922    */
923   fs_reg dst = fs_reg(this, glsl_type::vec4_type);
924
925   switch (ir->op) {
926   case ir_tex:
927      inst = emit(fs_inst(FS_OPCODE_TEX, dst, fs_reg(MRF, base_mrf)));
928      break;
929   case ir_txb:
930      ir->lod_info.bias->accept(this);
931      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
932      mlen++;
933
934      inst = emit(fs_inst(FS_OPCODE_TXB, dst, fs_reg(MRF, base_mrf)));
935      break;
936   case ir_txl:
937      ir->lod_info.lod->accept(this);
938      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
939      mlen++;
940
941      inst = emit(fs_inst(FS_OPCODE_TXL, dst, fs_reg(MRF, base_mrf)));
942      break;
943   case ir_txd:
944   case ir_txf:
945      assert(!"GLSL 1.30 features unsupported");
946      break;
947   }
948
949   this->result = dst;
950
951   if (ir->shadow_comparitor)
952      inst->shadow_compare = true;
953   inst->mlen = mlen;
954}
955
956void
957fs_visitor::visit(ir_swizzle *ir)
958{
959   ir->val->accept(this);
960   fs_reg val = this->result;
961
962   fs_reg result = fs_reg(this, ir->type);
963   this->result = result;
964
965   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
966      fs_reg channel = val;
967      int swiz = 0;
968
969      switch (i) {
970      case 0:
971	 swiz = ir->mask.x;
972	 break;
973      case 1:
974	 swiz = ir->mask.y;
975	 break;
976      case 2:
977	 swiz = ir->mask.z;
978	 break;
979      case 3:
980	 swiz = ir->mask.w;
981	 break;
982      }
983
984      channel.reg_offset += swiz;
985      emit(fs_inst(BRW_OPCODE_MOV, result, channel));
986      result.reg_offset++;
987   }
988}
989
990void
991fs_visitor::visit(ir_discard *ir)
992{
993   assert(ir->condition == NULL); /* FINISHME */
994
995   emit(fs_inst(FS_OPCODE_DISCARD));
996}
997
998void
999fs_visitor::visit(ir_constant *ir)
1000{
1001   fs_reg reg(this, ir->type);
1002   this->result = reg;
1003
1004   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1005      switch (ir->type->base_type) {
1006      case GLSL_TYPE_FLOAT:
1007	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.f[i])));
1008	 break;
1009      case GLSL_TYPE_UINT:
1010	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.u[i])));
1011	 break;
1012      case GLSL_TYPE_INT:
1013	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.i[i])));
1014	 break;
1015      case GLSL_TYPE_BOOL:
1016	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg((int)ir->value.b[i])));
1017	 break;
1018      default:
1019	 assert(!"Non-float/uint/int/bool constant");
1020      }
1021      reg.reg_offset++;
1022   }
1023}
1024
1025void
1026fs_visitor::visit(ir_if *ir)
1027{
1028   fs_inst *inst;
1029
1030   /* Don't point the annotation at the if statement, because then it plus
1031    * the then and else blocks get printed.
1032    */
1033   this->base_ir = ir->condition;
1034
1035   /* Generate the condition into the condition code. */
1036   ir->condition->accept(this);
1037   inst = emit(fs_inst(BRW_OPCODE_MOV, fs_reg(brw_null_reg()), this->result));
1038   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1039
1040   inst = emit(fs_inst(BRW_OPCODE_IF));
1041   inst->predicated = true;
1042
1043   foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1044      ir_instruction *ir = (ir_instruction *)iter.get();
1045      this->base_ir = ir;
1046
1047      ir->accept(this);
1048   }
1049
1050   if (!ir->else_instructions.is_empty()) {
1051      emit(fs_inst(BRW_OPCODE_ELSE));
1052
1053      foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1054	 ir_instruction *ir = (ir_instruction *)iter.get();
1055	 this->base_ir = ir;
1056
1057	 ir->accept(this);
1058      }
1059   }
1060
1061   emit(fs_inst(BRW_OPCODE_ENDIF));
1062}
1063
1064void
1065fs_visitor::visit(ir_loop *ir)
1066{
1067   assert(!ir->from);
1068   assert(!ir->to);
1069   assert(!ir->increment);
1070   assert(!ir->counter);
1071
1072   emit(fs_inst(BRW_OPCODE_DO));
1073
1074   /* Start a safety counter.  If the user messed up their loop
1075    * counting, we don't want to hang the GPU.
1076    */
1077   fs_reg max_iter = fs_reg(this, glsl_type::int_type);
1078   emit(fs_inst(BRW_OPCODE_MOV, max_iter, fs_reg(10000)));
1079
1080   foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1081      ir_instruction *ir = (ir_instruction *)iter.get();
1082      fs_inst *inst;
1083
1084      this->base_ir = ir;
1085      ir->accept(this);
1086
1087      /* Check the maximum loop iters counter. */
1088      inst = emit(fs_inst(BRW_OPCODE_ADD, max_iter, max_iter, fs_reg(-1)));
1089      inst->conditional_mod = BRW_CONDITIONAL_Z;
1090
1091      inst = emit(fs_inst(BRW_OPCODE_BREAK));
1092      inst->predicated = true;
1093   }
1094
1095   emit(fs_inst(BRW_OPCODE_WHILE));
1096}
1097
1098void
1099fs_visitor::visit(ir_loop_jump *ir)
1100{
1101   switch (ir->mode) {
1102   case ir_loop_jump::jump_break:
1103      emit(fs_inst(BRW_OPCODE_BREAK));
1104      break;
1105   case ir_loop_jump::jump_continue:
1106      emit(fs_inst(BRW_OPCODE_CONTINUE));
1107      break;
1108   }
1109}
1110
1111void
1112fs_visitor::visit(ir_call *ir)
1113{
1114   assert(!"FINISHME");
1115}
1116
1117void
1118fs_visitor::visit(ir_return *ir)
1119{
1120   assert(!"FINISHME");
1121}
1122
1123void
1124fs_visitor::visit(ir_function *ir)
1125{
1126   /* Ignore function bodies other than main() -- we shouldn't see calls to
1127    * them since they should all be inlined before we get to ir_to_mesa.
1128    */
1129   if (strcmp(ir->name, "main") == 0) {
1130      const ir_function_signature *sig;
1131      exec_list empty;
1132
1133      sig = ir->matching_signature(&empty);
1134
1135      assert(sig);
1136
1137      foreach_iter(exec_list_iterator, iter, sig->body) {
1138	 ir_instruction *ir = (ir_instruction *)iter.get();
1139	 this->base_ir = ir;
1140
1141	 ir->accept(this);
1142      }
1143   }
1144}
1145
1146void
1147fs_visitor::visit(ir_function_signature *ir)
1148{
1149   assert(!"not reached");
1150   (void)ir;
1151}
1152
1153fs_inst *
1154fs_visitor::emit(fs_inst inst)
1155{
1156   fs_inst *list_inst = new(mem_ctx) fs_inst;
1157   *list_inst = inst;
1158
1159   list_inst->annotation = this->current_annotation;
1160   list_inst->ir = this->base_ir;
1161
1162   this->instructions.push_tail(list_inst);
1163
1164   return list_inst;
1165}
1166
1167/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1168void
1169fs_visitor::emit_dummy_fs()
1170{
1171   /* Everyone's favorite color. */
1172   emit(fs_inst(BRW_OPCODE_MOV,
1173		fs_reg(MRF, 2),
1174		fs_reg(1.0f)));
1175   emit(fs_inst(BRW_OPCODE_MOV,
1176		fs_reg(MRF, 3),
1177		fs_reg(0.0f)));
1178   emit(fs_inst(BRW_OPCODE_MOV,
1179		fs_reg(MRF, 4),
1180		fs_reg(1.0f)));
1181   emit(fs_inst(BRW_OPCODE_MOV,
1182		fs_reg(MRF, 5),
1183		fs_reg(0.0f)));
1184
1185   fs_inst *write;
1186   write = emit(fs_inst(FS_OPCODE_FB_WRITE,
1187			fs_reg(0),
1188			fs_reg(0)));
1189}
1190
1191/* The register location here is relative to the start of the URB
1192 * data.  It will get adjusted to be a real location before
1193 * generate_code() time.
1194 */
1195struct brw_reg
1196fs_visitor::interp_reg(int location, int channel)
1197{
1198   int regnr = location * 2 + channel / 2;
1199   int stride = (channel & 1) * 4;
1200
1201   return brw_vec1_grf(regnr, stride);
1202}
1203
1204/** Emits the interpolation for the varying inputs. */
1205void
1206fs_visitor::emit_interpolation()
1207{
1208   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1209   /* For now, the source regs for the setup URB data will be unset,
1210    * since we don't know until codegen how many push constants we'll
1211    * use, and therefore what the setup URB offset is.
1212    */
1213   fs_reg src_reg = reg_undef;
1214
1215   this->current_annotation = "compute pixel centers";
1216   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1217   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1218   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1219   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1220   emit(fs_inst(BRW_OPCODE_ADD,
1221		this->pixel_x,
1222		fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1223		fs_reg(brw_imm_v(0x10101010))));
1224   emit(fs_inst(BRW_OPCODE_ADD,
1225		this->pixel_y,
1226		fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1227		fs_reg(brw_imm_v(0x11001100))));
1228
1229   this->current_annotation = "compute pixel deltas from v0";
1230   this->delta_x = fs_reg(this, glsl_type::float_type);
1231   this->delta_y = fs_reg(this, glsl_type::float_type);
1232   emit(fs_inst(BRW_OPCODE_ADD,
1233		this->delta_x,
1234		this->pixel_x,
1235		fs_reg(negate(brw_vec1_grf(1, 0)))));
1236   emit(fs_inst(BRW_OPCODE_ADD,
1237		this->delta_y,
1238		this->pixel_y,
1239		fs_reg(brw_vec1_grf(1, 1))));
1240
1241   this->current_annotation = "compute pos.w and 1/pos.w";
1242   /* Compute wpos.  Unlike many other varying inputs, we usually need it
1243    * to produce 1/w, and the varying variable wouldn't show up.
1244    */
1245   fs_reg wpos = fs_reg(this, glsl_type::vec4_type);
1246   this->interp_attrs[FRAG_ATTRIB_WPOS] = wpos;
1247   emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_x)); /* FINISHME: ARB_fcc */
1248   wpos.reg_offset++;
1249   emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_y)); /* FINISHME: ARB_fcc */
1250   wpos.reg_offset++;
1251   emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
1252		interp_reg(FRAG_ATTRIB_WPOS, 2)));
1253   wpos.reg_offset++;
1254   emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
1255		interp_reg(FRAG_ATTRIB_WPOS, 3)));
1256   /* Compute the pixel W value from wpos.w. */
1257   this->pixel_w = fs_reg(this, glsl_type::float_type);
1258   emit(fs_inst(FS_OPCODE_RCP, this->pixel_w, wpos));
1259
1260   /* FINISHME: gl_FrontFacing */
1261
1262   foreach_iter(exec_list_iterator, iter, *this->shader->ir) {
1263      ir_instruction *ir = (ir_instruction *)iter.get();
1264      ir_variable *var = ir->as_variable();
1265
1266      if (!var)
1267	 continue;
1268
1269      if (var->mode != ir_var_in)
1270	 continue;
1271
1272      /* If it's already set up (WPOS), skip. */
1273      if (var->location == 0)
1274	 continue;
1275
1276      this->current_annotation = talloc_asprintf(this->mem_ctx,
1277						 "interpolate %s "
1278						 "(FRAG_ATTRIB[%d])",
1279						 var->name,
1280						 var->location);
1281      emit_pinterp(var->location);
1282   }
1283   this->current_annotation = NULL;
1284}
1285
1286void
1287fs_visitor::emit_pinterp(int location)
1288{
1289   fs_reg interp_attr = fs_reg(this, glsl_type::vec4_type);
1290   this->interp_attrs[location] = interp_attr;
1291
1292   for (unsigned int i = 0; i < 4; i++) {
1293      struct brw_reg interp = interp_reg(location, i);
1294      emit(fs_inst(FS_OPCODE_LINTERP,
1295		   interp_attr,
1296		   this->delta_x,
1297		   this->delta_y,
1298		   fs_reg(interp)));
1299      interp_attr.reg_offset++;
1300   }
1301   interp_attr.reg_offset -= 4;
1302
1303   for (unsigned int i = 0; i < 4; i++) {
1304      emit(fs_inst(BRW_OPCODE_MUL,
1305		   interp_attr,
1306		   interp_attr,
1307		   this->pixel_w));
1308      interp_attr.reg_offset++;
1309   }
1310}
1311
1312void
1313fs_visitor::emit_fb_writes()
1314{
1315   this->current_annotation = "FB write";
1316
1317   assert(this->frag_color || !"FINISHME: MRT");
1318   fs_reg color = *(variable_storage(this->frag_color));
1319
1320   for (int i = 0; i < 4; i++) {
1321      emit(fs_inst(BRW_OPCODE_MOV,
1322		   fs_reg(MRF, 2 + i),
1323		   color));
1324      color.reg_offset++;
1325   }
1326
1327   emit(fs_inst(FS_OPCODE_FB_WRITE,
1328		fs_reg(0),
1329		fs_reg(0)));
1330
1331   this->current_annotation = NULL;
1332}
1333
1334void
1335fs_visitor::generate_fb_write(fs_inst *inst)
1336{
1337   GLboolean eot = 1; /* FINISHME: MRT */
1338   /* FINISHME: AADS */
1339
1340   /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
1341    * move, here's g1.
1342    */
1343   brw_push_insn_state(p);
1344   brw_set_mask_control(p, BRW_MASK_DISABLE);
1345   brw_set_compression_control(p, BRW_COMPRESSION_NONE);
1346   brw_MOV(p,
1347	   brw_message_reg(1),
1348	   brw_vec8_grf(1, 0));
1349   brw_pop_insn_state(p);
1350
1351   int nr = 2 + 4;
1352
1353   brw_fb_WRITE(p,
1354		8, /* dispatch_width */
1355		retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW),
1356		0, /* base MRF */
1357		retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
1358		0, /* FINISHME: MRT target */
1359		nr,
1360		0,
1361		eot);
1362}
1363
1364void
1365fs_visitor::generate_linterp(fs_inst *inst,
1366			     struct brw_reg dst, struct brw_reg *src)
1367{
1368   struct brw_reg delta_x = src[0];
1369   struct brw_reg delta_y = src[1];
1370   struct brw_reg interp = src[2];
1371
1372   if (brw->has_pln &&
1373       delta_y.nr == delta_x.nr + 1 &&
1374       (intel->gen >= 6 || (delta_x.nr & 1) == 0)) {
1375      brw_PLN(p, dst, interp, delta_x);
1376   } else {
1377      brw_LINE(p, brw_null_reg(), interp, delta_x);
1378      brw_MAC(p, dst, suboffset(interp, 1), delta_y);
1379   }
1380}
1381
1382void
1383fs_visitor::generate_math(fs_inst *inst,
1384			  struct brw_reg dst, struct brw_reg *src)
1385{
1386   int op;
1387
1388   switch (inst->opcode) {
1389   case FS_OPCODE_RCP:
1390      op = BRW_MATH_FUNCTION_INV;
1391      break;
1392   case FS_OPCODE_RSQ:
1393      op = BRW_MATH_FUNCTION_RSQ;
1394      break;
1395   case FS_OPCODE_SQRT:
1396      op = BRW_MATH_FUNCTION_SQRT;
1397      break;
1398   case FS_OPCODE_EXP2:
1399      op = BRW_MATH_FUNCTION_EXP;
1400      break;
1401   case FS_OPCODE_LOG2:
1402      op = BRW_MATH_FUNCTION_LOG;
1403      break;
1404   case FS_OPCODE_POW:
1405      op = BRW_MATH_FUNCTION_POW;
1406      break;
1407   case FS_OPCODE_SIN:
1408      op = BRW_MATH_FUNCTION_SIN;
1409      break;
1410   case FS_OPCODE_COS:
1411      op = BRW_MATH_FUNCTION_COS;
1412      break;
1413   default:
1414      assert(!"not reached: unknown math function");
1415      op = 0;
1416      break;
1417   }
1418
1419   if (inst->opcode == FS_OPCODE_POW) {
1420      brw_MOV(p, brw_message_reg(3), src[1]);
1421   }
1422
1423   brw_math(p, dst,
1424	    op,
1425	    inst->saturate ? BRW_MATH_SATURATE_SATURATE :
1426	    BRW_MATH_SATURATE_NONE,
1427	    2, src[0],
1428	    BRW_MATH_DATA_VECTOR,
1429	    BRW_MATH_PRECISION_FULL);
1430}
1431
1432void
1433fs_visitor::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
1434{
1435   int msg_type = -1;
1436   int rlen = 4;
1437
1438   if (intel->gen == 5) {
1439      switch (inst->opcode) {
1440      case FS_OPCODE_TEX:
1441	 if (inst->shadow_compare) {
1442	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_COMPARE_GEN5;
1443	 } else {
1444	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_GEN5;
1445	 }
1446	 break;
1447      case FS_OPCODE_TXB:
1448	 if (inst->shadow_compare) {
1449	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE_GEN5;
1450	 } else {
1451	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5;
1452	 }
1453	 break;
1454      }
1455   } else {
1456      switch (inst->opcode) {
1457      case FS_OPCODE_TEX:
1458	 /* Note that G45 and older determines shadow compare and dispatch width
1459	  * from message length for most messages.
1460	  */
1461	 if (inst->shadow_compare) {
1462	    msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1463	 } else {
1464	    msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1465	 }
1466      case FS_OPCODE_TXB:
1467	 if (inst->shadow_compare) {
1468	    assert(!"FINISHME: shadow compare with bias.");
1469	    msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1470	 } else {
1471	    msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1472	    rlen = 8;
1473	 }
1474	 break;
1475      }
1476   }
1477   assert(msg_type != -1);
1478
1479   /* g0 header. */
1480   src.nr--;
1481
1482   brw_SAMPLE(p,
1483	      retype(dst, BRW_REGISTER_TYPE_UW),
1484	      src.nr,
1485	      retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
1486              SURF_INDEX_TEXTURE(inst->sampler),
1487	      inst->sampler,
1488	      WRITEMASK_XYZW,
1489	      msg_type,
1490	      rlen,
1491	      inst->mlen + 1,
1492	      0,
1493	      1,
1494	      BRW_SAMPLER_SIMD_MODE_SIMD8);
1495}
1496
1497void
1498fs_visitor::generate_discard(fs_inst *inst)
1499{
1500   struct brw_reg g0 = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
1501   brw_push_insn_state(p);
1502   brw_set_mask_control(p, BRW_MASK_DISABLE);
1503   brw_NOT(p, c->emit_mask_reg, brw_mask_reg(1)); /* IMASK */
1504   brw_AND(p, g0, c->emit_mask_reg, g0);
1505   brw_pop_insn_state(p);
1506}
1507
1508static void
1509trivial_assign_reg(int header_size, fs_reg *reg)
1510{
1511   if (reg->file == GRF && reg->reg != 0) {
1512      reg->hw_reg = header_size + reg->reg - 1 + reg->reg_offset;
1513      reg->reg = 0;
1514   }
1515}
1516
1517void
1518fs_visitor::assign_curb_setup()
1519{
1520   c->prog_data.first_curbe_grf = c->key.nr_payload_regs;
1521   c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
1522
1523   if (intel->gen == 5 && (c->prog_data.first_curbe_grf +
1524			   c->prog_data.curb_read_length) & 1) {
1525      /* Align the start of the interpolation coefficients so that we can use
1526       * the PLN instruction.
1527       */
1528      c->prog_data.first_curbe_grf++;
1529   }
1530
1531   /* Map the offsets in the UNIFORM file to fixed HW regs. */
1532   foreach_iter(exec_list_iterator, iter, this->instructions) {
1533      fs_inst *inst = (fs_inst *)iter.get();
1534
1535      for (unsigned int i = 0; i < 3; i++) {
1536	 if (inst->src[i].file == UNIFORM) {
1537	    int constant_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
1538	    struct brw_reg brw_reg = brw_vec1_grf(c->prog_data.first_curbe_grf +
1539						  constant_nr / 8,
1540						  constant_nr % 8);
1541
1542	    inst->src[i].file = FIXED_HW_REG;
1543	    inst->src[i].fixed_hw_reg = brw_reg;
1544	 }
1545      }
1546   }
1547}
1548
1549void
1550fs_visitor::assign_urb_setup()
1551{
1552   int urb_start = c->prog_data.first_curbe_grf + c->prog_data.curb_read_length;
1553   int interp_reg_nr[FRAG_ATTRIB_MAX];
1554
1555   c->prog_data.urb_read_length = 0;
1556
1557   /* Figure out where each of the incoming setup attributes lands. */
1558   for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
1559      interp_reg_nr[i] = -1;
1560
1561      if (i != FRAG_ATTRIB_WPOS &&
1562	  !(brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(i)))
1563	 continue;
1564
1565      /* Each attribute is 4 setup channels, each of which is half a reg. */
1566      interp_reg_nr[i] = urb_start + c->prog_data.urb_read_length;
1567      c->prog_data.urb_read_length += 2;
1568   }
1569
1570   /* Map the register numbers for FS_OPCODE_LINTERP so that it uses
1571    * the correct setup input.
1572    */
1573   foreach_iter(exec_list_iterator, iter, this->instructions) {
1574      fs_inst *inst = (fs_inst *)iter.get();
1575
1576      if (inst->opcode != FS_OPCODE_LINTERP)
1577	 continue;
1578
1579      assert(inst->src[2].file == FIXED_HW_REG);
1580
1581      int location = inst->src[2].fixed_hw_reg.nr / 2;
1582      assert(interp_reg_nr[location] != -1);
1583      inst->src[2].fixed_hw_reg.nr = (interp_reg_nr[location] +
1584				      (inst->src[2].fixed_hw_reg.nr & 1));
1585   }
1586
1587   this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
1588}
1589
1590void
1591fs_visitor::assign_regs()
1592{
1593   int header_size = this->first_non_payload_grf;
1594   int last_grf = 0;
1595
1596   /* FINISHME: trivial assignment of register numbers */
1597   foreach_iter(exec_list_iterator, iter, this->instructions) {
1598      fs_inst *inst = (fs_inst *)iter.get();
1599
1600      trivial_assign_reg(header_size, &inst->dst);
1601      trivial_assign_reg(header_size, &inst->src[0]);
1602      trivial_assign_reg(header_size, &inst->src[1]);
1603
1604      last_grf = MAX2(last_grf, inst->dst.hw_reg);
1605      last_grf = MAX2(last_grf, inst->src[0].hw_reg);
1606      last_grf = MAX2(last_grf, inst->src[1].hw_reg);
1607   }
1608
1609   this->grf_used = last_grf + 1;
1610}
1611
1612static struct brw_reg brw_reg_from_fs_reg(fs_reg *reg)
1613{
1614   struct brw_reg brw_reg;
1615
1616   switch (reg->file) {
1617   case GRF:
1618   case ARF:
1619   case MRF:
1620      brw_reg = brw_vec8_reg(reg->file,
1621			    reg->hw_reg, 0);
1622      brw_reg = retype(brw_reg, reg->type);
1623      break;
1624   case IMM:
1625      switch (reg->type) {
1626      case BRW_REGISTER_TYPE_F:
1627	 brw_reg = brw_imm_f(reg->imm.f);
1628	 break;
1629      case BRW_REGISTER_TYPE_D:
1630	 brw_reg = brw_imm_d(reg->imm.i);
1631	 break;
1632      case BRW_REGISTER_TYPE_UD:
1633	 brw_reg = brw_imm_ud(reg->imm.u);
1634	 break;
1635      default:
1636	 assert(!"not reached");
1637	 break;
1638      }
1639      break;
1640   case FIXED_HW_REG:
1641      brw_reg = reg->fixed_hw_reg;
1642      break;
1643   case BAD_FILE:
1644      /* Probably unused. */
1645      brw_reg = brw_null_reg();
1646      break;
1647   case UNIFORM:
1648      assert(!"not reached");
1649      brw_reg = brw_null_reg();
1650      break;
1651   }
1652   if (reg->abs)
1653      brw_reg = brw_abs(brw_reg);
1654   if (reg->negate)
1655      brw_reg = negate(brw_reg);
1656
1657   return brw_reg;
1658}
1659
1660void
1661fs_visitor::generate_code()
1662{
1663   unsigned int annotation_len = 0;
1664   int last_native_inst = 0;
1665   struct brw_instruction *if_stack[16], *loop_stack[16];
1666   int if_stack_depth = 0, loop_stack_depth = 0;
1667   int if_depth_in_loop[16];
1668
1669   if_depth_in_loop[loop_stack_depth] = 0;
1670
1671   memset(&if_stack, 0, sizeof(if_stack));
1672   foreach_iter(exec_list_iterator, iter, this->instructions) {
1673      fs_inst *inst = (fs_inst *)iter.get();
1674      struct brw_reg src[3], dst;
1675
1676      for (unsigned int i = 0; i < 3; i++) {
1677	 src[i] = brw_reg_from_fs_reg(&inst->src[i]);
1678      }
1679      dst = brw_reg_from_fs_reg(&inst->dst);
1680
1681      brw_set_conditionalmod(p, inst->conditional_mod);
1682      brw_set_predicate_control(p, inst->predicated);
1683
1684      switch (inst->opcode) {
1685      case BRW_OPCODE_MOV:
1686	 brw_MOV(p, dst, src[0]);
1687	 break;
1688      case BRW_OPCODE_ADD:
1689	 brw_ADD(p, dst, src[0], src[1]);
1690	 break;
1691      case BRW_OPCODE_MUL:
1692	 brw_MUL(p, dst, src[0], src[1]);
1693	 break;
1694
1695      case BRW_OPCODE_FRC:
1696	 brw_FRC(p, dst, src[0]);
1697	 break;
1698      case BRW_OPCODE_RNDD:
1699	 brw_RNDD(p, dst, src[0]);
1700	 break;
1701      case BRW_OPCODE_RNDZ:
1702	 brw_RNDZ(p, dst, src[0]);
1703	 break;
1704
1705      case BRW_OPCODE_AND:
1706	 brw_AND(p, dst, src[0], src[1]);
1707	 break;
1708      case BRW_OPCODE_OR:
1709	 brw_OR(p, dst, src[0], src[1]);
1710	 break;
1711      case BRW_OPCODE_XOR:
1712	 brw_XOR(p, dst, src[0], src[1]);
1713	 break;
1714
1715      case BRW_OPCODE_CMP:
1716	 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1717	 break;
1718      case BRW_OPCODE_SEL:
1719	 brw_SEL(p, dst, src[0], src[1]);
1720	 break;
1721
1722      case BRW_OPCODE_IF:
1723	 assert(if_stack_depth < 16);
1724	 if_stack[if_stack_depth] = brw_IF(p, BRW_EXECUTE_8);
1725	 if_stack_depth++;
1726	 break;
1727      case BRW_OPCODE_ELSE:
1728	 if_stack[if_stack_depth - 1] =
1729	    brw_ELSE(p, if_stack[if_stack_depth - 1]);
1730	 break;
1731      case BRW_OPCODE_ENDIF:
1732	 if_stack_depth--;
1733	 brw_ENDIF(p , if_stack[if_stack_depth]);
1734	 break;
1735
1736      case BRW_OPCODE_DO:
1737	 loop_stack[loop_stack_depth++] = brw_DO(p, BRW_EXECUTE_8);
1738	 if_depth_in_loop[loop_stack_depth] = 0;
1739	 break;
1740
1741      case BRW_OPCODE_BREAK:
1742	 brw_BREAK(p, if_depth_in_loop[loop_stack_depth]);
1743	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1744	 break;
1745      case BRW_OPCODE_CONTINUE:
1746	 brw_CONT(p, if_depth_in_loop[loop_stack_depth]);
1747	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1748	 break;
1749
1750      case BRW_OPCODE_WHILE: {
1751	 struct brw_instruction *inst0, *inst1;
1752	 GLuint br = 1;
1753
1754	 if (intel->gen == 5)
1755	    br = 2;
1756
1757	 assert(loop_stack_depth > 0);
1758	 loop_stack_depth--;
1759	 inst0 = inst1 = brw_WHILE(p, loop_stack[loop_stack_depth]);
1760	 /* patch all the BREAK/CONT instructions from last BGNLOOP */
1761	 while (inst0 > loop_stack[loop_stack_depth]) {
1762	    inst0--;
1763	    if (inst0->header.opcode == BRW_OPCODE_BREAK &&
1764		inst0->bits3.if_else.jump_count == 0) {
1765	       inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
1766	    }
1767	    else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
1768		     inst0->bits3.if_else.jump_count == 0) {
1769	       inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
1770	    }
1771	 }
1772      }
1773	 break;
1774
1775      case FS_OPCODE_RCP:
1776      case FS_OPCODE_RSQ:
1777      case FS_OPCODE_SQRT:
1778      case FS_OPCODE_EXP2:
1779      case FS_OPCODE_LOG2:
1780      case FS_OPCODE_POW:
1781      case FS_OPCODE_SIN:
1782      case FS_OPCODE_COS:
1783	 generate_math(inst, dst, src);
1784	 break;
1785      case FS_OPCODE_LINTERP:
1786	 generate_linterp(inst, dst, src);
1787	 break;
1788      case FS_OPCODE_TEX:
1789      case FS_OPCODE_TXB:
1790      case FS_OPCODE_TXL:
1791	 generate_tex(inst, dst, src[0]);
1792	 break;
1793      case FS_OPCODE_DISCARD:
1794	 generate_discard(inst);
1795	 break;
1796      case FS_OPCODE_FB_WRITE:
1797	 generate_fb_write(inst);
1798	 break;
1799      default:
1800	 if (inst->opcode < (int)ARRAY_SIZE(brw_opcodes)) {
1801	    _mesa_problem(ctx, "Unsupported opcode `%s' in FS",
1802			  brw_opcodes[inst->opcode].name);
1803	 } else {
1804	    _mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode);
1805	 }
1806	 this->fail = true;
1807      }
1808
1809      if (annotation_len < p->nr_insn) {
1810	 annotation_len *= 2;
1811	 if (annotation_len < 16)
1812	    annotation_len = 16;
1813
1814	 this->annotation_string = talloc_realloc(this->mem_ctx,
1815						  annotation_string,
1816						  const char *,
1817						  annotation_len);
1818	 this->annotation_ir = talloc_realloc(this->mem_ctx,
1819					      annotation_ir,
1820					      ir_instruction *,
1821					      annotation_len);
1822      }
1823
1824      for (unsigned int i = last_native_inst; i < p->nr_insn; i++) {
1825	 this->annotation_string[i] = inst->annotation;
1826	 this->annotation_ir[i] = inst->ir;
1827      }
1828      last_native_inst = p->nr_insn;
1829   }
1830}
1831
1832GLboolean
1833brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c)
1834{
1835   struct brw_compile *p = &c->func;
1836   struct intel_context *intel = &brw->intel;
1837   GLcontext *ctx = &intel->ctx;
1838   struct brw_shader *shader = NULL;
1839   struct gl_shader_program *prog = ctx->Shader.CurrentProgram;
1840
1841   if (!prog)
1842      return GL_FALSE;
1843
1844   if (!using_new_fs)
1845      return GL_FALSE;
1846
1847   for (unsigned int i = 0; i < prog->_NumLinkedShaders; i++) {
1848      if (prog->_LinkedShaders[i]->Type == GL_FRAGMENT_SHADER) {
1849	 shader = (struct brw_shader *)prog->_LinkedShaders[i];
1850	 break;
1851      }
1852   }
1853   if (!shader)
1854      return GL_FALSE;
1855
1856   /* We always use 8-wide mode, at least for now.  For one, flow
1857    * control only works in 8-wide.  Also, when we're fragment shader
1858    * bound, we're almost always under register pressure as well, so
1859    * 8-wide would save us from the performance cliff of spilling
1860    * regs.
1861    */
1862   c->dispatch_width = 8;
1863
1864   if (INTEL_DEBUG & DEBUG_WM) {
1865      printf("GLSL IR for native fragment shader %d:\n", prog->Name);
1866      _mesa_print_ir(shader->ir, NULL);
1867      printf("\n");
1868   }
1869
1870   /* Now the main event: Visit the shader IR and generate our FS IR for it.
1871    */
1872   fs_visitor v(c, shader);
1873
1874   if (0) {
1875      v.emit_dummy_fs();
1876   } else {
1877      v.emit_interpolation();
1878
1879      /* Generate FS IR for main().  (the visitor only descends into
1880       * functions called "main").
1881       */
1882      foreach_iter(exec_list_iterator, iter, *shader->ir) {
1883	 ir_instruction *ir = (ir_instruction *)iter.get();
1884	 v.base_ir = ir;
1885	 ir->accept(&v);
1886      }
1887
1888      v.emit_fb_writes();
1889      v.assign_curb_setup();
1890      v.assign_urb_setup();
1891      v.assign_regs();
1892   }
1893
1894   v.generate_code();
1895
1896   assert(!v.fail); /* FINISHME: Cleanly fail, tested at link time, etc. */
1897
1898   if (v.fail)
1899      return GL_FALSE;
1900
1901   if (INTEL_DEBUG & DEBUG_WM) {
1902      const char *last_annotation_string = NULL;
1903      ir_instruction *last_annotation_ir = NULL;
1904
1905      printf("Native code for fragment shader %d:\n", prog->Name);
1906      for (unsigned int i = 0; i < p->nr_insn; i++) {
1907	 if (last_annotation_ir != v.annotation_ir[i]) {
1908	    last_annotation_ir = v.annotation_ir[i];
1909	    if (last_annotation_ir) {
1910	       printf("   ");
1911	       last_annotation_ir->print();
1912	       printf("\n");
1913	    }
1914	 }
1915	 if (last_annotation_string != v.annotation_string[i]) {
1916	    last_annotation_string = v.annotation_string[i];
1917	    if (last_annotation_string)
1918	       printf("   %s\n", last_annotation_string);
1919	 }
1920	 brw_disasm(stdout, &p->store[i], intel->gen);
1921      }
1922      printf("\n");
1923   }
1924
1925   c->prog_data.total_grf = v.grf_used;
1926   c->prog_data.total_scratch = 0;
1927
1928   return GL_TRUE;
1929}
1930