brw_fs.cpp revision cac04a93974e7ae773b84e000a2b26391ee2f4bb
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28extern "C" {
29
30#include <sys/types.h>
31
32#include "main/macros.h"
33#include "main/shaderobj.h"
34#include "main/uniforms.h"
35#include "program/prog_parameter.h"
36#include "program/prog_print.h"
37#include "program/prog_optimize.h"
38#include "program/register_allocate.h"
39#include "program/sampler.h"
40#include "program/hash_table.h"
41#include "brw_context.h"
42#include "brw_eu.h"
43#include "brw_wm.h"
44#include "talloc.h"
45}
46#include "../glsl/glsl_types.h"
47#include "../glsl/ir_optimization.h"
48#include "../glsl/ir_print_visitor.h"
49
50enum register_file {
51   ARF = BRW_ARCHITECTURE_REGISTER_FILE,
52   GRF = BRW_GENERAL_REGISTER_FILE,
53   MRF = BRW_MESSAGE_REGISTER_FILE,
54   IMM = BRW_IMMEDIATE_VALUE,
55   FIXED_HW_REG, /* a struct brw_reg */
56   UNIFORM, /* prog_data->params[hw_reg] */
57   BAD_FILE
58};
59
60enum fs_opcodes {
61   FS_OPCODE_FB_WRITE = 256,
62   FS_OPCODE_RCP,
63   FS_OPCODE_RSQ,
64   FS_OPCODE_SQRT,
65   FS_OPCODE_EXP2,
66   FS_OPCODE_LOG2,
67   FS_OPCODE_POW,
68   FS_OPCODE_SIN,
69   FS_OPCODE_COS,
70   FS_OPCODE_DDX,
71   FS_OPCODE_DDY,
72   FS_OPCODE_LINTERP,
73   FS_OPCODE_TEX,
74   FS_OPCODE_TXB,
75   FS_OPCODE_TXL,
76   FS_OPCODE_DISCARD,
77};
78
79static int using_new_fs = -1;
80static struct brw_reg brw_reg_from_fs_reg(class fs_reg *reg);
81
82struct gl_shader *
83brw_new_shader(GLcontext *ctx, GLuint name, GLuint type)
84{
85   struct brw_shader *shader;
86
87   shader = talloc_zero(NULL, struct brw_shader);
88   if (shader) {
89      shader->base.Type = type;
90      shader->base.Name = name;
91      _mesa_init_shader(ctx, &shader->base);
92   }
93
94   return &shader->base;
95}
96
97struct gl_shader_program *
98brw_new_shader_program(GLcontext *ctx, GLuint name)
99{
100   struct brw_shader_program *prog;
101   prog = talloc_zero(NULL, struct brw_shader_program);
102   if (prog) {
103      prog->base.Name = name;
104      _mesa_init_shader_program(ctx, &prog->base);
105   }
106   return &prog->base;
107}
108
109GLboolean
110brw_compile_shader(GLcontext *ctx, struct gl_shader *shader)
111{
112   if (!_mesa_ir_compile_shader(ctx, shader))
113      return GL_FALSE;
114
115   return GL_TRUE;
116}
117
118GLboolean
119brw_link_shader(GLcontext *ctx, struct gl_shader_program *prog)
120{
121   struct intel_context *intel = intel_context(ctx);
122   if (using_new_fs == -1)
123      using_new_fs = getenv("INTEL_NEW_FS") != NULL;
124
125   for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
126      struct brw_shader *shader = (struct brw_shader *)prog->_LinkedShaders[i];
127
128      if (using_new_fs && shader->base.Type == GL_FRAGMENT_SHADER) {
129	 void *mem_ctx = talloc_new(NULL);
130	 bool progress;
131
132	 if (shader->ir)
133	    talloc_free(shader->ir);
134	 shader->ir = new(shader) exec_list;
135	 clone_ir_list(mem_ctx, shader->ir, shader->base.ir);
136
137	 do_mat_op_to_vec(shader->ir);
138	 do_mod_to_fract(shader->ir);
139	 do_div_to_mul_rcp(shader->ir);
140	 do_sub_to_add_neg(shader->ir);
141	 do_explog_to_explog2(shader->ir);
142	 do_lower_texture_projection(shader->ir);
143	 brw_do_cubemap_normalize(shader->ir);
144
145	 do {
146	    progress = false;
147
148	    brw_do_channel_expressions(shader->ir);
149	    brw_do_vector_splitting(shader->ir);
150
151	    progress = do_lower_jumps(shader->ir, true, true,
152				      true, /* main return */
153				      false, /* continue */
154				      false /* loops */
155				      ) || progress;
156
157	    progress = do_common_optimization(shader->ir, true, 32) || progress;
158
159	    progress = lower_noise(shader->ir) || progress;
160	    progress =
161	       lower_variable_index_to_cond_assign(shader->ir,
162						   GL_TRUE, /* input */
163						   GL_TRUE, /* output */
164						   GL_TRUE, /* temp */
165						   GL_TRUE /* uniform */
166						   ) || progress;
167	    if (intel->gen == 6) {
168	       progress = do_if_to_cond_assign(shader->ir) || progress;
169	    }
170	 } while (progress);
171
172	 validate_ir_tree(shader->ir);
173
174	 reparent_ir(shader->ir, shader->ir);
175	 talloc_free(mem_ctx);
176      }
177   }
178
179   if (!_mesa_ir_link_shader(ctx, prog))
180      return GL_FALSE;
181
182   return GL_TRUE;
183}
184
185static int
186type_size(const struct glsl_type *type)
187{
188   unsigned int size, i;
189
190   switch (type->base_type) {
191   case GLSL_TYPE_UINT:
192   case GLSL_TYPE_INT:
193   case GLSL_TYPE_FLOAT:
194   case GLSL_TYPE_BOOL:
195      return type->components();
196   case GLSL_TYPE_ARRAY:
197      return type_size(type->fields.array) * type->length;
198   case GLSL_TYPE_STRUCT:
199      size = 0;
200      for (i = 0; i < type->length; i++) {
201	 size += type_size(type->fields.structure[i].type);
202      }
203      return size;
204   case GLSL_TYPE_SAMPLER:
205      /* Samplers take up no register space, since they're baked in at
206       * link time.
207       */
208      return 0;
209   default:
210      assert(!"not reached");
211      return 0;
212   }
213}
214
215class fs_reg {
216public:
217   /* Callers of this talloc-based new need not call delete. It's
218    * easier to just talloc_free 'ctx' (or any of its ancestors). */
219   static void* operator new(size_t size, void *ctx)
220   {
221      void *node;
222
223      node = talloc_size(ctx, size);
224      assert(node != NULL);
225
226      return node;
227   }
228
229   void init()
230   {
231      this->reg = 0;
232      this->reg_offset = 0;
233      this->negate = 0;
234      this->abs = 0;
235      this->hw_reg = -1;
236   }
237
238   /** Generic unset register constructor. */
239   fs_reg()
240   {
241      init();
242      this->file = BAD_FILE;
243   }
244
245   /** Immediate value constructor. */
246   fs_reg(float f)
247   {
248      init();
249      this->file = IMM;
250      this->type = BRW_REGISTER_TYPE_F;
251      this->imm.f = f;
252   }
253
254   /** Immediate value constructor. */
255   fs_reg(int32_t i)
256   {
257      init();
258      this->file = IMM;
259      this->type = BRW_REGISTER_TYPE_D;
260      this->imm.i = i;
261   }
262
263   /** Immediate value constructor. */
264   fs_reg(uint32_t u)
265   {
266      init();
267      this->file = IMM;
268      this->type = BRW_REGISTER_TYPE_UD;
269      this->imm.u = u;
270   }
271
272   /** Fixed brw_reg Immediate value constructor. */
273   fs_reg(struct brw_reg fixed_hw_reg)
274   {
275      init();
276      this->file = FIXED_HW_REG;
277      this->fixed_hw_reg = fixed_hw_reg;
278      this->type = fixed_hw_reg.type;
279   }
280
281   fs_reg(enum register_file file, int hw_reg);
282   fs_reg(class fs_visitor *v, const struct glsl_type *type);
283
284   /** Register file: ARF, GRF, MRF, IMM. */
285   enum register_file file;
286   /** virtual register number.  0 = fixed hw reg */
287   int reg;
288   /** Offset within the virtual register. */
289   int reg_offset;
290   /** HW register number.  Generally unset until register allocation. */
291   int hw_reg;
292   /** Register type.  BRW_REGISTER_TYPE_* */
293   int type;
294   bool negate;
295   bool abs;
296   struct brw_reg fixed_hw_reg;
297
298   /** Value for file == BRW_IMMMEDIATE_FILE */
299   union {
300      int32_t i;
301      uint32_t u;
302      float f;
303   } imm;
304};
305
306static const fs_reg reg_undef;
307static const fs_reg reg_null(ARF, BRW_ARF_NULL);
308
309class fs_inst : public exec_node {
310public:
311   /* Callers of this talloc-based new need not call delete. It's
312    * easier to just talloc_free 'ctx' (or any of its ancestors). */
313   static void* operator new(size_t size, void *ctx)
314   {
315      void *node;
316
317      node = talloc_zero_size(ctx, size);
318      assert(node != NULL);
319
320      return node;
321   }
322
323   void init()
324   {
325      this->opcode = BRW_OPCODE_NOP;
326      this->saturate = false;
327      this->conditional_mod = BRW_CONDITIONAL_NONE;
328      this->predicated = false;
329      this->sampler = 0;
330      this->target = 0;
331      this->eot = false;
332      this->header_present = false;
333      this->shadow_compare = false;
334   }
335
336   fs_inst()
337   {
338      init();
339   }
340
341   fs_inst(int opcode)
342   {
343      init();
344      this->opcode = opcode;
345   }
346
347   fs_inst(int opcode, fs_reg dst, fs_reg src0)
348   {
349      init();
350      this->opcode = opcode;
351      this->dst = dst;
352      this->src[0] = src0;
353   }
354
355   fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1)
356   {
357      init();
358      this->opcode = opcode;
359      this->dst = dst;
360      this->src[0] = src0;
361      this->src[1] = src1;
362   }
363
364   fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1, fs_reg src2)
365   {
366      init();
367      this->opcode = opcode;
368      this->dst = dst;
369      this->src[0] = src0;
370      this->src[1] = src1;
371      this->src[2] = src2;
372   }
373
374   int opcode; /* BRW_OPCODE_* or FS_OPCODE_* */
375   fs_reg dst;
376   fs_reg src[3];
377   bool saturate;
378   bool predicated;
379   int conditional_mod; /**< BRW_CONDITIONAL_* */
380
381   int mlen; /**< SEND message length */
382   int sampler;
383   int target; /**< MRT target. */
384   bool eot;
385   bool header_present;
386   bool shadow_compare;
387
388   /** @{
389    * Annotation for the generated IR.  One of the two can be set.
390    */
391   ir_instruction *ir;
392   const char *annotation;
393   /** @} */
394};
395
396class fs_visitor : public ir_visitor
397{
398public:
399
400   fs_visitor(struct brw_wm_compile *c, struct brw_shader *shader)
401   {
402      this->c = c;
403      this->p = &c->func;
404      this->brw = p->brw;
405      this->fp = brw->fragment_program;
406      this->intel = &brw->intel;
407      this->ctx = &intel->ctx;
408      this->mem_ctx = talloc_new(NULL);
409      this->shader = shader;
410      this->fail = false;
411      this->variable_ht = hash_table_ctor(0,
412					  hash_table_pointer_hash,
413					  hash_table_pointer_compare);
414
415      this->frag_color = NULL;
416      this->frag_data = NULL;
417      this->frag_depth = NULL;
418      this->first_non_payload_grf = 0;
419
420      this->current_annotation = NULL;
421      this->annotation_string = NULL;
422      this->annotation_ir = NULL;
423      this->base_ir = NULL;
424
425      this->virtual_grf_sizes = NULL;
426      this->virtual_grf_next = 1;
427      this->virtual_grf_array_size = 0;
428      this->virtual_grf_def = NULL;
429      this->virtual_grf_use = NULL;
430
431      this->kill_emitted = false;
432   }
433
434   ~fs_visitor()
435   {
436      talloc_free(this->mem_ctx);
437      hash_table_dtor(this->variable_ht);
438   }
439
440   fs_reg *variable_storage(ir_variable *var);
441   int virtual_grf_alloc(int size);
442
443   void visit(ir_variable *ir);
444   void visit(ir_assignment *ir);
445   void visit(ir_dereference_variable *ir);
446   void visit(ir_dereference_record *ir);
447   void visit(ir_dereference_array *ir);
448   void visit(ir_expression *ir);
449   void visit(ir_texture *ir);
450   void visit(ir_if *ir);
451   void visit(ir_constant *ir);
452   void visit(ir_swizzle *ir);
453   void visit(ir_return *ir);
454   void visit(ir_loop *ir);
455   void visit(ir_loop_jump *ir);
456   void visit(ir_discard *ir);
457   void visit(ir_call *ir);
458   void visit(ir_function *ir);
459   void visit(ir_function_signature *ir);
460
461   fs_inst *emit(fs_inst inst);
462   void assign_curb_setup();
463   void calculate_urb_setup();
464   void assign_urb_setup();
465   void assign_regs();
466   void assign_regs_trivial();
467   void calculate_live_intervals();
468   bool propagate_constants();
469   bool dead_code_eliminate();
470   bool virtual_grf_interferes(int a, int b);
471   void generate_code();
472   void generate_fb_write(fs_inst *inst);
473   void generate_linterp(fs_inst *inst, struct brw_reg dst,
474			 struct brw_reg *src);
475   void generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
476   void generate_math(fs_inst *inst, struct brw_reg dst, struct brw_reg *src);
477   void generate_discard(fs_inst *inst, struct brw_reg temp);
478   void generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
479   void generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
480
481   void emit_dummy_fs();
482   fs_reg *emit_fragcoord_interpolation(ir_variable *ir);
483   fs_reg *emit_frontfacing_interpolation(ir_variable *ir);
484   fs_reg *emit_general_interpolation(ir_variable *ir);
485   void emit_interpolation_setup_gen4();
486   void emit_interpolation_setup_gen6();
487   fs_inst *emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate);
488   fs_inst *emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate);
489   void emit_fb_writes();
490   void emit_assignment_writes(fs_reg &l, fs_reg &r,
491			       const glsl_type *type, bool predicated);
492
493   struct brw_reg interp_reg(int location, int channel);
494   int setup_uniform_values(int loc, const glsl_type *type);
495   void setup_builtin_uniform_values(ir_variable *ir);
496
497   struct brw_context *brw;
498   const struct gl_fragment_program *fp;
499   struct intel_context *intel;
500   GLcontext *ctx;
501   struct brw_wm_compile *c;
502   struct brw_compile *p;
503   struct brw_shader *shader;
504   void *mem_ctx;
505   exec_list instructions;
506
507   int *virtual_grf_sizes;
508   int virtual_grf_next;
509   int virtual_grf_array_size;
510   int *virtual_grf_def;
511   int *virtual_grf_use;
512
513   struct hash_table *variable_ht;
514   ir_variable *frag_color, *frag_data, *frag_depth;
515   int first_non_payload_grf;
516   int urb_setup[FRAG_ATTRIB_MAX];
517   bool kill_emitted;
518
519   /** @{ debug annotation info */
520   const char *current_annotation;
521   ir_instruction *base_ir;
522   const char **annotation_string;
523   ir_instruction **annotation_ir;
524   /** @} */
525
526   bool fail;
527
528   /* Result of last visit() method. */
529   fs_reg result;
530
531   fs_reg pixel_x;
532   fs_reg pixel_y;
533   fs_reg wpos_w;
534   fs_reg pixel_w;
535   fs_reg delta_x;
536   fs_reg delta_y;
537
538   int grf_used;
539
540};
541
542int
543fs_visitor::virtual_grf_alloc(int size)
544{
545   if (virtual_grf_array_size <= virtual_grf_next) {
546      if (virtual_grf_array_size == 0)
547	 virtual_grf_array_size = 16;
548      else
549	 virtual_grf_array_size *= 2;
550      virtual_grf_sizes = talloc_realloc(mem_ctx, virtual_grf_sizes,
551					 int, virtual_grf_array_size);
552
553      /* This slot is always unused. */
554      virtual_grf_sizes[0] = 0;
555   }
556   virtual_grf_sizes[virtual_grf_next] = size;
557   return virtual_grf_next++;
558}
559
560/** Fixed HW reg constructor. */
561fs_reg::fs_reg(enum register_file file, int hw_reg)
562{
563   init();
564   this->file = file;
565   this->hw_reg = hw_reg;
566   this->type = BRW_REGISTER_TYPE_F;
567}
568
569int
570brw_type_for_base_type(const struct glsl_type *type)
571{
572   switch (type->base_type) {
573   case GLSL_TYPE_FLOAT:
574      return BRW_REGISTER_TYPE_F;
575   case GLSL_TYPE_INT:
576   case GLSL_TYPE_BOOL:
577      return BRW_REGISTER_TYPE_D;
578   case GLSL_TYPE_UINT:
579      return BRW_REGISTER_TYPE_UD;
580   case GLSL_TYPE_ARRAY:
581   case GLSL_TYPE_STRUCT:
582      /* These should be overridden with the type of the member when
583       * dereferenced into.  BRW_REGISTER_TYPE_UD seems like a likely
584       * way to trip up if we don't.
585       */
586      return BRW_REGISTER_TYPE_UD;
587   default:
588      assert(!"not reached");
589      return BRW_REGISTER_TYPE_F;
590   }
591}
592
593/** Automatic reg constructor. */
594fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
595{
596   init();
597
598   this->file = GRF;
599   this->reg = v->virtual_grf_alloc(type_size(type));
600   this->reg_offset = 0;
601   this->type = brw_type_for_base_type(type);
602}
603
604fs_reg *
605fs_visitor::variable_storage(ir_variable *var)
606{
607   return (fs_reg *)hash_table_find(this->variable_ht, var);
608}
609
610/* Our support for uniforms is piggy-backed on the struct
611 * gl_fragment_program, because that's where the values actually
612 * get stored, rather than in some global gl_shader_program uniform
613 * store.
614 */
615int
616fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
617{
618   unsigned int offset = 0;
619   float *vec_values;
620
621   if (type->is_matrix()) {
622      const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
623							type->vector_elements,
624							1);
625
626      for (unsigned int i = 0; i < type->matrix_columns; i++) {
627	 offset += setup_uniform_values(loc + offset, column);
628      }
629
630      return offset;
631   }
632
633   switch (type->base_type) {
634   case GLSL_TYPE_FLOAT:
635   case GLSL_TYPE_UINT:
636   case GLSL_TYPE_INT:
637   case GLSL_TYPE_BOOL:
638      vec_values = fp->Base.Parameters->ParameterValues[loc];
639      for (unsigned int i = 0; i < type->vector_elements; i++) {
640	 c->prog_data.param[c->prog_data.nr_params++] = &vec_values[i];
641      }
642      return 1;
643
644   case GLSL_TYPE_STRUCT:
645      for (unsigned int i = 0; i < type->length; i++) {
646	 offset += setup_uniform_values(loc + offset,
647					type->fields.structure[i].type);
648      }
649      return offset;
650
651   case GLSL_TYPE_ARRAY:
652      for (unsigned int i = 0; i < type->length; i++) {
653	 offset += setup_uniform_values(loc + offset, type->fields.array);
654      }
655      return offset;
656
657   case GLSL_TYPE_SAMPLER:
658      /* The sampler takes up a slot, but we don't use any values from it. */
659      return 1;
660
661   default:
662      assert(!"not reached");
663      return 0;
664   }
665}
666
667
668/* Our support for builtin uniforms is even scarier than non-builtin.
669 * It sits on top of the PROG_STATE_VAR parameters that are
670 * automatically updated from GL context state.
671 */
672void
673fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
674{
675   const struct gl_builtin_uniform_desc *statevar = NULL;
676
677   for (unsigned int i = 0; _mesa_builtin_uniform_desc[i].name; i++) {
678      statevar = &_mesa_builtin_uniform_desc[i];
679      if (strcmp(ir->name, _mesa_builtin_uniform_desc[i].name) == 0)
680	 break;
681   }
682
683   if (!statevar->name) {
684      this->fail = true;
685      printf("Failed to find builtin uniform `%s'\n", ir->name);
686      return;
687   }
688
689   int array_count;
690   if (ir->type->is_array()) {
691      array_count = ir->type->length;
692   } else {
693      array_count = 1;
694   }
695
696   for (int a = 0; a < array_count; a++) {
697      for (unsigned int i = 0; i < statevar->num_elements; i++) {
698	 struct gl_builtin_uniform_element *element = &statevar->elements[i];
699	 int tokens[STATE_LENGTH];
700
701	 memcpy(tokens, element->tokens, sizeof(element->tokens));
702	 if (ir->type->is_array()) {
703	    tokens[1] = a;
704	 }
705
706	 /* This state reference has already been setup by ir_to_mesa,
707	  * but we'll get the same index back here.
708	  */
709	 int index = _mesa_add_state_reference(this->fp->Base.Parameters,
710					       (gl_state_index *)tokens);
711	 float *vec_values = this->fp->Base.Parameters->ParameterValues[index];
712
713	 /* Add each of the unique swizzles of the element as a
714	  * parameter.  This'll end up matching the expected layout of
715	  * the array/matrix/structure we're trying to fill in.
716	  */
717	 int last_swiz = -1;
718	 for (unsigned int i = 0; i < 4; i++) {
719	    int swiz = GET_SWZ(element->swizzle, i);
720	    if (swiz == last_swiz)
721	       break;
722	    last_swiz = swiz;
723
724	    c->prog_data.param[c->prog_data.nr_params++] = &vec_values[swiz];
725	 }
726      }
727   }
728}
729
730fs_reg *
731fs_visitor::emit_fragcoord_interpolation(ir_variable *ir)
732{
733   fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
734   fs_reg wpos = *reg;
735   fs_reg neg_y = this->pixel_y;
736   neg_y.negate = true;
737
738   /* gl_FragCoord.x */
739   if (ir->pixel_center_integer) {
740      emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_x));
741   } else {
742      emit(fs_inst(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f)));
743   }
744   wpos.reg_offset++;
745
746   /* gl_FragCoord.y */
747   if (ir->origin_upper_left && ir->pixel_center_integer) {
748      emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_y));
749   } else {
750      fs_reg pixel_y = this->pixel_y;
751      float offset = (ir->pixel_center_integer ? 0.0 : 0.5);
752
753      if (!ir->origin_upper_left) {
754	 pixel_y.negate = true;
755	 offset += c->key.drawable_height - 1.0;
756      }
757
758      emit(fs_inst(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset)));
759   }
760   wpos.reg_offset++;
761
762   /* gl_FragCoord.z */
763   emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
764		interp_reg(FRAG_ATTRIB_WPOS, 2)));
765   wpos.reg_offset++;
766
767   /* gl_FragCoord.w: Already set up in emit_interpolation */
768   emit(fs_inst(BRW_OPCODE_MOV, wpos, this->wpos_w));
769
770   return reg;
771}
772
773fs_reg *
774fs_visitor::emit_general_interpolation(ir_variable *ir)
775{
776   fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
777   /* Interpolation is always in floating point regs. */
778   reg->type = BRW_REGISTER_TYPE_F;
779   fs_reg attr = *reg;
780
781   unsigned int array_elements;
782   const glsl_type *type;
783
784   if (ir->type->is_array()) {
785      array_elements = ir->type->length;
786      if (array_elements == 0) {
787	 this->fail = true;
788      }
789      type = ir->type->fields.array;
790   } else {
791      array_elements = 1;
792      type = ir->type;
793   }
794
795   int location = ir->location;
796   for (unsigned int i = 0; i < array_elements; i++) {
797      for (unsigned int j = 0; j < type->matrix_columns; j++) {
798	 if (urb_setup[location] == -1) {
799	    /* If there's no incoming setup data for this slot, don't
800	     * emit interpolation for it.
801	     */
802	    attr.reg_offset += type->vector_elements;
803	    location++;
804	    continue;
805	 }
806
807	 for (unsigned int c = 0; c < type->vector_elements; c++) {
808	    struct brw_reg interp = interp_reg(location, c);
809	    emit(fs_inst(FS_OPCODE_LINTERP,
810			 attr,
811			 this->delta_x,
812			 this->delta_y,
813			 fs_reg(interp)));
814	    attr.reg_offset++;
815	 }
816
817	 if (intel->gen < 6) {
818	    attr.reg_offset -= type->vector_elements;
819	    for (unsigned int c = 0; c < type->vector_elements; c++) {
820	       emit(fs_inst(BRW_OPCODE_MUL,
821			    attr,
822			    attr,
823			    this->pixel_w));
824	       attr.reg_offset++;
825	    }
826	 }
827	 location++;
828      }
829   }
830
831   return reg;
832}
833
834fs_reg *
835fs_visitor::emit_frontfacing_interpolation(ir_variable *ir)
836{
837   fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
838
839   /* The frontfacing comes in as a bit in the thread payload. */
840   if (intel->gen >= 6) {
841      emit(fs_inst(BRW_OPCODE_ASR,
842		   *reg,
843		   fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
844		   fs_reg(15)));
845      emit(fs_inst(BRW_OPCODE_NOT,
846		   *reg,
847		   *reg));
848      emit(fs_inst(BRW_OPCODE_AND,
849		   *reg,
850		   *reg,
851		   fs_reg(1)));
852   } else {
853      fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
854      struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
855      /* bit 31 is "primitive is back face", so checking < (1 << 31) gives
856       * us front face
857       */
858      fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP,
859				   *reg,
860				   fs_reg(r1_6ud),
861				   fs_reg(1u << 31)));
862      inst->conditional_mod = BRW_CONDITIONAL_L;
863      emit(fs_inst(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u)));
864   }
865
866   return reg;
867}
868
869void
870fs_visitor::visit(ir_variable *ir)
871{
872   fs_reg *reg = NULL;
873
874   if (variable_storage(ir))
875      return;
876
877   if (strcmp(ir->name, "gl_FragColor") == 0) {
878      this->frag_color = ir;
879   } else if (strcmp(ir->name, "gl_FragData") == 0) {
880      this->frag_data = ir;
881   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
882      this->frag_depth = ir;
883   }
884
885   if (ir->mode == ir_var_in) {
886      if (!strcmp(ir->name, "gl_FragCoord")) {
887	 reg = emit_fragcoord_interpolation(ir);
888      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
889	 reg = emit_frontfacing_interpolation(ir);
890      } else {
891	 reg = emit_general_interpolation(ir);
892      }
893      assert(reg);
894      hash_table_insert(this->variable_ht, reg, ir);
895      return;
896   }
897
898   if (ir->mode == ir_var_uniform) {
899      int param_index = c->prog_data.nr_params;
900
901      if (!strncmp(ir->name, "gl_", 3)) {
902	 setup_builtin_uniform_values(ir);
903      } else {
904	 setup_uniform_values(ir->location, ir->type);
905      }
906
907      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
908   }
909
910   if (!reg)
911      reg = new(this->mem_ctx) fs_reg(this, ir->type);
912
913   hash_table_insert(this->variable_ht, reg, ir);
914}
915
916void
917fs_visitor::visit(ir_dereference_variable *ir)
918{
919   fs_reg *reg = variable_storage(ir->var);
920   this->result = *reg;
921}
922
923void
924fs_visitor::visit(ir_dereference_record *ir)
925{
926   const glsl_type *struct_type = ir->record->type;
927
928   ir->record->accept(this);
929
930   unsigned int offset = 0;
931   for (unsigned int i = 0; i < struct_type->length; i++) {
932      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
933	 break;
934      offset += type_size(struct_type->fields.structure[i].type);
935   }
936   this->result.reg_offset += offset;
937   this->result.type = brw_type_for_base_type(ir->type);
938}
939
940void
941fs_visitor::visit(ir_dereference_array *ir)
942{
943   ir_constant *index;
944   int element_size;
945
946   ir->array->accept(this);
947   index = ir->array_index->as_constant();
948
949   element_size = type_size(ir->type);
950   this->result.type = brw_type_for_base_type(ir->type);
951
952   if (index) {
953      assert(this->result.file == UNIFORM ||
954	     (this->result.file == GRF &&
955	      this->result.reg != 0));
956      this->result.reg_offset += index->value.i[0] * element_size;
957   } else {
958      assert(!"FINISHME: non-constant array element");
959   }
960}
961
962void
963fs_visitor::visit(ir_expression *ir)
964{
965   unsigned int operand;
966   fs_reg op[2], temp;
967   fs_reg result;
968   fs_inst *inst;
969
970   for (operand = 0; operand < ir->get_num_operands(); operand++) {
971      ir->operands[operand]->accept(this);
972      if (this->result.file == BAD_FILE) {
973	 ir_print_visitor v;
974	 printf("Failed to get tree for expression operand:\n");
975	 ir->operands[operand]->accept(&v);
976	 this->fail = true;
977      }
978      op[operand] = this->result;
979
980      /* Matrix expression operands should have been broken down to vector
981       * operations already.
982       */
983      assert(!ir->operands[operand]->type->is_matrix());
984      /* And then those vector operands should have been broken down to scalar.
985       */
986      assert(!ir->operands[operand]->type->is_vector());
987   }
988
989   /* Storage for our result.  If our result goes into an assignment, it will
990    * just get copy-propagated out, so no worries.
991    */
992   this->result = fs_reg(this, ir->type);
993
994   switch (ir->operation) {
995   case ir_unop_logic_not:
996      emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], fs_reg(-1)));
997      break;
998   case ir_unop_neg:
999      op[0].negate = !op[0].negate;
1000      this->result = op[0];
1001      break;
1002   case ir_unop_abs:
1003      op[0].abs = true;
1004      this->result = op[0];
1005      break;
1006   case ir_unop_sign:
1007      temp = fs_reg(this, ir->type);
1008
1009      emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(0.0f)));
1010
1011      inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
1012      inst->conditional_mod = BRW_CONDITIONAL_G;
1013      inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(1.0f)));
1014      inst->predicated = true;
1015
1016      inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
1017      inst->conditional_mod = BRW_CONDITIONAL_L;
1018      inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f)));
1019      inst->predicated = true;
1020
1021      break;
1022   case ir_unop_rcp:
1023      emit(fs_inst(FS_OPCODE_RCP, this->result, op[0]));
1024      break;
1025
1026   case ir_unop_exp2:
1027      emit(fs_inst(FS_OPCODE_EXP2, this->result, op[0]));
1028      break;
1029   case ir_unop_log2:
1030      emit(fs_inst(FS_OPCODE_LOG2, this->result, op[0]));
1031      break;
1032   case ir_unop_exp:
1033   case ir_unop_log:
1034      assert(!"not reached: should be handled by ir_explog_to_explog2");
1035      break;
1036   case ir_unop_sin:
1037      emit(fs_inst(FS_OPCODE_SIN, this->result, op[0]));
1038      break;
1039   case ir_unop_cos:
1040      emit(fs_inst(FS_OPCODE_COS, this->result, op[0]));
1041      break;
1042
1043   case ir_unop_dFdx:
1044      emit(fs_inst(FS_OPCODE_DDX, this->result, op[0]));
1045      break;
1046   case ir_unop_dFdy:
1047      emit(fs_inst(FS_OPCODE_DDY, this->result, op[0]));
1048      break;
1049
1050   case ir_binop_add:
1051      emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], op[1]));
1052      break;
1053   case ir_binop_sub:
1054      assert(!"not reached: should be handled by ir_sub_to_add_neg");
1055      break;
1056
1057   case ir_binop_mul:
1058      emit(fs_inst(BRW_OPCODE_MUL, this->result, op[0], op[1]));
1059      break;
1060   case ir_binop_div:
1061      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1062      break;
1063   case ir_binop_mod:
1064      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1065      break;
1066
1067   case ir_binop_less:
1068      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1069      inst->conditional_mod = BRW_CONDITIONAL_L;
1070      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1071      break;
1072   case ir_binop_greater:
1073      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1074      inst->conditional_mod = BRW_CONDITIONAL_G;
1075      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1076      break;
1077   case ir_binop_lequal:
1078      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1079      inst->conditional_mod = BRW_CONDITIONAL_LE;
1080      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1081      break;
1082   case ir_binop_gequal:
1083      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1084      inst->conditional_mod = BRW_CONDITIONAL_GE;
1085      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1086      break;
1087   case ir_binop_equal:
1088   case ir_binop_all_equal: /* same as nequal for scalars */
1089      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1090      inst->conditional_mod = BRW_CONDITIONAL_Z;
1091      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1092      break;
1093   case ir_binop_nequal:
1094   case ir_binop_any_nequal: /* same as nequal for scalars */
1095      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1096      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1097      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1098      break;
1099
1100   case ir_binop_logic_xor:
1101      emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1]));
1102      break;
1103
1104   case ir_binop_logic_or:
1105      emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1]));
1106      break;
1107
1108   case ir_binop_logic_and:
1109      emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1]));
1110      break;
1111
1112   case ir_binop_dot:
1113   case ir_binop_cross:
1114   case ir_unop_any:
1115      assert(!"not reached: should be handled by brw_fs_channel_expressions");
1116      break;
1117
1118   case ir_unop_noise:
1119      assert(!"not reached: should be handled by lower_noise");
1120      break;
1121
1122   case ir_unop_sqrt:
1123      emit(fs_inst(FS_OPCODE_SQRT, this->result, op[0]));
1124      break;
1125
1126   case ir_unop_rsq:
1127      emit(fs_inst(FS_OPCODE_RSQ, this->result, op[0]));
1128      break;
1129
1130   case ir_unop_i2f:
1131   case ir_unop_b2f:
1132   case ir_unop_b2i:
1133      emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
1134      break;
1135   case ir_unop_f2i:
1136      emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
1137      break;
1138   case ir_unop_f2b:
1139   case ir_unop_i2b:
1140      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0.0f)));
1141      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1142
1143   case ir_unop_trunc:
1144      emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1145      break;
1146   case ir_unop_ceil:
1147      op[0].negate = ~op[0].negate;
1148      inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1149      this->result.negate = true;
1150      break;
1151   case ir_unop_floor:
1152      inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1153      break;
1154   case ir_unop_fract:
1155      inst = emit(fs_inst(BRW_OPCODE_FRC, this->result, op[0]));
1156      break;
1157
1158   case ir_binop_min:
1159      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1160      inst->conditional_mod = BRW_CONDITIONAL_L;
1161
1162      inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
1163      inst->predicated = true;
1164      break;
1165   case ir_binop_max:
1166      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1167      inst->conditional_mod = BRW_CONDITIONAL_G;
1168
1169      inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
1170      inst->predicated = true;
1171      break;
1172
1173   case ir_binop_pow:
1174      inst = emit(fs_inst(FS_OPCODE_POW, this->result, op[0], op[1]));
1175      break;
1176
1177   case ir_unop_bit_not:
1178   case ir_unop_u2f:
1179   case ir_binop_lshift:
1180   case ir_binop_rshift:
1181   case ir_binop_bit_and:
1182   case ir_binop_bit_xor:
1183   case ir_binop_bit_or:
1184      assert(!"GLSL 1.30 features unsupported");
1185      break;
1186   }
1187}
1188
1189void
1190fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
1191				   const glsl_type *type, bool predicated)
1192{
1193   switch (type->base_type) {
1194   case GLSL_TYPE_FLOAT:
1195   case GLSL_TYPE_UINT:
1196   case GLSL_TYPE_INT:
1197   case GLSL_TYPE_BOOL:
1198      for (unsigned int i = 0; i < type->components(); i++) {
1199	 l.type = brw_type_for_base_type(type);
1200	 r.type = brw_type_for_base_type(type);
1201
1202	 fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
1203	 inst->predicated = predicated;
1204
1205	 l.reg_offset++;
1206	 r.reg_offset++;
1207      }
1208      break;
1209   case GLSL_TYPE_ARRAY:
1210      for (unsigned int i = 0; i < type->length; i++) {
1211	 emit_assignment_writes(l, r, type->fields.array, predicated);
1212      }
1213
1214   case GLSL_TYPE_STRUCT:
1215      for (unsigned int i = 0; i < type->length; i++) {
1216	 emit_assignment_writes(l, r, type->fields.structure[i].type,
1217				predicated);
1218      }
1219      break;
1220
1221   case GLSL_TYPE_SAMPLER:
1222      break;
1223
1224   default:
1225      assert(!"not reached");
1226      break;
1227   }
1228}
1229
1230void
1231fs_visitor::visit(ir_assignment *ir)
1232{
1233   struct fs_reg l, r;
1234   fs_inst *inst;
1235
1236   /* FINISHME: arrays on the lhs */
1237   ir->lhs->accept(this);
1238   l = this->result;
1239
1240   ir->rhs->accept(this);
1241   r = this->result;
1242
1243   assert(l.file != BAD_FILE);
1244   assert(r.file != BAD_FILE);
1245
1246   if (ir->condition) {
1247      /* Get the condition bool into the predicate. */
1248      ir->condition->accept(this);
1249      inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, this->result, fs_reg(0)));
1250      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1251   }
1252
1253   if (ir->lhs->type->is_scalar() ||
1254       ir->lhs->type->is_vector()) {
1255      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
1256	 if (ir->write_mask & (1 << i)) {
1257	    inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
1258	    if (ir->condition)
1259	       inst->predicated = true;
1260	    r.reg_offset++;
1261	 }
1262	 l.reg_offset++;
1263      }
1264   } else {
1265      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
1266   }
1267}
1268
1269fs_inst *
1270fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate)
1271{
1272   int mlen;
1273   int base_mrf = 2;
1274   bool simd16 = false;
1275   fs_reg orig_dst;
1276
1277   if (ir->shadow_comparitor) {
1278      for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
1279	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1280		      coordinate));
1281	 coordinate.reg_offset++;
1282      }
1283      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1284      mlen = 3;
1285
1286      if (ir->op == ir_tex) {
1287	 /* There's no plain shadow compare message, so we use shadow
1288	  * compare with a bias of 0.0.
1289	  */
1290	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1291		      fs_reg(0.0f)));
1292	 mlen++;
1293      } else if (ir->op == ir_txb) {
1294	 ir->lod_info.bias->accept(this);
1295	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1296		      this->result));
1297	 mlen++;
1298      } else {
1299	 assert(ir->op == ir_txl);
1300	 ir->lod_info.lod->accept(this);
1301	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1302		      this->result));
1303	 mlen++;
1304      }
1305
1306      ir->shadow_comparitor->accept(this);
1307      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1308      mlen++;
1309   } else if (ir->op == ir_tex) {
1310      for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
1311	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1312		      coordinate));
1313	 coordinate.reg_offset++;
1314      }
1315      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1316      mlen = 3;
1317   } else {
1318      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1319       * instructions.  We'll need to do SIMD16 here.
1320       */
1321      assert(ir->op == ir_txb || ir->op == ir_txl);
1322
1323      for (mlen = 0; mlen < ir->coordinate->type->vector_elements * 2;) {
1324	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1325		      coordinate));
1326	 coordinate.reg_offset++;
1327	 mlen++;
1328
1329	 /* The unused upper half. */
1330	 mlen++;
1331      }
1332
1333      /* lod/bias appears after u/v/r. */
1334      mlen = 6;
1335
1336      if (ir->op == ir_txb) {
1337	 ir->lod_info.bias->accept(this);
1338	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1339		      this->result));
1340	 mlen++;
1341      } else {
1342	 ir->lod_info.lod->accept(this);
1343	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1344		      this->result));
1345	 mlen++;
1346      }
1347
1348      /* The unused upper half. */
1349      mlen++;
1350
1351      /* Now, since we're doing simd16, the return is 2 interleaved
1352       * vec4s where the odd-indexed ones are junk. We'll need to move
1353       * this weirdness around to the expected layout.
1354       */
1355      simd16 = true;
1356      orig_dst = dst;
1357      dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
1358						       2));
1359      dst.type = BRW_REGISTER_TYPE_F;
1360   }
1361
1362   fs_inst *inst = NULL;
1363   switch (ir->op) {
1364   case ir_tex:
1365      inst = emit(fs_inst(FS_OPCODE_TEX, dst, fs_reg(MRF, base_mrf)));
1366      break;
1367   case ir_txb:
1368      inst = emit(fs_inst(FS_OPCODE_TXB, dst, fs_reg(MRF, base_mrf)));
1369      break;
1370   case ir_txl:
1371      inst = emit(fs_inst(FS_OPCODE_TXL, dst, fs_reg(MRF, base_mrf)));
1372      break;
1373   case ir_txd:
1374   case ir_txf:
1375      assert(!"GLSL 1.30 features unsupported");
1376      break;
1377   }
1378   inst->mlen = mlen;
1379
1380   if (simd16) {
1381      for (int i = 0; i < 4; i++) {
1382	 emit(fs_inst(BRW_OPCODE_MOV, orig_dst, dst));
1383	 orig_dst.reg_offset++;
1384	 dst.reg_offset += 2;
1385      }
1386   }
1387
1388   return inst;
1389}
1390
1391fs_inst *
1392fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate)
1393{
1394   /* gen5's SIMD8 sampler has slots for u, v, r, array index, then
1395    * optional parameters like shadow comparitor or LOD bias.  If
1396    * optional parameters aren't present, those base slots are
1397    * optional and don't need to be included in the message.
1398    *
1399    * We don't fill in the unnecessary slots regardless, which may
1400    * look surprising in the disassembly.
1401    */
1402   int mlen;
1403   int base_mrf = 2;
1404
1405   for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
1406      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate));
1407      coordinate.reg_offset++;
1408   }
1409
1410   if (ir->shadow_comparitor) {
1411      mlen = MAX2(mlen, 4);
1412
1413      ir->shadow_comparitor->accept(this);
1414      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1415      mlen++;
1416   }
1417
1418   fs_inst *inst = NULL;
1419   switch (ir->op) {
1420   case ir_tex:
1421      inst = emit(fs_inst(FS_OPCODE_TEX, dst, fs_reg(MRF, base_mrf)));
1422      break;
1423   case ir_txb:
1424      ir->lod_info.bias->accept(this);
1425      mlen = MAX2(mlen, 4);
1426      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1427      mlen++;
1428
1429      inst = emit(fs_inst(FS_OPCODE_TXB, dst, fs_reg(MRF, base_mrf)));
1430      break;
1431   case ir_txl:
1432      ir->lod_info.lod->accept(this);
1433      mlen = MAX2(mlen, 4);
1434      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1435      mlen++;
1436
1437      inst = emit(fs_inst(FS_OPCODE_TXL, dst, fs_reg(MRF, base_mrf)));
1438      break;
1439   case ir_txd:
1440   case ir_txf:
1441      assert(!"GLSL 1.30 features unsupported");
1442      break;
1443   }
1444   inst->mlen = mlen;
1445
1446   return inst;
1447}
1448
1449void
1450fs_visitor::visit(ir_texture *ir)
1451{
1452   fs_inst *inst = NULL;
1453
1454   ir->coordinate->accept(this);
1455   fs_reg coordinate = this->result;
1456
1457   /* Should be lowered by do_lower_texture_projection */
1458   assert(!ir->projector);
1459
1460   /* Writemasking doesn't eliminate channels on SIMD8 texture
1461    * samples, so don't worry about them.
1462    */
1463   fs_reg dst = fs_reg(this, glsl_type::vec4_type);
1464
1465   if (intel->gen < 5) {
1466      inst = emit_texture_gen4(ir, dst, coordinate);
1467   } else {
1468      inst = emit_texture_gen5(ir, dst, coordinate);
1469   }
1470
1471   inst->sampler =
1472      _mesa_get_sampler_uniform_value(ir->sampler,
1473				      ctx->Shader.CurrentProgram,
1474				      &brw->fragment_program->Base);
1475   inst->sampler = c->fp->program.Base.SamplerUnits[inst->sampler];
1476
1477   this->result = dst;
1478
1479   if (ir->shadow_comparitor)
1480      inst->shadow_compare = true;
1481
1482   if (c->key.tex_swizzles[inst->sampler] != SWIZZLE_NOOP) {
1483      fs_reg swizzle_dst = fs_reg(this, glsl_type::vec4_type);
1484
1485      for (int i = 0; i < 4; i++) {
1486	 int swiz = GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1487	 fs_reg l = swizzle_dst;
1488	 l.reg_offset += i;
1489
1490	 if (swiz == SWIZZLE_ZERO) {
1491	    emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(0.0f)));
1492	 } else if (swiz == SWIZZLE_ONE) {
1493	    emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(1.0f)));
1494	 } else {
1495	    fs_reg r = dst;
1496	    r.reg_offset += GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1497	    emit(fs_inst(BRW_OPCODE_MOV, l, r));
1498	 }
1499      }
1500      this->result = swizzle_dst;
1501   }
1502}
1503
1504void
1505fs_visitor::visit(ir_swizzle *ir)
1506{
1507   ir->val->accept(this);
1508   fs_reg val = this->result;
1509
1510   if (ir->type->vector_elements == 1) {
1511      this->result.reg_offset += ir->mask.x;
1512      return;
1513   }
1514
1515   fs_reg result = fs_reg(this, ir->type);
1516   this->result = result;
1517
1518   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1519      fs_reg channel = val;
1520      int swiz = 0;
1521
1522      switch (i) {
1523      case 0:
1524	 swiz = ir->mask.x;
1525	 break;
1526      case 1:
1527	 swiz = ir->mask.y;
1528	 break;
1529      case 2:
1530	 swiz = ir->mask.z;
1531	 break;
1532      case 3:
1533	 swiz = ir->mask.w;
1534	 break;
1535      }
1536
1537      channel.reg_offset += swiz;
1538      emit(fs_inst(BRW_OPCODE_MOV, result, channel));
1539      result.reg_offset++;
1540   }
1541}
1542
1543void
1544fs_visitor::visit(ir_discard *ir)
1545{
1546   fs_reg temp = fs_reg(this, glsl_type::uint_type);
1547
1548   assert(ir->condition == NULL); /* FINISHME */
1549
1550   emit(fs_inst(FS_OPCODE_DISCARD, temp, temp));
1551   kill_emitted = true;
1552}
1553
1554void
1555fs_visitor::visit(ir_constant *ir)
1556{
1557   fs_reg reg(this, ir->type);
1558   this->result = reg;
1559
1560   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1561      switch (ir->type->base_type) {
1562      case GLSL_TYPE_FLOAT:
1563	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.f[i])));
1564	 break;
1565      case GLSL_TYPE_UINT:
1566	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.u[i])));
1567	 break;
1568      case GLSL_TYPE_INT:
1569	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.i[i])));
1570	 break;
1571      case GLSL_TYPE_BOOL:
1572	 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg((int)ir->value.b[i])));
1573	 break;
1574      default:
1575	 assert(!"Non-float/uint/int/bool constant");
1576      }
1577      reg.reg_offset++;
1578   }
1579}
1580
1581void
1582fs_visitor::visit(ir_if *ir)
1583{
1584   fs_inst *inst;
1585
1586   /* Don't point the annotation at the if statement, because then it plus
1587    * the then and else blocks get printed.
1588    */
1589   this->base_ir = ir->condition;
1590
1591   /* Generate the condition into the condition code. */
1592   ir->condition->accept(this);
1593   inst = emit(fs_inst(BRW_OPCODE_MOV, fs_reg(brw_null_reg()), this->result));
1594   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1595
1596   inst = emit(fs_inst(BRW_OPCODE_IF));
1597   inst->predicated = true;
1598
1599   foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1600      ir_instruction *ir = (ir_instruction *)iter.get();
1601      this->base_ir = ir;
1602
1603      ir->accept(this);
1604   }
1605
1606   if (!ir->else_instructions.is_empty()) {
1607      emit(fs_inst(BRW_OPCODE_ELSE));
1608
1609      foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1610	 ir_instruction *ir = (ir_instruction *)iter.get();
1611	 this->base_ir = ir;
1612
1613	 ir->accept(this);
1614      }
1615   }
1616
1617   emit(fs_inst(BRW_OPCODE_ENDIF));
1618}
1619
1620void
1621fs_visitor::visit(ir_loop *ir)
1622{
1623   fs_reg counter = reg_undef;
1624
1625   if (ir->counter) {
1626      this->base_ir = ir->counter;
1627      ir->counter->accept(this);
1628      counter = *(variable_storage(ir->counter));
1629
1630      if (ir->from) {
1631	 this->base_ir = ir->from;
1632	 ir->from->accept(this);
1633
1634	 emit(fs_inst(BRW_OPCODE_MOV, counter, this->result));
1635      }
1636   }
1637
1638   emit(fs_inst(BRW_OPCODE_DO));
1639
1640   if (ir->to) {
1641      this->base_ir = ir->to;
1642      ir->to->accept(this);
1643
1644      fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null,
1645				   counter, this->result));
1646      switch (ir->cmp) {
1647      case ir_binop_equal:
1648	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1649	 break;
1650      case ir_binop_nequal:
1651	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1652	 break;
1653      case ir_binop_gequal:
1654	 inst->conditional_mod = BRW_CONDITIONAL_GE;
1655	 break;
1656      case ir_binop_lequal:
1657	 inst->conditional_mod = BRW_CONDITIONAL_LE;
1658	 break;
1659      case ir_binop_greater:
1660	 inst->conditional_mod = BRW_CONDITIONAL_G;
1661	 break;
1662      case ir_binop_less:
1663	 inst->conditional_mod = BRW_CONDITIONAL_L;
1664	 break;
1665      default:
1666	 assert(!"not reached: unknown loop condition");
1667	 this->fail = true;
1668	 break;
1669      }
1670
1671      inst = emit(fs_inst(BRW_OPCODE_BREAK));
1672      inst->predicated = true;
1673   }
1674
1675   foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1676      ir_instruction *ir = (ir_instruction *)iter.get();
1677
1678      this->base_ir = ir;
1679      ir->accept(this);
1680   }
1681
1682   if (ir->increment) {
1683      this->base_ir = ir->increment;
1684      ir->increment->accept(this);
1685      emit(fs_inst(BRW_OPCODE_ADD, counter, counter, this->result));
1686   }
1687
1688   emit(fs_inst(BRW_OPCODE_WHILE));
1689}
1690
1691void
1692fs_visitor::visit(ir_loop_jump *ir)
1693{
1694   switch (ir->mode) {
1695   case ir_loop_jump::jump_break:
1696      emit(fs_inst(BRW_OPCODE_BREAK));
1697      break;
1698   case ir_loop_jump::jump_continue:
1699      emit(fs_inst(BRW_OPCODE_CONTINUE));
1700      break;
1701   }
1702}
1703
1704void
1705fs_visitor::visit(ir_call *ir)
1706{
1707   assert(!"FINISHME");
1708}
1709
1710void
1711fs_visitor::visit(ir_return *ir)
1712{
1713   assert(!"FINISHME");
1714}
1715
1716void
1717fs_visitor::visit(ir_function *ir)
1718{
1719   /* Ignore function bodies other than main() -- we shouldn't see calls to
1720    * them since they should all be inlined before we get to ir_to_mesa.
1721    */
1722   if (strcmp(ir->name, "main") == 0) {
1723      const ir_function_signature *sig;
1724      exec_list empty;
1725
1726      sig = ir->matching_signature(&empty);
1727
1728      assert(sig);
1729
1730      foreach_iter(exec_list_iterator, iter, sig->body) {
1731	 ir_instruction *ir = (ir_instruction *)iter.get();
1732	 this->base_ir = ir;
1733
1734	 ir->accept(this);
1735      }
1736   }
1737}
1738
1739void
1740fs_visitor::visit(ir_function_signature *ir)
1741{
1742   assert(!"not reached");
1743   (void)ir;
1744}
1745
1746fs_inst *
1747fs_visitor::emit(fs_inst inst)
1748{
1749   fs_inst *list_inst = new(mem_ctx) fs_inst;
1750   *list_inst = inst;
1751
1752   list_inst->annotation = this->current_annotation;
1753   list_inst->ir = this->base_ir;
1754
1755   this->instructions.push_tail(list_inst);
1756
1757   return list_inst;
1758}
1759
1760/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1761void
1762fs_visitor::emit_dummy_fs()
1763{
1764   /* Everyone's favorite color. */
1765   emit(fs_inst(BRW_OPCODE_MOV,
1766		fs_reg(MRF, 2),
1767		fs_reg(1.0f)));
1768   emit(fs_inst(BRW_OPCODE_MOV,
1769		fs_reg(MRF, 3),
1770		fs_reg(0.0f)));
1771   emit(fs_inst(BRW_OPCODE_MOV,
1772		fs_reg(MRF, 4),
1773		fs_reg(1.0f)));
1774   emit(fs_inst(BRW_OPCODE_MOV,
1775		fs_reg(MRF, 5),
1776		fs_reg(0.0f)));
1777
1778   fs_inst *write;
1779   write = emit(fs_inst(FS_OPCODE_FB_WRITE,
1780			fs_reg(0),
1781			fs_reg(0)));
1782}
1783
1784/* The register location here is relative to the start of the URB
1785 * data.  It will get adjusted to be a real location before
1786 * generate_code() time.
1787 */
1788struct brw_reg
1789fs_visitor::interp_reg(int location, int channel)
1790{
1791   int regnr = urb_setup[location] * 2 + channel / 2;
1792   int stride = (channel & 1) * 4;
1793
1794   assert(urb_setup[location] != -1);
1795
1796   return brw_vec1_grf(regnr, stride);
1797}
1798
1799/** Emits the interpolation for the varying inputs. */
1800void
1801fs_visitor::emit_interpolation_setup_gen4()
1802{
1803   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1804
1805   this->current_annotation = "compute pixel centers";
1806   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1807   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1808   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1809   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1810   emit(fs_inst(BRW_OPCODE_ADD,
1811		this->pixel_x,
1812		fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1813		fs_reg(brw_imm_v(0x10101010))));
1814   emit(fs_inst(BRW_OPCODE_ADD,
1815		this->pixel_y,
1816		fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1817		fs_reg(brw_imm_v(0x11001100))));
1818
1819   this->current_annotation = "compute pixel deltas from v0";
1820   if (brw->has_pln) {
1821      this->delta_x = fs_reg(this, glsl_type::vec2_type);
1822      this->delta_y = this->delta_x;
1823      this->delta_y.reg_offset++;
1824   } else {
1825      this->delta_x = fs_reg(this, glsl_type::float_type);
1826      this->delta_y = fs_reg(this, glsl_type::float_type);
1827   }
1828   emit(fs_inst(BRW_OPCODE_ADD,
1829		this->delta_x,
1830		this->pixel_x,
1831		fs_reg(negate(brw_vec1_grf(1, 0)))));
1832   emit(fs_inst(BRW_OPCODE_ADD,
1833		this->delta_y,
1834		this->pixel_y,
1835		fs_reg(negate(brw_vec1_grf(1, 1)))));
1836
1837   this->current_annotation = "compute pos.w and 1/pos.w";
1838   /* Compute wpos.w.  It's always in our setup, since it's needed to
1839    * interpolate the other attributes.
1840    */
1841   this->wpos_w = fs_reg(this, glsl_type::float_type);
1842   emit(fs_inst(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1843		interp_reg(FRAG_ATTRIB_WPOS, 3)));
1844   /* Compute the pixel 1/W value from wpos.w. */
1845   this->pixel_w = fs_reg(this, glsl_type::float_type);
1846   emit(fs_inst(FS_OPCODE_RCP, this->pixel_w, wpos_w));
1847   this->current_annotation = NULL;
1848}
1849
1850/** Emits the interpolation for the varying inputs. */
1851void
1852fs_visitor::emit_interpolation_setup_gen6()
1853{
1854   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1855
1856   /* If the pixel centers end up used, the setup is the same as for gen4. */
1857   this->current_annotation = "compute pixel centers";
1858   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1859   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1860   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1861   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1862   emit(fs_inst(BRW_OPCODE_ADD,
1863		this->pixel_x,
1864		fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1865		fs_reg(brw_imm_v(0x10101010))));
1866   emit(fs_inst(BRW_OPCODE_ADD,
1867		this->pixel_y,
1868		fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1869		fs_reg(brw_imm_v(0x11001100))));
1870
1871   this->current_annotation = "compute 1/pos.w";
1872   this->wpos_w = fs_reg(brw_vec8_grf(c->key.source_w_reg, 0));
1873   this->pixel_w = fs_reg(this, glsl_type::float_type);
1874   emit(fs_inst(FS_OPCODE_RCP, this->pixel_w, wpos_w));
1875
1876   this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1877   this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1878
1879   this->current_annotation = NULL;
1880}
1881
1882void
1883fs_visitor::emit_fb_writes()
1884{
1885   this->current_annotation = "FB write header";
1886   GLboolean header_present = GL_TRUE;
1887   int nr = 0;
1888
1889   if (intel->gen >= 6 &&
1890       !this->kill_emitted &&
1891       c->key.nr_color_regions == 1) {
1892      header_present = false;
1893   }
1894
1895   if (header_present) {
1896      /* m0, m1 header */
1897      nr += 2;
1898   }
1899
1900   if (c->key.aa_dest_stencil_reg) {
1901      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1902		   fs_reg(brw_vec8_grf(c->key.aa_dest_stencil_reg, 0))));
1903   }
1904
1905   /* Reserve space for color. It'll be filled in per MRT below. */
1906   int color_mrf = nr;
1907   nr += 4;
1908
1909   if (c->key.source_depth_to_render_target) {
1910      if (c->key.computes_depth) {
1911	 /* Hand over gl_FragDepth. */
1912	 assert(this->frag_depth);
1913	 fs_reg depth = *(variable_storage(this->frag_depth));
1914
1915	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++), depth));
1916      } else {
1917	 /* Pass through the payload depth. */
1918	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1919		      fs_reg(brw_vec8_grf(c->key.source_depth_reg, 0))));
1920      }
1921   }
1922
1923   if (c->key.dest_depth_reg) {
1924      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1925		   fs_reg(brw_vec8_grf(c->key.dest_depth_reg, 0))));
1926   }
1927
1928   fs_reg color = reg_undef;
1929   if (this->frag_color)
1930      color = *(variable_storage(this->frag_color));
1931   else if (this->frag_data)
1932      color = *(variable_storage(this->frag_data));
1933
1934   for (int target = 0; target < c->key.nr_color_regions; target++) {
1935      this->current_annotation = talloc_asprintf(this->mem_ctx,
1936						 "FB write target %d",
1937						 target);
1938      if (this->frag_color || this->frag_data) {
1939	 for (int i = 0; i < 4; i++) {
1940	    emit(fs_inst(BRW_OPCODE_MOV,
1941			 fs_reg(MRF, color_mrf + i),
1942			 color));
1943	    color.reg_offset++;
1944	 }
1945      }
1946
1947      if (this->frag_color)
1948	 color.reg_offset -= 4;
1949
1950      fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
1951				   reg_undef, reg_undef));
1952      inst->target = target;
1953      inst->mlen = nr;
1954      if (target == c->key.nr_color_regions - 1)
1955	 inst->eot = true;
1956      inst->header_present = header_present;
1957   }
1958
1959   if (c->key.nr_color_regions == 0) {
1960      fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
1961				   reg_undef, reg_undef));
1962      inst->mlen = nr;
1963      inst->eot = true;
1964      inst->header_present = header_present;
1965   }
1966
1967   this->current_annotation = NULL;
1968}
1969
1970void
1971fs_visitor::generate_fb_write(fs_inst *inst)
1972{
1973   GLboolean eot = inst->eot;
1974   struct brw_reg implied_header;
1975
1976   /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
1977    * move, here's g1.
1978    */
1979   brw_push_insn_state(p);
1980   brw_set_mask_control(p, BRW_MASK_DISABLE);
1981   brw_set_compression_control(p, BRW_COMPRESSION_NONE);
1982
1983   if (inst->header_present) {
1984      if (intel->gen >= 6) {
1985	 brw_MOV(p,
1986		 brw_message_reg(0),
1987		 brw_vec8_grf(0, 0));
1988	 implied_header = brw_null_reg();
1989      } else {
1990	 implied_header = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1991      }
1992
1993      brw_MOV(p,
1994	      brw_message_reg(1),
1995	      brw_vec8_grf(1, 0));
1996   } else {
1997      implied_header = brw_null_reg();
1998   }
1999
2000   brw_pop_insn_state(p);
2001
2002   brw_fb_WRITE(p,
2003		8, /* dispatch_width */
2004		retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW),
2005		0, /* base MRF */
2006		implied_header,
2007		inst->target,
2008		inst->mlen,
2009		0,
2010		eot);
2011}
2012
2013void
2014fs_visitor::generate_linterp(fs_inst *inst,
2015			     struct brw_reg dst, struct brw_reg *src)
2016{
2017   struct brw_reg delta_x = src[0];
2018   struct brw_reg delta_y = src[1];
2019   struct brw_reg interp = src[2];
2020
2021   if (brw->has_pln &&
2022       delta_y.nr == delta_x.nr + 1 &&
2023       (intel->gen >= 6 || (delta_x.nr & 1) == 0)) {
2024      brw_PLN(p, dst, interp, delta_x);
2025   } else {
2026      brw_LINE(p, brw_null_reg(), interp, delta_x);
2027      brw_MAC(p, dst, suboffset(interp, 1), delta_y);
2028   }
2029}
2030
2031void
2032fs_visitor::generate_math(fs_inst *inst,
2033			  struct brw_reg dst, struct brw_reg *src)
2034{
2035   int op;
2036
2037   switch (inst->opcode) {
2038   case FS_OPCODE_RCP:
2039      op = BRW_MATH_FUNCTION_INV;
2040      break;
2041   case FS_OPCODE_RSQ:
2042      op = BRW_MATH_FUNCTION_RSQ;
2043      break;
2044   case FS_OPCODE_SQRT:
2045      op = BRW_MATH_FUNCTION_SQRT;
2046      break;
2047   case FS_OPCODE_EXP2:
2048      op = BRW_MATH_FUNCTION_EXP;
2049      break;
2050   case FS_OPCODE_LOG2:
2051      op = BRW_MATH_FUNCTION_LOG;
2052      break;
2053   case FS_OPCODE_POW:
2054      op = BRW_MATH_FUNCTION_POW;
2055      break;
2056   case FS_OPCODE_SIN:
2057      op = BRW_MATH_FUNCTION_SIN;
2058      break;
2059   case FS_OPCODE_COS:
2060      op = BRW_MATH_FUNCTION_COS;
2061      break;
2062   default:
2063      assert(!"not reached: unknown math function");
2064      op = 0;
2065      break;
2066   }
2067
2068   if (inst->opcode == FS_OPCODE_POW) {
2069      brw_MOV(p, brw_message_reg(3), src[1]);
2070   }
2071
2072   brw_math(p, dst,
2073	    op,
2074	    inst->saturate ? BRW_MATH_SATURATE_SATURATE :
2075	    BRW_MATH_SATURATE_NONE,
2076	    2, src[0],
2077	    BRW_MATH_DATA_VECTOR,
2078	    BRW_MATH_PRECISION_FULL);
2079}
2080
2081void
2082fs_visitor::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2083{
2084   int msg_type = -1;
2085   int rlen = 4;
2086   uint32_t simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
2087
2088   if (intel->gen >= 5) {
2089      switch (inst->opcode) {
2090      case FS_OPCODE_TEX:
2091	 if (inst->shadow_compare) {
2092	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_COMPARE_GEN5;
2093	 } else {
2094	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_GEN5;
2095	 }
2096	 break;
2097      case FS_OPCODE_TXB:
2098	 if (inst->shadow_compare) {
2099	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE_GEN5;
2100	 } else {
2101	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5;
2102	 }
2103	 break;
2104      }
2105   } else {
2106      switch (inst->opcode) {
2107      case FS_OPCODE_TEX:
2108	 /* Note that G45 and older determines shadow compare and dispatch width
2109	  * from message length for most messages.
2110	  */
2111	 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
2112	 if (inst->shadow_compare) {
2113	    assert(inst->mlen == 5);
2114	 } else {
2115	    assert(inst->mlen <= 6);
2116	 }
2117	 break;
2118      case FS_OPCODE_TXB:
2119	 if (inst->shadow_compare) {
2120	    assert(inst->mlen == 5);
2121	    msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
2122	 } else {
2123	    assert(inst->mlen == 8);
2124	    msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
2125	    simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
2126	 }
2127	 break;
2128      }
2129   }
2130   assert(msg_type != -1);
2131
2132   if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
2133      rlen = 8;
2134      dst = vec16(dst);
2135   }
2136
2137   /* g0 header. */
2138   src.nr--;
2139
2140   brw_SAMPLE(p,
2141	      retype(dst, BRW_REGISTER_TYPE_UW),
2142	      src.nr,
2143	      retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
2144              SURF_INDEX_TEXTURE(inst->sampler),
2145	      inst->sampler,
2146	      WRITEMASK_XYZW,
2147	      msg_type,
2148	      rlen,
2149	      inst->mlen + 1,
2150	      0,
2151	      1,
2152	      simd_mode);
2153}
2154
2155
2156/* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
2157 * looking like:
2158 *
2159 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
2160 *
2161 * and we're trying to produce:
2162 *
2163 *           DDX                     DDY
2164 * dst: (ss0.tr - ss0.tl)     (ss0.tl - ss0.bl)
2165 *      (ss0.tr - ss0.tl)     (ss0.tr - ss0.br)
2166 *      (ss0.br - ss0.bl)     (ss0.tl - ss0.bl)
2167 *      (ss0.br - ss0.bl)     (ss0.tr - ss0.br)
2168 *      (ss1.tr - ss1.tl)     (ss1.tl - ss1.bl)
2169 *      (ss1.tr - ss1.tl)     (ss1.tr - ss1.br)
2170 *      (ss1.br - ss1.bl)     (ss1.tl - ss1.bl)
2171 *      (ss1.br - ss1.bl)     (ss1.tr - ss1.br)
2172 *
2173 * and add another set of two more subspans if in 16-pixel dispatch mode.
2174 *
2175 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
2176 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
2177 * pair. But for DDY, it's harder, as we want to produce the pairs swizzled
2178 * between each other.  We could probably do it like ddx and swizzle the right
2179 * order later, but bail for now and just produce
2180 * ((ss0.tl - ss0.bl)x4 (ss1.tl - ss1.bl)x4)
2181 */
2182void
2183fs_visitor::generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2184{
2185   struct brw_reg src0 = brw_reg(src.file, src.nr, 1,
2186				 BRW_REGISTER_TYPE_F,
2187				 BRW_VERTICAL_STRIDE_2,
2188				 BRW_WIDTH_2,
2189				 BRW_HORIZONTAL_STRIDE_0,
2190				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2191   struct brw_reg src1 = brw_reg(src.file, src.nr, 0,
2192				 BRW_REGISTER_TYPE_F,
2193				 BRW_VERTICAL_STRIDE_2,
2194				 BRW_WIDTH_2,
2195				 BRW_HORIZONTAL_STRIDE_0,
2196				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2197   brw_ADD(p, dst, src0, negate(src1));
2198}
2199
2200void
2201fs_visitor::generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2202{
2203   struct brw_reg src0 = brw_reg(src.file, src.nr, 0,
2204				 BRW_REGISTER_TYPE_F,
2205				 BRW_VERTICAL_STRIDE_4,
2206				 BRW_WIDTH_4,
2207				 BRW_HORIZONTAL_STRIDE_0,
2208				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2209   struct brw_reg src1 = brw_reg(src.file, src.nr, 2,
2210				 BRW_REGISTER_TYPE_F,
2211				 BRW_VERTICAL_STRIDE_4,
2212				 BRW_WIDTH_4,
2213				 BRW_HORIZONTAL_STRIDE_0,
2214				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2215   brw_ADD(p, dst, src0, negate(src1));
2216}
2217
2218void
2219fs_visitor::generate_discard(fs_inst *inst, struct brw_reg temp)
2220{
2221   struct brw_reg g0 = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
2222   temp = brw_uw1_reg(temp.file, temp.nr, 0);
2223
2224   brw_push_insn_state(p);
2225   brw_set_mask_control(p, BRW_MASK_DISABLE);
2226   brw_NOT(p, temp, brw_mask_reg(1)); /* IMASK */
2227   brw_AND(p, g0, temp, g0);
2228   brw_pop_insn_state(p);
2229}
2230
2231void
2232fs_visitor::assign_curb_setup()
2233{
2234   c->prog_data.first_curbe_grf = c->key.nr_payload_regs;
2235   c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
2236
2237   /* Map the offsets in the UNIFORM file to fixed HW regs. */
2238   foreach_iter(exec_list_iterator, iter, this->instructions) {
2239      fs_inst *inst = (fs_inst *)iter.get();
2240
2241      for (unsigned int i = 0; i < 3; i++) {
2242	 if (inst->src[i].file == UNIFORM) {
2243	    int constant_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
2244	    struct brw_reg brw_reg = brw_vec1_grf(c->prog_data.first_curbe_grf +
2245						  constant_nr / 8,
2246						  constant_nr % 8);
2247
2248	    inst->src[i].file = FIXED_HW_REG;
2249	    inst->src[i].fixed_hw_reg = brw_reg;
2250	 }
2251      }
2252   }
2253}
2254
2255void
2256fs_visitor::calculate_urb_setup()
2257{
2258   for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2259      urb_setup[i] = -1;
2260   }
2261
2262   int urb_next = 0;
2263   /* Figure out where each of the incoming setup attributes lands. */
2264   if (intel->gen >= 6) {
2265      for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2266	 if (brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(i)) {
2267	    urb_setup[i] = urb_next++;
2268	 }
2269      }
2270   } else {
2271      /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
2272      for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) {
2273	 if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
2274	    int fp_index;
2275
2276	    if (i >= VERT_RESULT_VAR0)
2277	       fp_index = i - (VERT_RESULT_VAR0 - FRAG_ATTRIB_VAR0);
2278	    else if (i <= VERT_RESULT_TEX7)
2279	       fp_index = i;
2280	    else
2281	       fp_index = -1;
2282
2283	    if (fp_index >= 0)
2284	       urb_setup[fp_index] = urb_next++;
2285	 }
2286      }
2287   }
2288
2289   /* Each attribute is 4 setup channels, each of which is half a reg. */
2290   c->prog_data.urb_read_length = urb_next * 2;
2291}
2292
2293void
2294fs_visitor::assign_urb_setup()
2295{
2296   int urb_start = c->prog_data.first_curbe_grf + c->prog_data.curb_read_length;
2297
2298   /* Offset all the urb_setup[] index by the actual position of the
2299    * setup regs, now that the location of the constants has been chosen.
2300    */
2301   foreach_iter(exec_list_iterator, iter, this->instructions) {
2302      fs_inst *inst = (fs_inst *)iter.get();
2303
2304      if (inst->opcode != FS_OPCODE_LINTERP)
2305	 continue;
2306
2307      assert(inst->src[2].file == FIXED_HW_REG);
2308
2309      inst->src[2].fixed_hw_reg.nr += urb_start;
2310   }
2311
2312   this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
2313}
2314
2315static void
2316assign_reg(int *reg_hw_locations, fs_reg *reg)
2317{
2318   if (reg->file == GRF && reg->reg != 0) {
2319      reg->hw_reg = reg_hw_locations[reg->reg] + reg->reg_offset;
2320      reg->reg = 0;
2321   }
2322}
2323
2324void
2325fs_visitor::assign_regs_trivial()
2326{
2327   int last_grf = 0;
2328   int hw_reg_mapping[this->virtual_grf_next];
2329   int i;
2330
2331   hw_reg_mapping[0] = 0;
2332   hw_reg_mapping[1] = this->first_non_payload_grf;
2333   for (i = 2; i < this->virtual_grf_next; i++) {
2334      hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
2335			   this->virtual_grf_sizes[i - 1]);
2336   }
2337   last_grf = hw_reg_mapping[i - 1] + this->virtual_grf_sizes[i - 1];
2338
2339   foreach_iter(exec_list_iterator, iter, this->instructions) {
2340      fs_inst *inst = (fs_inst *)iter.get();
2341
2342      assign_reg(hw_reg_mapping, &inst->dst);
2343      assign_reg(hw_reg_mapping, &inst->src[0]);
2344      assign_reg(hw_reg_mapping, &inst->src[1]);
2345   }
2346
2347   this->grf_used = last_grf + 1;
2348}
2349
2350void
2351fs_visitor::assign_regs()
2352{
2353   int last_grf = 0;
2354   int hw_reg_mapping[this->virtual_grf_next + 1];
2355   int base_reg_count = BRW_MAX_GRF - this->first_non_payload_grf;
2356   int class_sizes[base_reg_count];
2357   int class_count = 0;
2358   int aligned_pair_class = -1;
2359
2360   /* Set up the register classes.
2361    *
2362    * The base registers store a scalar value.  For texture samples,
2363    * we get virtual GRFs composed of 4 contiguous hw register.  For
2364    * structures and arrays, we store them as contiguous larger things
2365    * than that, though we should be able to do better most of the
2366    * time.
2367    */
2368   class_sizes[class_count++] = 1;
2369   if (brw->has_pln && intel->gen < 6) {
2370      /* Always set up the (unaligned) pairs for gen5, so we can find
2371       * them for making the aligned pair class.
2372       */
2373      class_sizes[class_count++] = 2;
2374   }
2375   for (int r = 1; r < this->virtual_grf_next; r++) {
2376      int i;
2377
2378      for (i = 0; i < class_count; i++) {
2379	 if (class_sizes[i] == this->virtual_grf_sizes[r])
2380	    break;
2381      }
2382      if (i == class_count) {
2383	 if (this->virtual_grf_sizes[r] >= base_reg_count) {
2384	    fprintf(stderr, "Object too large to register allocate.\n");
2385	    this->fail = true;
2386	 }
2387
2388	 class_sizes[class_count++] = this->virtual_grf_sizes[r];
2389      }
2390   }
2391
2392   int ra_reg_count = 0;
2393   int class_base_reg[class_count];
2394   int class_reg_count[class_count];
2395   int classes[class_count + 1];
2396
2397   for (int i = 0; i < class_count; i++) {
2398      class_base_reg[i] = ra_reg_count;
2399      class_reg_count[i] = base_reg_count - (class_sizes[i] - 1);
2400      ra_reg_count += class_reg_count[i];
2401   }
2402
2403   struct ra_regs *regs = ra_alloc_reg_set(ra_reg_count);
2404   for (int i = 0; i < class_count; i++) {
2405      classes[i] = ra_alloc_reg_class(regs);
2406
2407      for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
2408	 ra_class_add_reg(regs, classes[i], class_base_reg[i] + i_r);
2409      }
2410
2411      /* Add conflicts between our contiguous registers aliasing
2412       * base regs and other register classes' contiguous registers
2413       * that alias base regs, or the base regs themselves for classes[0].
2414       */
2415      for (int c = 0; c <= i; c++) {
2416	 for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
2417	    for (int c_r = MAX2(0, i_r - (class_sizes[c] - 1));
2418		 c_r < MIN2(class_reg_count[c], i_r + class_sizes[i]);
2419		 c_r++) {
2420
2421	       if (0) {
2422		  printf("%d/%d conflicts %d/%d\n",
2423			 class_sizes[i], this->first_non_payload_grf + i_r,
2424			 class_sizes[c], this->first_non_payload_grf + c_r);
2425	       }
2426
2427	       ra_add_reg_conflict(regs,
2428				   class_base_reg[i] + i_r,
2429				   class_base_reg[c] + c_r);
2430	    }
2431	 }
2432      }
2433   }
2434
2435   /* Add a special class for aligned pairs, which we'll put delta_x/y
2436    * in on gen5 so that we can do PLN.
2437    */
2438   if (brw->has_pln && intel->gen < 6) {
2439      int reg_count = (base_reg_count - 1) / 2;
2440      int unaligned_pair_class = 1;
2441      assert(class_sizes[unaligned_pair_class] == 2);
2442
2443      aligned_pair_class = class_count;
2444      classes[aligned_pair_class] = ra_alloc_reg_class(regs);
2445      class_base_reg[aligned_pair_class] = 0;
2446      class_reg_count[aligned_pair_class] = 0;
2447      int start = (this->first_non_payload_grf & 1) ? 1 : 0;
2448
2449      for (int i = 0; i < reg_count; i++) {
2450	 ra_class_add_reg(regs, classes[aligned_pair_class],
2451			  class_base_reg[unaligned_pair_class] + i * 2 + start);
2452      }
2453      class_count++;
2454   }
2455
2456   ra_set_finalize(regs);
2457
2458   struct ra_graph *g = ra_alloc_interference_graph(regs,
2459						    this->virtual_grf_next);
2460   /* Node 0 is just a placeholder to keep virtual_grf[] mapping 1:1
2461    * with nodes.
2462    */
2463   ra_set_node_class(g, 0, classes[0]);
2464
2465   for (int i = 1; i < this->virtual_grf_next; i++) {
2466      for (int c = 0; c < class_count; c++) {
2467	 if (class_sizes[c] == this->virtual_grf_sizes[i]) {
2468	    if (aligned_pair_class >= 0 &&
2469		this->delta_x.reg == i) {
2470	       ra_set_node_class(g, i, classes[aligned_pair_class]);
2471	    } else {
2472	       ra_set_node_class(g, i, classes[c]);
2473	    }
2474	    break;
2475	 }
2476      }
2477
2478      for (int j = 1; j < i; j++) {
2479	 if (virtual_grf_interferes(i, j)) {
2480	    ra_add_node_interference(g, i, j);
2481	 }
2482      }
2483   }
2484
2485   /* FINISHME: Handle spilling */
2486   if (!ra_allocate_no_spills(g)) {
2487      fprintf(stderr, "Failed to allocate registers.\n");
2488      this->fail = true;
2489      return;
2490   }
2491
2492   /* Get the chosen virtual registers for each node, and map virtual
2493    * regs in the register classes back down to real hardware reg
2494    * numbers.
2495    */
2496   hw_reg_mapping[0] = 0; /* unused */
2497   for (int i = 1; i < this->virtual_grf_next; i++) {
2498      int reg = ra_get_node_reg(g, i);
2499      int hw_reg = -1;
2500
2501      for (int c = 0; c < class_count; c++) {
2502	 if (reg >= class_base_reg[c] &&
2503	     reg < class_base_reg[c] + class_reg_count[c]) {
2504	    hw_reg = reg - class_base_reg[c];
2505	    break;
2506	 }
2507      }
2508
2509      assert(hw_reg != -1);
2510      hw_reg_mapping[i] = this->first_non_payload_grf + hw_reg;
2511      last_grf = MAX2(last_grf,
2512		      hw_reg_mapping[i] + this->virtual_grf_sizes[i] - 1);
2513   }
2514
2515   foreach_iter(exec_list_iterator, iter, this->instructions) {
2516      fs_inst *inst = (fs_inst *)iter.get();
2517
2518      assign_reg(hw_reg_mapping, &inst->dst);
2519      assign_reg(hw_reg_mapping, &inst->src[0]);
2520      assign_reg(hw_reg_mapping, &inst->src[1]);
2521   }
2522
2523   this->grf_used = last_grf + 1;
2524
2525   talloc_free(g);
2526   talloc_free(regs);
2527}
2528
2529void
2530fs_visitor::calculate_live_intervals()
2531{
2532   int num_vars = this->virtual_grf_next;
2533   int *def = talloc_array(mem_ctx, int, num_vars);
2534   int *use = talloc_array(mem_ctx, int, num_vars);
2535   int loop_depth = 0;
2536   int loop_start = 0;
2537
2538   for (int i = 0; i < num_vars; i++) {
2539      def[i] = 1 << 30;
2540      use[i] = -1;
2541   }
2542
2543   int ip = 0;
2544   foreach_iter(exec_list_iterator, iter, this->instructions) {
2545      fs_inst *inst = (fs_inst *)iter.get();
2546
2547      if (inst->opcode == BRW_OPCODE_DO) {
2548	 if (loop_depth++ == 0)
2549	    loop_start = ip;
2550      } else if (inst->opcode == BRW_OPCODE_WHILE) {
2551	 loop_depth--;
2552
2553	 if (loop_depth == 0) {
2554	    /* FINISHME:
2555	     *
2556	     * Patches up any vars marked for use within the loop as
2557	     * live until the end.  This is conservative, as there
2558	     * will often be variables defined and used inside the
2559	     * loop but dead at the end of the loop body.
2560	     */
2561	    for (int i = 0; i < num_vars; i++) {
2562	       if (use[i] == loop_start) {
2563		  use[i] = ip;
2564	       }
2565	    }
2566	 }
2567      } else {
2568	 int eip = ip;
2569
2570	 if (loop_depth)
2571	    eip = loop_start;
2572
2573	 for (unsigned int i = 0; i < 3; i++) {
2574	    if (inst->src[i].file == GRF && inst->src[i].reg != 0) {
2575	       use[inst->src[i].reg] = MAX2(use[inst->src[i].reg], eip);
2576	    }
2577	 }
2578	 if (inst->dst.file == GRF && inst->dst.reg != 0) {
2579	    def[inst->dst.reg] = MIN2(def[inst->dst.reg], eip);
2580	 }
2581      }
2582
2583      ip++;
2584   }
2585
2586   talloc_free(this->virtual_grf_def);
2587   talloc_free(this->virtual_grf_use);
2588   this->virtual_grf_def = def;
2589   this->virtual_grf_use = use;
2590}
2591
2592/**
2593 * Attempts to move immediate constants into the immediate
2594 * constant slot of following instructions.
2595 *
2596 * Immediate constants are a bit tricky -- they have to be in the last
2597 * operand slot, you can't do abs/negate on them,
2598 */
2599
2600bool
2601fs_visitor::propagate_constants()
2602{
2603   bool progress = false;
2604
2605   foreach_iter(exec_list_iterator, iter, this->instructions) {
2606      fs_inst *inst = (fs_inst *)iter.get();
2607
2608      if (inst->opcode != BRW_OPCODE_MOV ||
2609	  inst->predicated ||
2610	  inst->dst.file != GRF || inst->src[0].file != IMM ||
2611	  inst->dst.type != inst->src[0].type)
2612	 continue;
2613
2614      /* Don't bother with cases where we should have had the
2615       * operation on the constant folded in GLSL already.
2616       */
2617      if (inst->saturate)
2618	 continue;
2619
2620      /* Found a move of a constant to a GRF.  Find anything else using the GRF
2621       * before it's written, and replace it with the constant if we can.
2622       */
2623      exec_list_iterator scan_iter = iter;
2624      scan_iter.next();
2625      for (; scan_iter.has_next(); scan_iter.next()) {
2626	 fs_inst *scan_inst = (fs_inst *)scan_iter.get();
2627
2628	 if (scan_inst->opcode == BRW_OPCODE_DO ||
2629	     scan_inst->opcode == BRW_OPCODE_WHILE ||
2630	     scan_inst->opcode == BRW_OPCODE_ELSE ||
2631	     scan_inst->opcode == BRW_OPCODE_ENDIF) {
2632	    break;
2633	 }
2634
2635	 for (int i = 2; i >= 0; i--) {
2636	    if (scan_inst->src[i].file != GRF ||
2637		scan_inst->src[i].reg != inst->dst.reg ||
2638		scan_inst->src[i].reg_offset != inst->dst.reg_offset)
2639	       continue;
2640
2641	    /* Don't bother with cases where we should have had the
2642	     * operation on the constant folded in GLSL already.
2643	     */
2644	    if (scan_inst->src[i].negate || scan_inst->src[i].abs)
2645	       continue;
2646
2647	    switch (scan_inst->opcode) {
2648	    case BRW_OPCODE_MOV:
2649	       scan_inst->src[i] = inst->src[0];
2650	       progress = true;
2651	       break;
2652
2653	    case BRW_OPCODE_MUL:
2654	    case BRW_OPCODE_ADD:
2655	       if (i == 1) {
2656		  scan_inst->src[i] = inst->src[0];
2657		  progress = true;
2658	       } else if (i == 0 && scan_inst->src[1].file != IMM) {
2659		  /* Fit this constant in by commuting the operands */
2660		  scan_inst->src[0] = scan_inst->src[1];
2661		  scan_inst->src[1] = inst->src[0];
2662	       }
2663	       break;
2664	    case BRW_OPCODE_CMP:
2665	       if (i == 1) {
2666		  scan_inst->src[i] = inst->src[0];
2667		  progress = true;
2668	       }
2669	    }
2670	 }
2671
2672	 if (scan_inst->dst.file == GRF &&
2673	     scan_inst->dst.reg == inst->dst.reg &&
2674	     (scan_inst->dst.reg_offset == inst->dst.reg_offset ||
2675	      scan_inst->opcode == FS_OPCODE_TEX)) {
2676	    break;
2677	 }
2678      }
2679   }
2680
2681   return progress;
2682}
2683/**
2684 * Must be called after calculate_live_intervales() to remove unused
2685 * writes to registers -- register allocation will fail otherwise
2686 * because something deffed but not used won't be considered to
2687 * interfere with other regs.
2688 */
2689bool
2690fs_visitor::dead_code_eliminate()
2691{
2692   bool progress = false;
2693   int num_vars = this->virtual_grf_next;
2694   bool dead[num_vars];
2695
2696   for (int i = 0; i < num_vars; i++) {
2697      /* This would be ">=", but FS_OPCODE_DISCARD has a src == dst where
2698       * it writes dst then reads it as src.
2699       */
2700      dead[i] = this->virtual_grf_def[i] > this->virtual_grf_use[i];
2701
2702      if (dead[i]) {
2703	 /* Mark off its interval so it won't interfere with anything. */
2704	 this->virtual_grf_def[i] = -1;
2705	 this->virtual_grf_use[i] = -1;
2706      }
2707   }
2708
2709   foreach_iter(exec_list_iterator, iter, this->instructions) {
2710      fs_inst *inst = (fs_inst *)iter.get();
2711
2712      if (inst->dst.file == GRF && dead[inst->dst.reg]) {
2713	 inst->remove();
2714	 progress = true;
2715      }
2716   }
2717
2718   return progress;
2719}
2720
2721bool
2722fs_visitor::virtual_grf_interferes(int a, int b)
2723{
2724   int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
2725   int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
2726
2727   /* For dead code, just check if the def interferes with the other range. */
2728   if (this->virtual_grf_use[a] == -1) {
2729      return (this->virtual_grf_def[a] >= this->virtual_grf_def[b] &&
2730	      this->virtual_grf_def[a] < this->virtual_grf_use[b]);
2731   }
2732   if (this->virtual_grf_use[b] == -1) {
2733      return (this->virtual_grf_def[b] >= this->virtual_grf_def[a] &&
2734	      this->virtual_grf_def[b] < this->virtual_grf_use[a]);
2735   }
2736
2737   return start <= end;
2738}
2739
2740static struct brw_reg brw_reg_from_fs_reg(fs_reg *reg)
2741{
2742   struct brw_reg brw_reg;
2743
2744   switch (reg->file) {
2745   case GRF:
2746   case ARF:
2747   case MRF:
2748      brw_reg = brw_vec8_reg(reg->file,
2749			    reg->hw_reg, 0);
2750      brw_reg = retype(brw_reg, reg->type);
2751      break;
2752   case IMM:
2753      switch (reg->type) {
2754      case BRW_REGISTER_TYPE_F:
2755	 brw_reg = brw_imm_f(reg->imm.f);
2756	 break;
2757      case BRW_REGISTER_TYPE_D:
2758	 brw_reg = brw_imm_d(reg->imm.i);
2759	 break;
2760      case BRW_REGISTER_TYPE_UD:
2761	 brw_reg = brw_imm_ud(reg->imm.u);
2762	 break;
2763      default:
2764	 assert(!"not reached");
2765	 break;
2766      }
2767      break;
2768   case FIXED_HW_REG:
2769      brw_reg = reg->fixed_hw_reg;
2770      break;
2771   case BAD_FILE:
2772      /* Probably unused. */
2773      brw_reg = brw_null_reg();
2774      break;
2775   case UNIFORM:
2776      assert(!"not reached");
2777      brw_reg = brw_null_reg();
2778      break;
2779   }
2780   if (reg->abs)
2781      brw_reg = brw_abs(brw_reg);
2782   if (reg->negate)
2783      brw_reg = negate(brw_reg);
2784
2785   return brw_reg;
2786}
2787
2788void
2789fs_visitor::generate_code()
2790{
2791   unsigned int annotation_len = 0;
2792   int last_native_inst = 0;
2793   struct brw_instruction *if_stack[16], *loop_stack[16];
2794   int if_stack_depth = 0, loop_stack_depth = 0;
2795   int if_depth_in_loop[16];
2796
2797   if_depth_in_loop[loop_stack_depth] = 0;
2798
2799   memset(&if_stack, 0, sizeof(if_stack));
2800   foreach_iter(exec_list_iterator, iter, this->instructions) {
2801      fs_inst *inst = (fs_inst *)iter.get();
2802      struct brw_reg src[3], dst;
2803
2804      for (unsigned int i = 0; i < 3; i++) {
2805	 src[i] = brw_reg_from_fs_reg(&inst->src[i]);
2806      }
2807      dst = brw_reg_from_fs_reg(&inst->dst);
2808
2809      brw_set_conditionalmod(p, inst->conditional_mod);
2810      brw_set_predicate_control(p, inst->predicated);
2811
2812      switch (inst->opcode) {
2813      case BRW_OPCODE_MOV:
2814	 brw_MOV(p, dst, src[0]);
2815	 break;
2816      case BRW_OPCODE_ADD:
2817	 brw_ADD(p, dst, src[0], src[1]);
2818	 break;
2819      case BRW_OPCODE_MUL:
2820	 brw_MUL(p, dst, src[0], src[1]);
2821	 break;
2822
2823      case BRW_OPCODE_FRC:
2824	 brw_FRC(p, dst, src[0]);
2825	 break;
2826      case BRW_OPCODE_RNDD:
2827	 brw_RNDD(p, dst, src[0]);
2828	 break;
2829      case BRW_OPCODE_RNDZ:
2830	 brw_RNDZ(p, dst, src[0]);
2831	 break;
2832
2833      case BRW_OPCODE_AND:
2834	 brw_AND(p, dst, src[0], src[1]);
2835	 break;
2836      case BRW_OPCODE_OR:
2837	 brw_OR(p, dst, src[0], src[1]);
2838	 break;
2839      case BRW_OPCODE_XOR:
2840	 brw_XOR(p, dst, src[0], src[1]);
2841	 break;
2842      case BRW_OPCODE_NOT:
2843	 brw_NOT(p, dst, src[0]);
2844	 break;
2845      case BRW_OPCODE_ASR:
2846	 brw_ASR(p, dst, src[0], src[1]);
2847	 break;
2848      case BRW_OPCODE_SHR:
2849	 brw_SHR(p, dst, src[0], src[1]);
2850	 break;
2851      case BRW_OPCODE_SHL:
2852	 brw_SHL(p, dst, src[0], src[1]);
2853	 break;
2854
2855      case BRW_OPCODE_CMP:
2856	 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
2857	 break;
2858      case BRW_OPCODE_SEL:
2859	 brw_SEL(p, dst, src[0], src[1]);
2860	 break;
2861
2862      case BRW_OPCODE_IF:
2863	 assert(if_stack_depth < 16);
2864	 if_stack[if_stack_depth] = brw_IF(p, BRW_EXECUTE_8);
2865	 if_depth_in_loop[loop_stack_depth]++;
2866	 if_stack_depth++;
2867	 break;
2868      case BRW_OPCODE_ELSE:
2869	 if_stack[if_stack_depth - 1] =
2870	    brw_ELSE(p, if_stack[if_stack_depth - 1]);
2871	 break;
2872      case BRW_OPCODE_ENDIF:
2873	 if_stack_depth--;
2874	 brw_ENDIF(p , if_stack[if_stack_depth]);
2875	 if_depth_in_loop[loop_stack_depth]--;
2876	 break;
2877
2878      case BRW_OPCODE_DO:
2879	 loop_stack[loop_stack_depth++] = brw_DO(p, BRW_EXECUTE_8);
2880	 if_depth_in_loop[loop_stack_depth] = 0;
2881	 break;
2882
2883      case BRW_OPCODE_BREAK:
2884	 brw_BREAK(p, if_depth_in_loop[loop_stack_depth]);
2885	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2886	 break;
2887      case BRW_OPCODE_CONTINUE:
2888	 brw_CONT(p, if_depth_in_loop[loop_stack_depth]);
2889	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2890	 break;
2891
2892      case BRW_OPCODE_WHILE: {
2893	 struct brw_instruction *inst0, *inst1;
2894	 GLuint br = 1;
2895
2896	 if (intel->gen >= 5)
2897	    br = 2;
2898
2899	 assert(loop_stack_depth > 0);
2900	 loop_stack_depth--;
2901	 inst0 = inst1 = brw_WHILE(p, loop_stack[loop_stack_depth]);
2902	 /* patch all the BREAK/CONT instructions from last BGNLOOP */
2903	 while (inst0 > loop_stack[loop_stack_depth]) {
2904	    inst0--;
2905	    if (inst0->header.opcode == BRW_OPCODE_BREAK &&
2906		inst0->bits3.if_else.jump_count == 0) {
2907	       inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
2908	    }
2909	    else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
2910		     inst0->bits3.if_else.jump_count == 0) {
2911	       inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
2912	    }
2913	 }
2914      }
2915	 break;
2916
2917      case FS_OPCODE_RCP:
2918      case FS_OPCODE_RSQ:
2919      case FS_OPCODE_SQRT:
2920      case FS_OPCODE_EXP2:
2921      case FS_OPCODE_LOG2:
2922      case FS_OPCODE_POW:
2923      case FS_OPCODE_SIN:
2924      case FS_OPCODE_COS:
2925	 generate_math(inst, dst, src);
2926	 break;
2927      case FS_OPCODE_LINTERP:
2928	 generate_linterp(inst, dst, src);
2929	 break;
2930      case FS_OPCODE_TEX:
2931      case FS_OPCODE_TXB:
2932      case FS_OPCODE_TXL:
2933	 generate_tex(inst, dst, src[0]);
2934	 break;
2935      case FS_OPCODE_DISCARD:
2936	 generate_discard(inst, dst /* src0 == dst */);
2937	 break;
2938      case FS_OPCODE_DDX:
2939	 generate_ddx(inst, dst, src[0]);
2940	 break;
2941      case FS_OPCODE_DDY:
2942	 generate_ddy(inst, dst, src[0]);
2943	 break;
2944      case FS_OPCODE_FB_WRITE:
2945	 generate_fb_write(inst);
2946	 break;
2947      default:
2948	 if (inst->opcode < (int)ARRAY_SIZE(brw_opcodes)) {
2949	    _mesa_problem(ctx, "Unsupported opcode `%s' in FS",
2950			  brw_opcodes[inst->opcode].name);
2951	 } else {
2952	    _mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode);
2953	 }
2954	 this->fail = true;
2955      }
2956
2957      if (annotation_len < p->nr_insn) {
2958	 annotation_len *= 2;
2959	 if (annotation_len < 16)
2960	    annotation_len = 16;
2961
2962	 this->annotation_string = talloc_realloc(this->mem_ctx,
2963						  annotation_string,
2964						  const char *,
2965						  annotation_len);
2966	 this->annotation_ir = talloc_realloc(this->mem_ctx,
2967					      annotation_ir,
2968					      ir_instruction *,
2969					      annotation_len);
2970      }
2971
2972      for (unsigned int i = last_native_inst; i < p->nr_insn; i++) {
2973	 this->annotation_string[i] = inst->annotation;
2974	 this->annotation_ir[i] = inst->ir;
2975      }
2976      last_native_inst = p->nr_insn;
2977   }
2978}
2979
2980GLboolean
2981brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c)
2982{
2983   struct brw_compile *p = &c->func;
2984   struct intel_context *intel = &brw->intel;
2985   GLcontext *ctx = &intel->ctx;
2986   struct brw_shader *shader = NULL;
2987   struct gl_shader_program *prog = ctx->Shader.CurrentProgram;
2988
2989   if (!prog)
2990      return GL_FALSE;
2991
2992   if (!using_new_fs)
2993      return GL_FALSE;
2994
2995   for (unsigned int i = 0; i < prog->_NumLinkedShaders; i++) {
2996      if (prog->_LinkedShaders[i]->Type == GL_FRAGMENT_SHADER) {
2997	 shader = (struct brw_shader *)prog->_LinkedShaders[i];
2998	 break;
2999      }
3000   }
3001   if (!shader)
3002      return GL_FALSE;
3003
3004   /* We always use 8-wide mode, at least for now.  For one, flow
3005    * control only works in 8-wide.  Also, when we're fragment shader
3006    * bound, we're almost always under register pressure as well, so
3007    * 8-wide would save us from the performance cliff of spilling
3008    * regs.
3009    */
3010   c->dispatch_width = 8;
3011
3012   if (INTEL_DEBUG & DEBUG_WM) {
3013      printf("GLSL IR for native fragment shader %d:\n", prog->Name);
3014      _mesa_print_ir(shader->ir, NULL);
3015      printf("\n");
3016   }
3017
3018   /* Now the main event: Visit the shader IR and generate our FS IR for it.
3019    */
3020   fs_visitor v(c, shader);
3021
3022   if (0) {
3023      v.emit_dummy_fs();
3024   } else {
3025      v.calculate_urb_setup();
3026      if (intel->gen < 6)
3027	 v.emit_interpolation_setup_gen4();
3028      else
3029	 v.emit_interpolation_setup_gen6();
3030
3031      /* Generate FS IR for main().  (the visitor only descends into
3032       * functions called "main").
3033       */
3034      foreach_iter(exec_list_iterator, iter, *shader->ir) {
3035	 ir_instruction *ir = (ir_instruction *)iter.get();
3036	 v.base_ir = ir;
3037	 ir->accept(&v);
3038      }
3039
3040      v.emit_fb_writes();
3041      v.assign_curb_setup();
3042      v.assign_urb_setup();
3043
3044      bool progress;
3045      do {
3046	 progress = false;
3047
3048	 v.calculate_live_intervals();
3049	 progress = v.propagate_constants() || progress;
3050	 progress = v.dead_code_eliminate() || progress;
3051      } while (progress);
3052
3053      if (0)
3054	 v.assign_regs_trivial();
3055      else
3056	 v.assign_regs();
3057   }
3058
3059   if (!v.fail)
3060      v.generate_code();
3061
3062   assert(!v.fail); /* FINISHME: Cleanly fail, tested at link time, etc. */
3063
3064   if (v.fail)
3065      return GL_FALSE;
3066
3067   if (INTEL_DEBUG & DEBUG_WM) {
3068      const char *last_annotation_string = NULL;
3069      ir_instruction *last_annotation_ir = NULL;
3070
3071      printf("Native code for fragment shader %d:\n", prog->Name);
3072      for (unsigned int i = 0; i < p->nr_insn; i++) {
3073	 if (last_annotation_ir != v.annotation_ir[i]) {
3074	    last_annotation_ir = v.annotation_ir[i];
3075	    if (last_annotation_ir) {
3076	       printf("   ");
3077	       last_annotation_ir->print();
3078	       printf("\n");
3079	    }
3080	 }
3081	 if (last_annotation_string != v.annotation_string[i]) {
3082	    last_annotation_string = v.annotation_string[i];
3083	    if (last_annotation_string)
3084	       printf("   %s\n", last_annotation_string);
3085	 }
3086	 brw_disasm(stdout, &p->store[i], intel->gen);
3087      }
3088      printf("\n");
3089   }
3090
3091   c->prog_data.total_grf = v.grf_used;
3092   c->prog_data.total_scratch = 0;
3093
3094   return GL_TRUE;
3095}
3096