brw_fs.cpp revision df2aef0e197f9276f60a8e755260420c90841269
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28extern "C" {
29
30#include <sys/types.h>
31
32#include "main/macros.h"
33#include "main/shaderobj.h"
34#include "main/uniforms.h"
35#include "program/prog_parameter.h"
36#include "program/prog_print.h"
37#include "program/prog_optimize.h"
38#include "program/register_allocate.h"
39#include "program/sampler.h"
40#include "program/hash_table.h"
41#include "brw_context.h"
42#include "brw_eu.h"
43#include "brw_wm.h"
44}
45#include "brw_fs.h"
46#include "../glsl/glsl_types.h"
47#include "../glsl/ir_optimization.h"
48#include "../glsl/ir_print_visitor.h"
49
50#define MAX_INSTRUCTION (1 << 30)
51static struct brw_reg brw_reg_from_fs_reg(class fs_reg *reg);
52
53struct gl_shader *
54brw_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
55{
56   struct brw_shader *shader;
57
58   shader = rzalloc(NULL, struct brw_shader);
59   if (shader) {
60      shader->base.Type = type;
61      shader->base.Name = name;
62      _mesa_init_shader(ctx, &shader->base);
63   }
64
65   return &shader->base;
66}
67
68struct gl_shader_program *
69brw_new_shader_program(struct gl_context *ctx, GLuint name)
70{
71   struct brw_shader_program *prog;
72   prog = rzalloc(NULL, struct brw_shader_program);
73   if (prog) {
74      prog->base.Name = name;
75      _mesa_init_shader_program(ctx, &prog->base);
76   }
77   return &prog->base;
78}
79
80GLboolean
81brw_compile_shader(struct gl_context *ctx, struct gl_shader *shader)
82{
83   if (!_mesa_ir_compile_shader(ctx, shader))
84      return GL_FALSE;
85
86   return GL_TRUE;
87}
88
89GLboolean
90brw_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
91{
92   struct brw_context *brw = brw_context(ctx);
93   struct intel_context *intel = &brw->intel;
94
95   struct brw_shader *shader =
96      (struct brw_shader *)prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
97   if (shader != NULL) {
98      void *mem_ctx = ralloc_context(NULL);
99      bool progress;
100
101      if (shader->ir)
102	 ralloc_free(shader->ir);
103      shader->ir = new(shader) exec_list;
104      clone_ir_list(mem_ctx, shader->ir, shader->base.ir);
105
106      do_mat_op_to_vec(shader->ir);
107      lower_instructions(shader->ir,
108			 MOD_TO_FRACT |
109			 DIV_TO_MUL_RCP |
110			 SUB_TO_ADD_NEG |
111			 EXP_TO_EXP2 |
112			 LOG_TO_LOG2);
113
114      /* Pre-gen6 HW can only nest if-statements 16 deep.  Beyond this,
115       * if-statements need to be flattened.
116       */
117      if (intel->gen < 6)
118	 lower_if_to_cond_assign(shader->ir, 16);
119
120      do_lower_texture_projection(shader->ir);
121      do_vec_index_to_cond_assign(shader->ir);
122      brw_do_cubemap_normalize(shader->ir);
123
124      do {
125	 progress = false;
126
127	 brw_do_channel_expressions(shader->ir);
128	 brw_do_vector_splitting(shader->ir);
129
130	 progress = do_lower_jumps(shader->ir, true, true,
131				   true, /* main return */
132				   false, /* continue */
133				   false /* loops */
134				   ) || progress;
135
136	 progress = do_common_optimization(shader->ir, true, 32) || progress;
137
138	 progress = lower_noise(shader->ir) || progress;
139	 progress =
140	    lower_variable_index_to_cond_assign(shader->ir,
141						GL_TRUE, /* input */
142						GL_TRUE, /* output */
143						GL_TRUE, /* temp */
144						GL_TRUE /* uniform */
145						) || progress;
146	 progress = lower_quadop_vector(shader->ir, false) || progress;
147      } while (progress);
148
149      validate_ir_tree(shader->ir);
150
151      reparent_ir(shader->ir, shader->ir);
152      ralloc_free(mem_ctx);
153   }
154
155   if (!_mesa_ir_link_shader(ctx, prog))
156      return GL_FALSE;
157
158   return GL_TRUE;
159}
160
161static int
162type_size(const struct glsl_type *type)
163{
164   unsigned int size, i;
165
166   switch (type->base_type) {
167   case GLSL_TYPE_UINT:
168   case GLSL_TYPE_INT:
169   case GLSL_TYPE_FLOAT:
170   case GLSL_TYPE_BOOL:
171      return type->components();
172   case GLSL_TYPE_ARRAY:
173      return type_size(type->fields.array) * type->length;
174   case GLSL_TYPE_STRUCT:
175      size = 0;
176      for (i = 0; i < type->length; i++) {
177	 size += type_size(type->fields.structure[i].type);
178      }
179      return size;
180   case GLSL_TYPE_SAMPLER:
181      /* Samplers take up no register space, since they're baked in at
182       * link time.
183       */
184      return 0;
185   default:
186      assert(!"not reached");
187      return 0;
188   }
189}
190
191/**
192 * Returns how many MRFs an FS opcode will write over.
193 *
194 * Note that this is not the 0 or 1 implied writes in an actual gen
195 * instruction -- the FS opcodes often generate MOVs in addition.
196 */
197int
198fs_visitor::implied_mrf_writes(fs_inst *inst)
199{
200   if (inst->mlen == 0)
201      return 0;
202
203   switch (inst->opcode) {
204   case FS_OPCODE_RCP:
205   case FS_OPCODE_RSQ:
206   case FS_OPCODE_SQRT:
207   case FS_OPCODE_EXP2:
208   case FS_OPCODE_LOG2:
209   case FS_OPCODE_SIN:
210   case FS_OPCODE_COS:
211      return 1;
212   case FS_OPCODE_POW:
213      return 2;
214   case FS_OPCODE_TEX:
215   case FS_OPCODE_TXB:
216   case FS_OPCODE_TXL:
217      return 1;
218   case FS_OPCODE_FB_WRITE:
219      return 2;
220   case FS_OPCODE_PULL_CONSTANT_LOAD:
221   case FS_OPCODE_UNSPILL:
222      return 1;
223   case FS_OPCODE_SPILL:
224      return 2;
225   default:
226      assert(!"not reached");
227      return inst->mlen;
228   }
229}
230
231int
232fs_visitor::virtual_grf_alloc(int size)
233{
234   if (virtual_grf_array_size <= virtual_grf_next) {
235      if (virtual_grf_array_size == 0)
236	 virtual_grf_array_size = 16;
237      else
238	 virtual_grf_array_size *= 2;
239      virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
240				   virtual_grf_array_size);
241
242      /* This slot is always unused. */
243      virtual_grf_sizes[0] = 0;
244   }
245   virtual_grf_sizes[virtual_grf_next] = size;
246   return virtual_grf_next++;
247}
248
249/** Fixed HW reg constructor. */
250fs_reg::fs_reg(enum register_file file, int hw_reg)
251{
252   init();
253   this->file = file;
254   this->hw_reg = hw_reg;
255   this->type = BRW_REGISTER_TYPE_F;
256}
257
258/** Fixed HW reg constructor. */
259fs_reg::fs_reg(enum register_file file, int hw_reg, uint32_t type)
260{
261   init();
262   this->file = file;
263   this->hw_reg = hw_reg;
264   this->type = type;
265}
266
267int
268brw_type_for_base_type(const struct glsl_type *type)
269{
270   switch (type->base_type) {
271   case GLSL_TYPE_FLOAT:
272      return BRW_REGISTER_TYPE_F;
273   case GLSL_TYPE_INT:
274   case GLSL_TYPE_BOOL:
275      return BRW_REGISTER_TYPE_D;
276   case GLSL_TYPE_UINT:
277      return BRW_REGISTER_TYPE_UD;
278   case GLSL_TYPE_ARRAY:
279   case GLSL_TYPE_STRUCT:
280   case GLSL_TYPE_SAMPLER:
281      /* These should be overridden with the type of the member when
282       * dereferenced into.  BRW_REGISTER_TYPE_UD seems like a likely
283       * way to trip up if we don't.
284       */
285      return BRW_REGISTER_TYPE_UD;
286   default:
287      assert(!"not reached");
288      return BRW_REGISTER_TYPE_F;
289   }
290}
291
292/** Automatic reg constructor. */
293fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
294{
295   init();
296
297   this->file = GRF;
298   this->reg = v->virtual_grf_alloc(type_size(type));
299   this->reg_offset = 0;
300   this->type = brw_type_for_base_type(type);
301}
302
303fs_reg *
304fs_visitor::variable_storage(ir_variable *var)
305{
306   return (fs_reg *)hash_table_find(this->variable_ht, var);
307}
308
309/* Our support for uniforms is piggy-backed on the struct
310 * gl_fragment_program, because that's where the values actually
311 * get stored, rather than in some global gl_shader_program uniform
312 * store.
313 */
314int
315fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
316{
317   unsigned int offset = 0;
318
319   if (type->is_matrix()) {
320      const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
321							type->vector_elements,
322							1);
323
324      for (unsigned int i = 0; i < type->matrix_columns; i++) {
325	 offset += setup_uniform_values(loc + offset, column);
326      }
327
328      return offset;
329   }
330
331   switch (type->base_type) {
332   case GLSL_TYPE_FLOAT:
333   case GLSL_TYPE_UINT:
334   case GLSL_TYPE_INT:
335   case GLSL_TYPE_BOOL:
336      for (unsigned int i = 0; i < type->vector_elements; i++) {
337	 unsigned int param = c->prog_data.nr_params++;
338
339	 assert(param < ARRAY_SIZE(c->prog_data.param));
340
341	 switch (type->base_type) {
342	 case GLSL_TYPE_FLOAT:
343	    c->prog_data.param_convert[param] = PARAM_NO_CONVERT;
344	    break;
345	 case GLSL_TYPE_UINT:
346	    c->prog_data.param_convert[param] = PARAM_CONVERT_F2U;
347	    break;
348	 case GLSL_TYPE_INT:
349	    c->prog_data.param_convert[param] = PARAM_CONVERT_F2I;
350	    break;
351	 case GLSL_TYPE_BOOL:
352	    c->prog_data.param_convert[param] = PARAM_CONVERT_F2B;
353	    break;
354	 default:
355	    assert(!"not reached");
356	    c->prog_data.param_convert[param] = PARAM_NO_CONVERT;
357	    break;
358	 }
359	 this->param_index[param] = loc;
360	 this->param_offset[param] = i;
361      }
362      return 1;
363
364   case GLSL_TYPE_STRUCT:
365      for (unsigned int i = 0; i < type->length; i++) {
366	 offset += setup_uniform_values(loc + offset,
367					type->fields.structure[i].type);
368      }
369      return offset;
370
371   case GLSL_TYPE_ARRAY:
372      for (unsigned int i = 0; i < type->length; i++) {
373	 offset += setup_uniform_values(loc + offset, type->fields.array);
374      }
375      return offset;
376
377   case GLSL_TYPE_SAMPLER:
378      /* The sampler takes up a slot, but we don't use any values from it. */
379      return 1;
380
381   default:
382      assert(!"not reached");
383      return 0;
384   }
385}
386
387
388/* Our support for builtin uniforms is even scarier than non-builtin.
389 * It sits on top of the PROG_STATE_VAR parameters that are
390 * automatically updated from GL context state.
391 */
392void
393fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
394{
395   const struct gl_builtin_uniform_desc *statevar = NULL;
396
397   for (unsigned int i = 0; _mesa_builtin_uniform_desc[i].name; i++) {
398      statevar = &_mesa_builtin_uniform_desc[i];
399      if (strcmp(ir->name, _mesa_builtin_uniform_desc[i].name) == 0)
400	 break;
401   }
402
403   if (!statevar->name) {
404      this->fail = true;
405      printf("Failed to find builtin uniform `%s'\n", ir->name);
406      return;
407   }
408
409   int array_count;
410   if (ir->type->is_array()) {
411      array_count = ir->type->length;
412   } else {
413      array_count = 1;
414   }
415
416   for (int a = 0; a < array_count; a++) {
417      for (unsigned int i = 0; i < statevar->num_elements; i++) {
418	 struct gl_builtin_uniform_element *element = &statevar->elements[i];
419	 int tokens[STATE_LENGTH];
420
421	 memcpy(tokens, element->tokens, sizeof(element->tokens));
422	 if (ir->type->is_array()) {
423	    tokens[1] = a;
424	 }
425
426	 /* This state reference has already been setup by ir_to_mesa,
427	  * but we'll get the same index back here.
428	  */
429	 int index = _mesa_add_state_reference(this->fp->Base.Parameters,
430					       (gl_state_index *)tokens);
431
432	 /* Add each of the unique swizzles of the element as a
433	  * parameter.  This'll end up matching the expected layout of
434	  * the array/matrix/structure we're trying to fill in.
435	  */
436	 int last_swiz = -1;
437	 for (unsigned int i = 0; i < 4; i++) {
438	    int swiz = GET_SWZ(element->swizzle, i);
439	    if (swiz == last_swiz)
440	       break;
441	    last_swiz = swiz;
442
443	    c->prog_data.param_convert[c->prog_data.nr_params] =
444	       PARAM_NO_CONVERT;
445	    this->param_index[c->prog_data.nr_params] = index;
446	    this->param_offset[c->prog_data.nr_params] = swiz;
447	    c->prog_data.nr_params++;
448	 }
449      }
450   }
451}
452
453fs_reg *
454fs_visitor::emit_fragcoord_interpolation(ir_variable *ir)
455{
456   fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
457   fs_reg wpos = *reg;
458   fs_reg neg_y = this->pixel_y;
459   neg_y.negate = true;
460   bool flip = !ir->origin_upper_left ^ c->key.render_to_fbo;
461
462   /* gl_FragCoord.x */
463   if (ir->pixel_center_integer) {
464      emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_x));
465   } else {
466      emit(fs_inst(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f)));
467   }
468   wpos.reg_offset++;
469
470   /* gl_FragCoord.y */
471   if (!flip && ir->pixel_center_integer) {
472      emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_y));
473   } else {
474      fs_reg pixel_y = this->pixel_y;
475      float offset = (ir->pixel_center_integer ? 0.0 : 0.5);
476
477      if (flip) {
478	 pixel_y.negate = true;
479	 offset += c->key.drawable_height - 1.0;
480      }
481
482      emit(fs_inst(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset)));
483   }
484   wpos.reg_offset++;
485
486   /* gl_FragCoord.z */
487   if (intel->gen >= 6) {
488      emit(fs_inst(BRW_OPCODE_MOV, wpos,
489		   fs_reg(brw_vec8_grf(c->source_depth_reg, 0))));
490   } else {
491      emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
492		   interp_reg(FRAG_ATTRIB_WPOS, 2)));
493   }
494   wpos.reg_offset++;
495
496   /* gl_FragCoord.w: Already set up in emit_interpolation */
497   emit(fs_inst(BRW_OPCODE_MOV, wpos, this->wpos_w));
498
499   return reg;
500}
501
502fs_reg *
503fs_visitor::emit_general_interpolation(ir_variable *ir)
504{
505   fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
506   /* Interpolation is always in floating point regs. */
507   reg->type = BRW_REGISTER_TYPE_F;
508   fs_reg attr = *reg;
509
510   unsigned int array_elements;
511   const glsl_type *type;
512
513   if (ir->type->is_array()) {
514      array_elements = ir->type->length;
515      if (array_elements == 0) {
516	 this->fail = true;
517      }
518      type = ir->type->fields.array;
519   } else {
520      array_elements = 1;
521      type = ir->type;
522   }
523
524   int location = ir->location;
525   for (unsigned int i = 0; i < array_elements; i++) {
526      for (unsigned int j = 0; j < type->matrix_columns; j++) {
527	 if (urb_setup[location] == -1) {
528	    /* If there's no incoming setup data for this slot, don't
529	     * emit interpolation for it.
530	     */
531	    attr.reg_offset += type->vector_elements;
532	    location++;
533	    continue;
534	 }
535
536	 if (c->key.flat_shade && (location == FRAG_ATTRIB_COL0 ||
537				   location == FRAG_ATTRIB_COL1)) {
538	    /* Constant interpolation (flat shading) case. The SF has
539	     * handed us defined values in only the constant offset
540	     * field of the setup reg.
541	     */
542	    for (unsigned int c = 0; c < type->vector_elements; c++) {
543	       struct brw_reg interp = interp_reg(location, c);
544	       interp = suboffset(interp, 3);
545	       emit(fs_inst(FS_OPCODE_CINTERP, attr, fs_reg(interp)));
546	       attr.reg_offset++;
547	    }
548	 } else {
549	    /* Perspective interpolation case. */
550	    for (unsigned int c = 0; c < type->vector_elements; c++) {
551	       struct brw_reg interp = interp_reg(location, c);
552	       emit(fs_inst(FS_OPCODE_LINTERP,
553			    attr,
554			    this->delta_x,
555			    this->delta_y,
556			    fs_reg(interp)));
557	       attr.reg_offset++;
558	    }
559
560	    if (intel->gen < 6) {
561	       attr.reg_offset -= type->vector_elements;
562	       for (unsigned int c = 0; c < type->vector_elements; c++) {
563		  emit(fs_inst(BRW_OPCODE_MUL,
564			       attr,
565			       attr,
566			       this->pixel_w));
567		  attr.reg_offset++;
568	       }
569	    }
570	 }
571	 location++;
572      }
573   }
574
575   return reg;
576}
577
578fs_reg *
579fs_visitor::emit_frontfacing_interpolation(ir_variable *ir)
580{
581   fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
582
583   /* The frontfacing comes in as a bit in the thread payload. */
584   if (intel->gen >= 6) {
585      emit(fs_inst(BRW_OPCODE_ASR,
586		   *reg,
587		   fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
588		   fs_reg(15)));
589      emit(fs_inst(BRW_OPCODE_NOT,
590		   *reg,
591		   *reg));
592      emit(fs_inst(BRW_OPCODE_AND,
593		   *reg,
594		   *reg,
595		   fs_reg(1)));
596   } else {
597      struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
598      /* bit 31 is "primitive is back face", so checking < (1 << 31) gives
599       * us front face
600       */
601      fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP,
602				   *reg,
603				   fs_reg(r1_6ud),
604				   fs_reg(1u << 31)));
605      inst->conditional_mod = BRW_CONDITIONAL_L;
606      emit(fs_inst(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u)));
607   }
608
609   return reg;
610}
611
612fs_inst *
613fs_visitor::emit_math(fs_opcodes opcode, fs_reg dst, fs_reg src)
614{
615   switch (opcode) {
616   case FS_OPCODE_RCP:
617   case FS_OPCODE_RSQ:
618   case FS_OPCODE_SQRT:
619   case FS_OPCODE_EXP2:
620   case FS_OPCODE_LOG2:
621   case FS_OPCODE_SIN:
622   case FS_OPCODE_COS:
623      break;
624   default:
625      assert(!"not reached: bad math opcode");
626      return NULL;
627   }
628
629   /* Can't do hstride == 0 args to gen6 math, so expand it out.  We
630    * might be able to do better by doing execsize = 1 math and then
631    * expanding that result out, but we would need to be careful with
632    * masking.
633    *
634    * The hardware ignores source modifiers (negate and abs) on math
635    * instructions, so we also move to a temp to set those up.
636    */
637   if (intel->gen >= 6 && (src.file == UNIFORM ||
638			   src.abs ||
639			   src.negate)) {
640      fs_reg expanded = fs_reg(this, glsl_type::float_type);
641      emit(fs_inst(BRW_OPCODE_MOV, expanded, src));
642      src = expanded;
643   }
644
645   fs_inst *inst = emit(fs_inst(opcode, dst, src));
646
647   if (intel->gen < 6) {
648      inst->base_mrf = 2;
649      inst->mlen = 1;
650   }
651
652   return inst;
653}
654
655fs_inst *
656fs_visitor::emit_math(fs_opcodes opcode, fs_reg dst, fs_reg src0, fs_reg src1)
657{
658   int base_mrf = 2;
659   fs_inst *inst;
660
661   assert(opcode == FS_OPCODE_POW);
662
663   if (intel->gen >= 6) {
664      /* Can't do hstride == 0 args to gen6 math, so expand it out.
665       *
666       * The hardware ignores source modifiers (negate and abs) on math
667       * instructions, so we also move to a temp to set those up.
668       */
669      if (src0.file == UNIFORM || src0.abs || src0.negate) {
670	 fs_reg expanded = fs_reg(this, glsl_type::float_type);
671	 emit(fs_inst(BRW_OPCODE_MOV, expanded, src0));
672	 src0 = expanded;
673      }
674
675      if (src1.file == UNIFORM || src1.abs || src1.negate) {
676	 fs_reg expanded = fs_reg(this, glsl_type::float_type);
677	 emit(fs_inst(BRW_OPCODE_MOV, expanded, src1));
678	 src1 = expanded;
679      }
680
681      inst = emit(fs_inst(opcode, dst, src0, src1));
682   } else {
683      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + 1), src1));
684      inst = emit(fs_inst(opcode, dst, src0, reg_null_f));
685
686      inst->base_mrf = base_mrf;
687      inst->mlen = 2;
688   }
689   return inst;
690}
691
692void
693fs_visitor::visit(ir_variable *ir)
694{
695   fs_reg *reg = NULL;
696
697   if (variable_storage(ir))
698      return;
699
700   if (strcmp(ir->name, "gl_FragColor") == 0) {
701      this->frag_color = ir;
702   } else if (strcmp(ir->name, "gl_FragData") == 0) {
703      this->frag_data = ir;
704   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
705      this->frag_depth = ir;
706   }
707
708   if (ir->mode == ir_var_in) {
709      if (!strcmp(ir->name, "gl_FragCoord")) {
710	 reg = emit_fragcoord_interpolation(ir);
711      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
712	 reg = emit_frontfacing_interpolation(ir);
713      } else {
714	 reg = emit_general_interpolation(ir);
715      }
716      assert(reg);
717      hash_table_insert(this->variable_ht, reg, ir);
718      return;
719   }
720
721   if (ir->mode == ir_var_uniform) {
722      int param_index = c->prog_data.nr_params;
723
724      if (!strncmp(ir->name, "gl_", 3)) {
725	 setup_builtin_uniform_values(ir);
726      } else {
727	 setup_uniform_values(ir->location, ir->type);
728      }
729
730      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
731      reg->type = brw_type_for_base_type(ir->type);
732   }
733
734   if (!reg)
735      reg = new(this->mem_ctx) fs_reg(this, ir->type);
736
737   hash_table_insert(this->variable_ht, reg, ir);
738}
739
740void
741fs_visitor::visit(ir_dereference_variable *ir)
742{
743   fs_reg *reg = variable_storage(ir->var);
744   this->result = *reg;
745}
746
747void
748fs_visitor::visit(ir_dereference_record *ir)
749{
750   const glsl_type *struct_type = ir->record->type;
751
752   ir->record->accept(this);
753
754   unsigned int offset = 0;
755   for (unsigned int i = 0; i < struct_type->length; i++) {
756      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
757	 break;
758      offset += type_size(struct_type->fields.structure[i].type);
759   }
760   this->result.reg_offset += offset;
761   this->result.type = brw_type_for_base_type(ir->type);
762}
763
764void
765fs_visitor::visit(ir_dereference_array *ir)
766{
767   ir_constant *index;
768   int element_size;
769
770   ir->array->accept(this);
771   index = ir->array_index->as_constant();
772
773   element_size = type_size(ir->type);
774   this->result.type = brw_type_for_base_type(ir->type);
775
776   if (index) {
777      assert(this->result.file == UNIFORM ||
778	     (this->result.file == GRF &&
779	      this->result.reg != 0));
780      this->result.reg_offset += index->value.i[0] * element_size;
781   } else {
782      assert(!"FINISHME: non-constant array element");
783   }
784}
785
786/* Instruction selection: Produce a MOV.sat instead of
787 * MIN(MAX(val, 0), 1) when possible.
788 */
789bool
790fs_visitor::try_emit_saturate(ir_expression *ir)
791{
792   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
793
794   if (!sat_val)
795      return false;
796
797   sat_val->accept(this);
798   fs_reg src = this->result;
799
800   this->result = fs_reg(this, ir->type);
801   fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, src));
802   inst->saturate = true;
803
804   return true;
805}
806
807static uint32_t
808brw_conditional_for_comparison(unsigned int op)
809{
810   switch (op) {
811   case ir_binop_less:
812      return BRW_CONDITIONAL_L;
813   case ir_binop_greater:
814      return BRW_CONDITIONAL_G;
815   case ir_binop_lequal:
816      return BRW_CONDITIONAL_LE;
817   case ir_binop_gequal:
818      return BRW_CONDITIONAL_GE;
819   case ir_binop_equal:
820   case ir_binop_all_equal: /* same as equal for scalars */
821      return BRW_CONDITIONAL_Z;
822   case ir_binop_nequal:
823   case ir_binop_any_nequal: /* same as nequal for scalars */
824      return BRW_CONDITIONAL_NZ;
825   default:
826      assert(!"not reached: bad operation for comparison");
827      return BRW_CONDITIONAL_NZ;
828   }
829}
830
831void
832fs_visitor::visit(ir_expression *ir)
833{
834   unsigned int operand;
835   fs_reg op[2], temp;
836   fs_inst *inst;
837
838   assert(ir->get_num_operands() <= 2);
839
840   if (try_emit_saturate(ir))
841      return;
842
843   for (operand = 0; operand < ir->get_num_operands(); operand++) {
844      ir->operands[operand]->accept(this);
845      if (this->result.file == BAD_FILE) {
846	 ir_print_visitor v;
847	 printf("Failed to get tree for expression operand:\n");
848	 ir->operands[operand]->accept(&v);
849	 this->fail = true;
850      }
851      op[operand] = this->result;
852
853      /* Matrix expression operands should have been broken down to vector
854       * operations already.
855       */
856      assert(!ir->operands[operand]->type->is_matrix());
857      /* And then those vector operands should have been broken down to scalar.
858       */
859      assert(!ir->operands[operand]->type->is_vector());
860   }
861
862   /* Storage for our result.  If our result goes into an assignment, it will
863    * just get copy-propagated out, so no worries.
864    */
865   this->result = fs_reg(this, ir->type);
866
867   switch (ir->operation) {
868   case ir_unop_logic_not:
869      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
870       * ones complement of the whole register, not just bit 0.
871       */
872      emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1)));
873      break;
874   case ir_unop_neg:
875      op[0].negate = !op[0].negate;
876      this->result = op[0];
877      break;
878   case ir_unop_abs:
879      op[0].abs = true;
880      op[0].negate = false;
881      this->result = op[0];
882      break;
883   case ir_unop_sign:
884      temp = fs_reg(this, ir->type);
885
886      emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(0.0f)));
887
888      inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f)));
889      inst->conditional_mod = BRW_CONDITIONAL_G;
890      inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(1.0f)));
891      inst->predicated = true;
892
893      inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f)));
894      inst->conditional_mod = BRW_CONDITIONAL_L;
895      inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f)));
896      inst->predicated = true;
897
898      break;
899   case ir_unop_rcp:
900      emit_math(FS_OPCODE_RCP, this->result, op[0]);
901      break;
902
903   case ir_unop_exp2:
904      emit_math(FS_OPCODE_EXP2, this->result, op[0]);
905      break;
906   case ir_unop_log2:
907      emit_math(FS_OPCODE_LOG2, this->result, op[0]);
908      break;
909   case ir_unop_exp:
910   case ir_unop_log:
911      assert(!"not reached: should be handled by ir_explog_to_explog2");
912      break;
913   case ir_unop_sin:
914   case ir_unop_sin_reduced:
915      emit_math(FS_OPCODE_SIN, this->result, op[0]);
916      break;
917   case ir_unop_cos:
918   case ir_unop_cos_reduced:
919      emit_math(FS_OPCODE_COS, this->result, op[0]);
920      break;
921
922   case ir_unop_dFdx:
923      emit(fs_inst(FS_OPCODE_DDX, this->result, op[0]));
924      break;
925   case ir_unop_dFdy:
926      emit(fs_inst(FS_OPCODE_DDY, this->result, op[0]));
927      break;
928
929   case ir_binop_add:
930      emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], op[1]));
931      break;
932   case ir_binop_sub:
933      assert(!"not reached: should be handled by ir_sub_to_add_neg");
934      break;
935
936   case ir_binop_mul:
937      emit(fs_inst(BRW_OPCODE_MUL, this->result, op[0], op[1]));
938      break;
939   case ir_binop_div:
940      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
941      break;
942   case ir_binop_mod:
943      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
944      break;
945
946   case ir_binop_less:
947   case ir_binop_greater:
948   case ir_binop_lequal:
949   case ir_binop_gequal:
950   case ir_binop_equal:
951   case ir_binop_all_equal:
952   case ir_binop_nequal:
953   case ir_binop_any_nequal:
954      temp = this->result;
955      /* original gen4 does implicit conversion before comparison. */
956      if (intel->gen < 5)
957	 temp.type = op[0].type;
958
959      inst = emit(fs_inst(BRW_OPCODE_CMP, temp, op[0], op[1]));
960      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
961      emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
962      break;
963
964   case ir_binop_logic_xor:
965      emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1]));
966      break;
967
968   case ir_binop_logic_or:
969      emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1]));
970      break;
971
972   case ir_binop_logic_and:
973      emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1]));
974      break;
975
976   case ir_binop_dot:
977   case ir_unop_any:
978      assert(!"not reached: should be handled by brw_fs_channel_expressions");
979      break;
980
981   case ir_unop_noise:
982      assert(!"not reached: should be handled by lower_noise");
983      break;
984
985   case ir_quadop_vector:
986      assert(!"not reached: should be handled by lower_quadop_vector");
987      break;
988
989   case ir_unop_sqrt:
990      emit_math(FS_OPCODE_SQRT, this->result, op[0]);
991      break;
992
993   case ir_unop_rsq:
994      emit_math(FS_OPCODE_RSQ, this->result, op[0]);
995      break;
996
997   case ir_unop_i2f:
998   case ir_unop_b2f:
999   case ir_unop_b2i:
1000   case ir_unop_f2i:
1001      emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
1002      break;
1003   case ir_unop_f2b:
1004   case ir_unop_i2b:
1005      temp = this->result;
1006      /* original gen4 does implicit conversion before comparison. */
1007      if (intel->gen < 5)
1008	 temp.type = op[0].type;
1009
1010      inst = emit(fs_inst(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f)));
1011      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1012      inst = emit(fs_inst(BRW_OPCODE_AND, this->result,
1013			  this->result, fs_reg(1)));
1014      break;
1015
1016   case ir_unop_trunc:
1017      emit(fs_inst(BRW_OPCODE_RNDZ, this->result, op[0]));
1018      break;
1019   case ir_unop_ceil:
1020      op[0].negate = !op[0].negate;
1021      inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1022      this->result.negate = true;
1023      break;
1024   case ir_unop_floor:
1025      inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1026      break;
1027   case ir_unop_fract:
1028      inst = emit(fs_inst(BRW_OPCODE_FRC, this->result, op[0]));
1029      break;
1030   case ir_unop_round_even:
1031      emit(fs_inst(BRW_OPCODE_RNDE, this->result, op[0]));
1032      break;
1033
1034   case ir_binop_min:
1035      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1036      inst->conditional_mod = BRW_CONDITIONAL_L;
1037
1038      inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
1039      inst->predicated = true;
1040      break;
1041   case ir_binop_max:
1042      inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1043      inst->conditional_mod = BRW_CONDITIONAL_G;
1044
1045      inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
1046      inst->predicated = true;
1047      break;
1048
1049   case ir_binop_pow:
1050      emit_math(FS_OPCODE_POW, this->result, op[0], op[1]);
1051      break;
1052
1053   case ir_unop_bit_not:
1054      inst = emit(fs_inst(BRW_OPCODE_NOT, this->result, op[0]));
1055      break;
1056   case ir_binop_bit_and:
1057      inst = emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1]));
1058      break;
1059   case ir_binop_bit_xor:
1060      inst = emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1]));
1061      break;
1062   case ir_binop_bit_or:
1063      inst = emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1]));
1064      break;
1065
1066   case ir_unop_u2f:
1067   case ir_binop_lshift:
1068   case ir_binop_rshift:
1069      assert(!"GLSL 1.30 features unsupported");
1070      break;
1071   }
1072}
1073
1074void
1075fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
1076				   const glsl_type *type, bool predicated)
1077{
1078   switch (type->base_type) {
1079   case GLSL_TYPE_FLOAT:
1080   case GLSL_TYPE_UINT:
1081   case GLSL_TYPE_INT:
1082   case GLSL_TYPE_BOOL:
1083      for (unsigned int i = 0; i < type->components(); i++) {
1084	 l.type = brw_type_for_base_type(type);
1085	 r.type = brw_type_for_base_type(type);
1086
1087	 fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
1088	 inst->predicated = predicated;
1089
1090	 l.reg_offset++;
1091	 r.reg_offset++;
1092      }
1093      break;
1094   case GLSL_TYPE_ARRAY:
1095      for (unsigned int i = 0; i < type->length; i++) {
1096	 emit_assignment_writes(l, r, type->fields.array, predicated);
1097      }
1098      break;
1099
1100   case GLSL_TYPE_STRUCT:
1101      for (unsigned int i = 0; i < type->length; i++) {
1102	 emit_assignment_writes(l, r, type->fields.structure[i].type,
1103				predicated);
1104      }
1105      break;
1106
1107   case GLSL_TYPE_SAMPLER:
1108      break;
1109
1110   default:
1111      assert(!"not reached");
1112      break;
1113   }
1114}
1115
1116void
1117fs_visitor::visit(ir_assignment *ir)
1118{
1119   struct fs_reg l, r;
1120   fs_inst *inst;
1121
1122   /* FINISHME: arrays on the lhs */
1123   ir->lhs->accept(this);
1124   l = this->result;
1125
1126   ir->rhs->accept(this);
1127   r = this->result;
1128
1129   assert(l.file != BAD_FILE);
1130   assert(r.file != BAD_FILE);
1131
1132   if (ir->condition) {
1133      emit_bool_to_cond_code(ir->condition);
1134   }
1135
1136   if (ir->lhs->type->is_scalar() ||
1137       ir->lhs->type->is_vector()) {
1138      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
1139	 if (ir->write_mask & (1 << i)) {
1140	    inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
1141	    if (ir->condition)
1142	       inst->predicated = true;
1143	    r.reg_offset++;
1144	 }
1145	 l.reg_offset++;
1146      }
1147   } else {
1148      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
1149   }
1150}
1151
1152fs_inst *
1153fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate)
1154{
1155   int mlen;
1156   int base_mrf = 1;
1157   bool simd16 = false;
1158   fs_reg orig_dst;
1159
1160   /* g0 header. */
1161   mlen = 1;
1162
1163   if (ir->shadow_comparitor) {
1164      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1165	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
1166		      coordinate));
1167	 coordinate.reg_offset++;
1168      }
1169      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1170      mlen += 3;
1171
1172      if (ir->op == ir_tex) {
1173	 /* There's no plain shadow compare message, so we use shadow
1174	  * compare with a bias of 0.0.
1175	  */
1176	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1177		      fs_reg(0.0f)));
1178	 mlen++;
1179      } else if (ir->op == ir_txb) {
1180	 ir->lod_info.bias->accept(this);
1181	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1182		      this->result));
1183	 mlen++;
1184      } else {
1185	 assert(ir->op == ir_txl);
1186	 ir->lod_info.lod->accept(this);
1187	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1188		      this->result));
1189	 mlen++;
1190      }
1191
1192      ir->shadow_comparitor->accept(this);
1193      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1194      mlen++;
1195   } else if (ir->op == ir_tex) {
1196      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1197	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
1198		      coordinate));
1199	 coordinate.reg_offset++;
1200      }
1201      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1202      mlen += 3;
1203   } else {
1204      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1205       * instructions.  We'll need to do SIMD16 here.
1206       */
1207      assert(ir->op == ir_txb || ir->op == ir_txl);
1208
1209      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1210	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2),
1211		      coordinate));
1212	 coordinate.reg_offset++;
1213      }
1214
1215      /* lod/bias appears after u/v/r. */
1216      mlen += 6;
1217
1218      if (ir->op == ir_txb) {
1219	 ir->lod_info.bias->accept(this);
1220	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1221		      this->result));
1222	 mlen++;
1223      } else {
1224	 ir->lod_info.lod->accept(this);
1225	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1226		      this->result));
1227	 mlen++;
1228      }
1229
1230      /* The unused upper half. */
1231      mlen++;
1232
1233      /* Now, since we're doing simd16, the return is 2 interleaved
1234       * vec4s where the odd-indexed ones are junk. We'll need to move
1235       * this weirdness around to the expected layout.
1236       */
1237      simd16 = true;
1238      orig_dst = dst;
1239      dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
1240						       2));
1241      dst.type = BRW_REGISTER_TYPE_F;
1242   }
1243
1244   fs_inst *inst = NULL;
1245   switch (ir->op) {
1246   case ir_tex:
1247      inst = emit(fs_inst(FS_OPCODE_TEX, dst));
1248      break;
1249   case ir_txb:
1250      inst = emit(fs_inst(FS_OPCODE_TXB, dst));
1251      break;
1252   case ir_txl:
1253      inst = emit(fs_inst(FS_OPCODE_TXL, dst));
1254      break;
1255   case ir_txd:
1256   case ir_txf:
1257      assert(!"GLSL 1.30 features unsupported");
1258      break;
1259   }
1260   inst->base_mrf = base_mrf;
1261   inst->mlen = mlen;
1262
1263   if (simd16) {
1264      for (int i = 0; i < 4; i++) {
1265	 emit(fs_inst(BRW_OPCODE_MOV, orig_dst, dst));
1266	 orig_dst.reg_offset++;
1267	 dst.reg_offset += 2;
1268      }
1269   }
1270
1271   return inst;
1272}
1273
1274fs_inst *
1275fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate)
1276{
1277   /* gen5's SIMD8 sampler has slots for u, v, r, array index, then
1278    * optional parameters like shadow comparitor or LOD bias.  If
1279    * optional parameters aren't present, those base slots are
1280    * optional and don't need to be included in the message.
1281    *
1282    * We don't fill in the unnecessary slots regardless, which may
1283    * look surprising in the disassembly.
1284    */
1285   int mlen = 1; /* g0 header always present. */
1286   int base_mrf = 1;
1287
1288   for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1289      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
1290		   coordinate));
1291      coordinate.reg_offset++;
1292   }
1293   mlen += ir->coordinate->type->vector_elements;
1294
1295   if (ir->shadow_comparitor) {
1296      mlen = MAX2(mlen, 5);
1297
1298      ir->shadow_comparitor->accept(this);
1299      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1300      mlen++;
1301   }
1302
1303   fs_inst *inst = NULL;
1304   switch (ir->op) {
1305   case ir_tex:
1306      inst = emit(fs_inst(FS_OPCODE_TEX, dst));
1307      break;
1308   case ir_txb:
1309      ir->lod_info.bias->accept(this);
1310      mlen = MAX2(mlen, 5);
1311      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1312      mlen++;
1313
1314      inst = emit(fs_inst(FS_OPCODE_TXB, dst));
1315      break;
1316   case ir_txl:
1317      ir->lod_info.lod->accept(this);
1318      mlen = MAX2(mlen, 5);
1319      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1320      mlen++;
1321
1322      inst = emit(fs_inst(FS_OPCODE_TXL, dst));
1323      break;
1324   case ir_txd:
1325   case ir_txf:
1326      assert(!"GLSL 1.30 features unsupported");
1327      break;
1328   }
1329   inst->base_mrf = base_mrf;
1330   inst->mlen = mlen;
1331
1332   return inst;
1333}
1334
1335void
1336fs_visitor::visit(ir_texture *ir)
1337{
1338   int sampler;
1339   fs_inst *inst = NULL;
1340
1341   ir->coordinate->accept(this);
1342   fs_reg coordinate = this->result;
1343
1344   if (ir->offset != NULL) {
1345      ir_constant *offset = ir->offset->as_constant();
1346      assert(offset != NULL);
1347
1348      signed char offsets[3];
1349      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++)
1350	 offsets[i] = (signed char) offset->value.i[i];
1351
1352      /* Combine all three offsets into a single unsigned dword:
1353       *
1354       *    bits 11:8 - U Offset (X component)
1355       *    bits  7:4 - V Offset (Y component)
1356       *    bits  3:0 - R Offset (Z component)
1357       */
1358      unsigned offset_bits = 0;
1359      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++) {
1360	 const unsigned shift = 4 * (2 - i);
1361	 offset_bits |= (offsets[i] << shift) & (0xF << shift);
1362      }
1363
1364      /* Explicitly set up the message header by copying g0 to msg reg m1. */
1365      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
1366				   fs_reg(GRF, 0, BRW_REGISTER_TYPE_UD)));
1367
1368      /* Then set the offset bits in DWord 2 of the message header. */
1369      emit(fs_inst(BRW_OPCODE_MOV,
1370		   fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1371				 BRW_REGISTER_TYPE_UD)),
1372		   fs_reg(brw_imm_uw(offset_bits))));
1373   }
1374
1375   /* Should be lowered by do_lower_texture_projection */
1376   assert(!ir->projector);
1377
1378   sampler = _mesa_get_sampler_uniform_value(ir->sampler,
1379					     ctx->Shader.CurrentFragmentProgram,
1380					     &brw->fragment_program->Base);
1381   sampler = c->fp->program.Base.SamplerUnits[sampler];
1382
1383   /* The 965 requires the EU to do the normalization of GL rectangle
1384    * texture coordinates.  We use the program parameter state
1385    * tracking to get the scaling factor.
1386    */
1387   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1388      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1389      int tokens[STATE_LENGTH] = {
1390	 STATE_INTERNAL,
1391	 STATE_TEXRECT_SCALE,
1392	 sampler,
1393	 0,
1394	 0
1395      };
1396
1397      c->prog_data.param_convert[c->prog_data.nr_params] =
1398	 PARAM_NO_CONVERT;
1399      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1400	 PARAM_NO_CONVERT;
1401
1402      fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1403      fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1404      GLuint index = _mesa_add_state_reference(params,
1405					       (gl_state_index *)tokens);
1406
1407      this->param_index[c->prog_data.nr_params] = index;
1408      this->param_offset[c->prog_data.nr_params] = 0;
1409      c->prog_data.nr_params++;
1410      this->param_index[c->prog_data.nr_params] = index;
1411      this->param_offset[c->prog_data.nr_params] = 1;
1412      c->prog_data.nr_params++;
1413
1414      fs_reg dst = fs_reg(this, ir->coordinate->type);
1415      fs_reg src = coordinate;
1416      coordinate = dst;
1417
1418      emit(fs_inst(BRW_OPCODE_MUL, dst, src, scale_x));
1419      dst.reg_offset++;
1420      src.reg_offset++;
1421      emit(fs_inst(BRW_OPCODE_MUL, dst, src, scale_y));
1422   }
1423
1424   /* Writemasking doesn't eliminate channels on SIMD8 texture
1425    * samples, so don't worry about them.
1426    */
1427   fs_reg dst = fs_reg(this, glsl_type::vec4_type);
1428
1429   if (intel->gen < 5) {
1430      inst = emit_texture_gen4(ir, dst, coordinate);
1431   } else {
1432      inst = emit_texture_gen5(ir, dst, coordinate);
1433   }
1434
1435   /* If there's an offset, we already set up m1.  To avoid the implied move,
1436    * use the null register.  Otherwise, we want an implied move from g0.
1437    */
1438   if (ir->offset != NULL)
1439      inst->src[0] = fs_reg(brw_null_reg());
1440   else
1441      inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1442
1443   inst->sampler = sampler;
1444
1445   this->result = dst;
1446
1447   if (ir->shadow_comparitor)
1448      inst->shadow_compare = true;
1449
1450   if (c->key.tex_swizzles[inst->sampler] != SWIZZLE_NOOP) {
1451      fs_reg swizzle_dst = fs_reg(this, glsl_type::vec4_type);
1452
1453      for (int i = 0; i < 4; i++) {
1454	 int swiz = GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1455	 fs_reg l = swizzle_dst;
1456	 l.reg_offset += i;
1457
1458	 if (swiz == SWIZZLE_ZERO) {
1459	    emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(0.0f)));
1460	 } else if (swiz == SWIZZLE_ONE) {
1461	    emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(1.0f)));
1462	 } else {
1463	    fs_reg r = dst;
1464	    r.reg_offset += GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1465	    emit(fs_inst(BRW_OPCODE_MOV, l, r));
1466	 }
1467      }
1468      this->result = swizzle_dst;
1469   }
1470}
1471
1472void
1473fs_visitor::visit(ir_swizzle *ir)
1474{
1475   ir->val->accept(this);
1476   fs_reg val = this->result;
1477
1478   if (ir->type->vector_elements == 1) {
1479      this->result.reg_offset += ir->mask.x;
1480      return;
1481   }
1482
1483   fs_reg result = fs_reg(this, ir->type);
1484   this->result = result;
1485
1486   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1487      fs_reg channel = val;
1488      int swiz = 0;
1489
1490      switch (i) {
1491      case 0:
1492	 swiz = ir->mask.x;
1493	 break;
1494      case 1:
1495	 swiz = ir->mask.y;
1496	 break;
1497      case 2:
1498	 swiz = ir->mask.z;
1499	 break;
1500      case 3:
1501	 swiz = ir->mask.w;
1502	 break;
1503      }
1504
1505      channel.reg_offset += swiz;
1506      emit(fs_inst(BRW_OPCODE_MOV, result, channel));
1507      result.reg_offset++;
1508   }
1509}
1510
1511void
1512fs_visitor::visit(ir_discard *ir)
1513{
1514   fs_reg temp = fs_reg(this, glsl_type::uint_type);
1515
1516   assert(ir->condition == NULL); /* FINISHME */
1517
1518   emit(fs_inst(FS_OPCODE_DISCARD_NOT, temp, reg_null_d));
1519   emit(fs_inst(FS_OPCODE_DISCARD_AND, reg_null_d, temp));
1520   kill_emitted = true;
1521}
1522
1523void
1524fs_visitor::visit(ir_constant *ir)
1525{
1526   /* Set this->result to reg at the bottom of the function because some code
1527    * paths will cause this visitor to be applied to other fields.  This will
1528    * cause the value stored in this->result to be modified.
1529    *
1530    * Make reg constant so that it doesn't get accidentally modified along the
1531    * way.  Yes, I actually had this problem. :(
1532    */
1533   const fs_reg reg(this, ir->type);
1534   fs_reg dst_reg = reg;
1535
1536   if (ir->type->is_array()) {
1537      const unsigned size = type_size(ir->type->fields.array);
1538
1539      for (unsigned i = 0; i < ir->type->length; i++) {
1540	 ir->array_elements[i]->accept(this);
1541	 fs_reg src_reg = this->result;
1542
1543	 dst_reg.type = src_reg.type;
1544	 for (unsigned j = 0; j < size; j++) {
1545	    emit(fs_inst(BRW_OPCODE_MOV, dst_reg, src_reg));
1546	    src_reg.reg_offset++;
1547	    dst_reg.reg_offset++;
1548	 }
1549      }
1550   } else if (ir->type->is_record()) {
1551      foreach_list(node, &ir->components) {
1552	 ir_instruction *const field = (ir_instruction *) node;
1553	 const unsigned size = type_size(field->type);
1554
1555	 field->accept(this);
1556	 fs_reg src_reg = this->result;
1557
1558	 dst_reg.type = src_reg.type;
1559	 for (unsigned j = 0; j < size; j++) {
1560	    emit(fs_inst(BRW_OPCODE_MOV, dst_reg, src_reg));
1561	    src_reg.reg_offset++;
1562	    dst_reg.reg_offset++;
1563	 }
1564      }
1565   } else {
1566      const unsigned size = type_size(ir->type);
1567
1568      for (unsigned i = 0; i < size; i++) {
1569	 switch (ir->type->base_type) {
1570	 case GLSL_TYPE_FLOAT:
1571	    emit(fs_inst(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i])));
1572	    break;
1573	 case GLSL_TYPE_UINT:
1574	    emit(fs_inst(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i])));
1575	    break;
1576	 case GLSL_TYPE_INT:
1577	    emit(fs_inst(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i])));
1578	    break;
1579	 case GLSL_TYPE_BOOL:
1580	    emit(fs_inst(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i])));
1581	    break;
1582	 default:
1583	    assert(!"Non-float/uint/int/bool constant");
1584	 }
1585	 dst_reg.reg_offset++;
1586      }
1587   }
1588
1589   this->result = reg;
1590}
1591
1592void
1593fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1594{
1595   ir_expression *expr = ir->as_expression();
1596
1597   if (expr) {
1598      fs_reg op[2];
1599      fs_inst *inst;
1600
1601      assert(expr->get_num_operands() <= 2);
1602      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1603	 assert(expr->operands[i]->type->is_scalar());
1604
1605	 expr->operands[i]->accept(this);
1606	 op[i] = this->result;
1607      }
1608
1609      switch (expr->operation) {
1610      case ir_unop_logic_not:
1611	 inst = emit(fs_inst(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1)));
1612	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1613	 break;
1614
1615      case ir_binop_logic_xor:
1616	 inst = emit(fs_inst(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]));
1617	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1618	 break;
1619
1620      case ir_binop_logic_or:
1621	 inst = emit(fs_inst(BRW_OPCODE_OR, reg_null_d, op[0], op[1]));
1622	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1623	 break;
1624
1625      case ir_binop_logic_and:
1626	 inst = emit(fs_inst(BRW_OPCODE_AND, reg_null_d, op[0], op[1]));
1627	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1628	 break;
1629
1630      case ir_unop_f2b:
1631	 if (intel->gen >= 6) {
1632	    inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_d,
1633				op[0], fs_reg(0.0f)));
1634	 } else {
1635	    inst = emit(fs_inst(BRW_OPCODE_MOV, reg_null_f, op[0]));
1636	 }
1637	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1638	 break;
1639
1640      case ir_unop_i2b:
1641	 if (intel->gen >= 6) {
1642	    inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0)));
1643	 } else {
1644	    inst = emit(fs_inst(BRW_OPCODE_MOV, reg_null_d, op[0]));
1645	 }
1646	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1647	 break;
1648
1649      case ir_binop_greater:
1650      case ir_binop_gequal:
1651      case ir_binop_less:
1652      case ir_binop_lequal:
1653      case ir_binop_equal:
1654      case ir_binop_all_equal:
1655      case ir_binop_nequal:
1656      case ir_binop_any_nequal:
1657	 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]));
1658	 inst->conditional_mod =
1659	    brw_conditional_for_comparison(expr->operation);
1660	 break;
1661
1662      default:
1663	 assert(!"not reached");
1664	 this->fail = true;
1665	 break;
1666      }
1667      return;
1668   }
1669
1670   ir->accept(this);
1671
1672   if (intel->gen >= 6) {
1673      fs_inst *inst = emit(fs_inst(BRW_OPCODE_AND, reg_null_d,
1674				   this->result, fs_reg(1)));
1675      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1676   } else {
1677      fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, reg_null_d, this->result));
1678      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1679   }
1680}
1681
1682/**
1683 * Emit a gen6 IF statement with the comparison folded into the IF
1684 * instruction.
1685 */
1686void
1687fs_visitor::emit_if_gen6(ir_if *ir)
1688{
1689   ir_expression *expr = ir->condition->as_expression();
1690
1691   if (expr) {
1692      fs_reg op[2];
1693      fs_inst *inst;
1694      fs_reg temp;
1695
1696      assert(expr->get_num_operands() <= 2);
1697      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1698	 assert(expr->operands[i]->type->is_scalar());
1699
1700	 expr->operands[i]->accept(this);
1701	 op[i] = this->result;
1702      }
1703
1704      switch (expr->operation) {
1705      case ir_unop_logic_not:
1706	 inst = emit(fs_inst(BRW_OPCODE_IF, temp, op[0], fs_reg(0)));
1707	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1708	 return;
1709
1710      case ir_binop_logic_xor:
1711	 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], op[1]));
1712	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1713	 return;
1714
1715      case ir_binop_logic_or:
1716	 temp = fs_reg(this, glsl_type::bool_type);
1717	 emit(fs_inst(BRW_OPCODE_OR, temp, op[0], op[1]));
1718	 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0)));
1719	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1720	 return;
1721
1722      case ir_binop_logic_and:
1723	 temp = fs_reg(this, glsl_type::bool_type);
1724	 emit(fs_inst(BRW_OPCODE_AND, temp, op[0], op[1]));
1725	 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0)));
1726	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1727	 return;
1728
1729      case ir_unop_f2b:
1730	 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0)));
1731	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1732	 return;
1733
1734      case ir_unop_i2b:
1735	 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0)));
1736	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1737	 return;
1738
1739      case ir_binop_greater:
1740      case ir_binop_gequal:
1741      case ir_binop_less:
1742      case ir_binop_lequal:
1743      case ir_binop_equal:
1744      case ir_binop_all_equal:
1745      case ir_binop_nequal:
1746      case ir_binop_any_nequal:
1747	 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], op[1]));
1748	 inst->conditional_mod =
1749	    brw_conditional_for_comparison(expr->operation);
1750	 return;
1751      default:
1752	 assert(!"not reached");
1753	 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0)));
1754	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1755	 this->fail = true;
1756	 return;
1757      }
1758      return;
1759   }
1760
1761   ir->condition->accept(this);
1762
1763   fs_inst *inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0)));
1764   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1765}
1766
1767void
1768fs_visitor::visit(ir_if *ir)
1769{
1770   fs_inst *inst;
1771
1772   /* Don't point the annotation at the if statement, because then it plus
1773    * the then and else blocks get printed.
1774    */
1775   this->base_ir = ir->condition;
1776
1777   if (intel->gen >= 6) {
1778      emit_if_gen6(ir);
1779   } else {
1780      emit_bool_to_cond_code(ir->condition);
1781
1782      inst = emit(fs_inst(BRW_OPCODE_IF));
1783      inst->predicated = true;
1784   }
1785
1786   foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1787      ir_instruction *ir = (ir_instruction *)iter.get();
1788      this->base_ir = ir;
1789
1790      ir->accept(this);
1791   }
1792
1793   if (!ir->else_instructions.is_empty()) {
1794      emit(fs_inst(BRW_OPCODE_ELSE));
1795
1796      foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1797	 ir_instruction *ir = (ir_instruction *)iter.get();
1798	 this->base_ir = ir;
1799
1800	 ir->accept(this);
1801      }
1802   }
1803
1804   emit(fs_inst(BRW_OPCODE_ENDIF));
1805}
1806
1807void
1808fs_visitor::visit(ir_loop *ir)
1809{
1810   fs_reg counter = reg_undef;
1811
1812   if (ir->counter) {
1813      this->base_ir = ir->counter;
1814      ir->counter->accept(this);
1815      counter = *(variable_storage(ir->counter));
1816
1817      if (ir->from) {
1818	 this->base_ir = ir->from;
1819	 ir->from->accept(this);
1820
1821	 emit(fs_inst(BRW_OPCODE_MOV, counter, this->result));
1822      }
1823   }
1824
1825   emit(fs_inst(BRW_OPCODE_DO));
1826
1827   if (ir->to) {
1828      this->base_ir = ir->to;
1829      ir->to->accept(this);
1830
1831      fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_cmp,
1832				   counter, this->result));
1833      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1834
1835      inst = emit(fs_inst(BRW_OPCODE_BREAK));
1836      inst->predicated = true;
1837   }
1838
1839   foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1840      ir_instruction *ir = (ir_instruction *)iter.get();
1841
1842      this->base_ir = ir;
1843      ir->accept(this);
1844   }
1845
1846   if (ir->increment) {
1847      this->base_ir = ir->increment;
1848      ir->increment->accept(this);
1849      emit(fs_inst(BRW_OPCODE_ADD, counter, counter, this->result));
1850   }
1851
1852   emit(fs_inst(BRW_OPCODE_WHILE));
1853}
1854
1855void
1856fs_visitor::visit(ir_loop_jump *ir)
1857{
1858   switch (ir->mode) {
1859   case ir_loop_jump::jump_break:
1860      emit(fs_inst(BRW_OPCODE_BREAK));
1861      break;
1862   case ir_loop_jump::jump_continue:
1863      emit(fs_inst(BRW_OPCODE_CONTINUE));
1864      break;
1865   }
1866}
1867
1868void
1869fs_visitor::visit(ir_call *ir)
1870{
1871   assert(!"FINISHME");
1872}
1873
1874void
1875fs_visitor::visit(ir_return *ir)
1876{
1877   assert(!"FINISHME");
1878}
1879
1880void
1881fs_visitor::visit(ir_function *ir)
1882{
1883   /* Ignore function bodies other than main() -- we shouldn't see calls to
1884    * them since they should all be inlined before we get to ir_to_mesa.
1885    */
1886   if (strcmp(ir->name, "main") == 0) {
1887      const ir_function_signature *sig;
1888      exec_list empty;
1889
1890      sig = ir->matching_signature(&empty);
1891
1892      assert(sig);
1893
1894      foreach_iter(exec_list_iterator, iter, sig->body) {
1895	 ir_instruction *ir = (ir_instruction *)iter.get();
1896	 this->base_ir = ir;
1897
1898	 ir->accept(this);
1899      }
1900   }
1901}
1902
1903void
1904fs_visitor::visit(ir_function_signature *ir)
1905{
1906   assert(!"not reached");
1907   (void)ir;
1908}
1909
1910fs_inst *
1911fs_visitor::emit(fs_inst inst)
1912{
1913   fs_inst *list_inst = new(mem_ctx) fs_inst;
1914   *list_inst = inst;
1915
1916   list_inst->annotation = this->current_annotation;
1917   list_inst->ir = this->base_ir;
1918
1919   this->instructions.push_tail(list_inst);
1920
1921   return list_inst;
1922}
1923
1924/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1925void
1926fs_visitor::emit_dummy_fs()
1927{
1928   /* Everyone's favorite color. */
1929   emit(fs_inst(BRW_OPCODE_MOV,
1930		fs_reg(MRF, 2),
1931		fs_reg(1.0f)));
1932   emit(fs_inst(BRW_OPCODE_MOV,
1933		fs_reg(MRF, 3),
1934		fs_reg(0.0f)));
1935   emit(fs_inst(BRW_OPCODE_MOV,
1936		fs_reg(MRF, 4),
1937		fs_reg(1.0f)));
1938   emit(fs_inst(BRW_OPCODE_MOV,
1939		fs_reg(MRF, 5),
1940		fs_reg(0.0f)));
1941
1942   fs_inst *write;
1943   write = emit(fs_inst(FS_OPCODE_FB_WRITE,
1944			fs_reg(0),
1945			fs_reg(0)));
1946   write->base_mrf = 0;
1947}
1948
1949/* The register location here is relative to the start of the URB
1950 * data.  It will get adjusted to be a real location before
1951 * generate_code() time.
1952 */
1953struct brw_reg
1954fs_visitor::interp_reg(int location, int channel)
1955{
1956   int regnr = urb_setup[location] * 2 + channel / 2;
1957   int stride = (channel & 1) * 4;
1958
1959   assert(urb_setup[location] != -1);
1960
1961   return brw_vec1_grf(regnr, stride);
1962}
1963
1964/** Emits the interpolation for the varying inputs. */
1965void
1966fs_visitor::emit_interpolation_setup_gen4()
1967{
1968   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1969
1970   this->current_annotation = "compute pixel centers";
1971   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1972   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1973   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1974   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1975   emit(fs_inst(BRW_OPCODE_ADD,
1976		this->pixel_x,
1977		fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1978		fs_reg(brw_imm_v(0x10101010))));
1979   emit(fs_inst(BRW_OPCODE_ADD,
1980		this->pixel_y,
1981		fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1982		fs_reg(brw_imm_v(0x11001100))));
1983
1984   this->current_annotation = "compute pixel deltas from v0";
1985   if (brw->has_pln) {
1986      this->delta_x = fs_reg(this, glsl_type::vec2_type);
1987      this->delta_y = this->delta_x;
1988      this->delta_y.reg_offset++;
1989   } else {
1990      this->delta_x = fs_reg(this, glsl_type::float_type);
1991      this->delta_y = fs_reg(this, glsl_type::float_type);
1992   }
1993   emit(fs_inst(BRW_OPCODE_ADD,
1994		this->delta_x,
1995		this->pixel_x,
1996		fs_reg(negate(brw_vec1_grf(1, 0)))));
1997   emit(fs_inst(BRW_OPCODE_ADD,
1998		this->delta_y,
1999		this->pixel_y,
2000		fs_reg(negate(brw_vec1_grf(1, 1)))));
2001
2002   this->current_annotation = "compute pos.w and 1/pos.w";
2003   /* Compute wpos.w.  It's always in our setup, since it's needed to
2004    * interpolate the other attributes.
2005    */
2006   this->wpos_w = fs_reg(this, glsl_type::float_type);
2007   emit(fs_inst(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
2008		interp_reg(FRAG_ATTRIB_WPOS, 3)));
2009   /* Compute the pixel 1/W value from wpos.w. */
2010   this->pixel_w = fs_reg(this, glsl_type::float_type);
2011   emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w);
2012   this->current_annotation = NULL;
2013}
2014
2015/** Emits the interpolation for the varying inputs. */
2016void
2017fs_visitor::emit_interpolation_setup_gen6()
2018{
2019   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
2020
2021   /* If the pixel centers end up used, the setup is the same as for gen4. */
2022   this->current_annotation = "compute pixel centers";
2023   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
2024   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
2025   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
2026   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
2027   emit(fs_inst(BRW_OPCODE_ADD,
2028		int_pixel_x,
2029		fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
2030		fs_reg(brw_imm_v(0x10101010))));
2031   emit(fs_inst(BRW_OPCODE_ADD,
2032		int_pixel_y,
2033		fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
2034		fs_reg(brw_imm_v(0x11001100))));
2035
2036   /* As of gen6, we can no longer mix float and int sources.  We have
2037    * to turn the integer pixel centers into floats for their actual
2038    * use.
2039    */
2040   this->pixel_x = fs_reg(this, glsl_type::float_type);
2041   this->pixel_y = fs_reg(this, glsl_type::float_type);
2042   emit(fs_inst(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x));
2043   emit(fs_inst(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y));
2044
2045   this->current_annotation = "compute 1/pos.w";
2046   this->wpos_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
2047   this->pixel_w = fs_reg(this, glsl_type::float_type);
2048   emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w);
2049
2050   this->delta_x = fs_reg(brw_vec8_grf(2, 0));
2051   this->delta_y = fs_reg(brw_vec8_grf(3, 0));
2052
2053   this->current_annotation = NULL;
2054}
2055
2056void
2057fs_visitor::emit_fb_writes()
2058{
2059   this->current_annotation = "FB write header";
2060   GLboolean header_present = GL_TRUE;
2061   int nr = 0;
2062
2063   if (intel->gen >= 6 &&
2064       !this->kill_emitted &&
2065       c->key.nr_color_regions == 1) {
2066      header_present = false;
2067   }
2068
2069   if (header_present) {
2070      /* m0, m1 header */
2071      nr += 2;
2072   }
2073
2074   if (c->aa_dest_stencil_reg) {
2075      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2076		   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0))));
2077   }
2078
2079   /* Reserve space for color. It'll be filled in per MRT below. */
2080   int color_mrf = nr;
2081   nr += 4;
2082
2083   if (c->source_depth_to_render_target) {
2084      if (c->computes_depth) {
2085	 /* Hand over gl_FragDepth. */
2086	 assert(this->frag_depth);
2087	 fs_reg depth = *(variable_storage(this->frag_depth));
2088
2089	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++), depth));
2090      } else {
2091	 /* Pass through the payload depth. */
2092	 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2093		      fs_reg(brw_vec8_grf(c->source_depth_reg, 0))));
2094      }
2095   }
2096
2097   if (c->dest_depth_reg) {
2098      emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2099		   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0))));
2100   }
2101
2102   fs_reg color = reg_undef;
2103   if (this->frag_color)
2104      color = *(variable_storage(this->frag_color));
2105   else if (this->frag_data) {
2106      color = *(variable_storage(this->frag_data));
2107      color.type = BRW_REGISTER_TYPE_F;
2108   }
2109
2110   for (int target = 0; target < c->key.nr_color_regions; target++) {
2111      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2112						 "FB write target %d",
2113						 target);
2114      if (this->frag_color || this->frag_data) {
2115	 for (int i = 0; i < 4; i++) {
2116	    emit(fs_inst(BRW_OPCODE_MOV,
2117			 fs_reg(MRF, color_mrf + i),
2118			 color));
2119	    color.reg_offset++;
2120	 }
2121      }
2122
2123      if (this->frag_color)
2124	 color.reg_offset -= 4;
2125
2126      fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
2127				   reg_undef, reg_undef));
2128      inst->target = target;
2129      inst->base_mrf = 0;
2130      inst->mlen = nr;
2131      if (target == c->key.nr_color_regions - 1)
2132	 inst->eot = true;
2133      inst->header_present = header_present;
2134   }
2135
2136   if (c->key.nr_color_regions == 0) {
2137      fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
2138				   reg_undef, reg_undef));
2139      inst->base_mrf = 0;
2140      inst->mlen = nr;
2141      inst->eot = true;
2142      inst->header_present = header_present;
2143   }
2144
2145   this->current_annotation = NULL;
2146}
2147
2148void
2149fs_visitor::generate_fb_write(fs_inst *inst)
2150{
2151   GLboolean eot = inst->eot;
2152   struct brw_reg implied_header;
2153
2154   /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
2155    * move, here's g1.
2156    */
2157   brw_push_insn_state(p);
2158   brw_set_mask_control(p, BRW_MASK_DISABLE);
2159   brw_set_compression_control(p, BRW_COMPRESSION_NONE);
2160
2161   if (inst->header_present) {
2162      if (intel->gen >= 6) {
2163	 brw_MOV(p,
2164		 brw_message_reg(inst->base_mrf),
2165		 brw_vec8_grf(0, 0));
2166
2167	 if (inst->target > 0) {
2168	    /* Set the render target index for choosing BLEND_STATE. */
2169	    brw_MOV(p, retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 0, 2),
2170			      BRW_REGISTER_TYPE_UD),
2171		    brw_imm_ud(inst->target));
2172	 }
2173
2174	 /* Clear viewport index, render target array index. */
2175	 brw_AND(p, retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 0, 0),
2176			   BRW_REGISTER_TYPE_UD),
2177		 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2178		 brw_imm_ud(0xf7ff));
2179
2180	 implied_header = brw_null_reg();
2181      } else {
2182	 implied_header = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
2183      }
2184
2185      brw_MOV(p,
2186	      brw_message_reg(inst->base_mrf + 1),
2187	      brw_vec8_grf(1, 0));
2188   } else {
2189      implied_header = brw_null_reg();
2190   }
2191
2192   brw_pop_insn_state(p);
2193
2194   brw_fb_WRITE(p,
2195		8, /* dispatch_width */
2196		retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW),
2197		inst->base_mrf,
2198		implied_header,
2199		inst->target,
2200		inst->mlen,
2201		0,
2202		eot,
2203		inst->header_present);
2204}
2205
2206void
2207fs_visitor::generate_linterp(fs_inst *inst,
2208			     struct brw_reg dst, struct brw_reg *src)
2209{
2210   struct brw_reg delta_x = src[0];
2211   struct brw_reg delta_y = src[1];
2212   struct brw_reg interp = src[2];
2213
2214   if (brw->has_pln &&
2215       delta_y.nr == delta_x.nr + 1 &&
2216       (intel->gen >= 6 || (delta_x.nr & 1) == 0)) {
2217      brw_PLN(p, dst, interp, delta_x);
2218   } else {
2219      brw_LINE(p, brw_null_reg(), interp, delta_x);
2220      brw_MAC(p, dst, suboffset(interp, 1), delta_y);
2221   }
2222}
2223
2224void
2225fs_visitor::generate_math(fs_inst *inst,
2226			  struct brw_reg dst, struct brw_reg *src)
2227{
2228   int op;
2229
2230   switch (inst->opcode) {
2231   case FS_OPCODE_RCP:
2232      op = BRW_MATH_FUNCTION_INV;
2233      break;
2234   case FS_OPCODE_RSQ:
2235      op = BRW_MATH_FUNCTION_RSQ;
2236      break;
2237   case FS_OPCODE_SQRT:
2238      op = BRW_MATH_FUNCTION_SQRT;
2239      break;
2240   case FS_OPCODE_EXP2:
2241      op = BRW_MATH_FUNCTION_EXP;
2242      break;
2243   case FS_OPCODE_LOG2:
2244      op = BRW_MATH_FUNCTION_LOG;
2245      break;
2246   case FS_OPCODE_POW:
2247      op = BRW_MATH_FUNCTION_POW;
2248      break;
2249   case FS_OPCODE_SIN:
2250      op = BRW_MATH_FUNCTION_SIN;
2251      break;
2252   case FS_OPCODE_COS:
2253      op = BRW_MATH_FUNCTION_COS;
2254      break;
2255   default:
2256      assert(!"not reached: unknown math function");
2257      op = 0;
2258      break;
2259   }
2260
2261   if (intel->gen >= 6) {
2262      assert(inst->mlen == 0);
2263
2264      if (inst->opcode == FS_OPCODE_POW) {
2265	 brw_math2(p, dst, op, src[0], src[1]);
2266      } else {
2267	 brw_math(p, dst,
2268		  op,
2269		  inst->saturate ? BRW_MATH_SATURATE_SATURATE :
2270		  BRW_MATH_SATURATE_NONE,
2271		  0, src[0],
2272		  BRW_MATH_DATA_VECTOR,
2273		  BRW_MATH_PRECISION_FULL);
2274      }
2275   } else {
2276      assert(inst->mlen >= 1);
2277
2278      brw_math(p, dst,
2279	       op,
2280	       inst->saturate ? BRW_MATH_SATURATE_SATURATE :
2281	       BRW_MATH_SATURATE_NONE,
2282	       inst->base_mrf, src[0],
2283	       BRW_MATH_DATA_VECTOR,
2284	       BRW_MATH_PRECISION_FULL);
2285   }
2286}
2287
2288void
2289fs_visitor::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2290{
2291   int msg_type = -1;
2292   int rlen = 4;
2293   uint32_t simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
2294
2295   if (intel->gen >= 5) {
2296      switch (inst->opcode) {
2297      case FS_OPCODE_TEX:
2298	 if (inst->shadow_compare) {
2299	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_COMPARE_GEN5;
2300	 } else {
2301	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_GEN5;
2302	 }
2303	 break;
2304      case FS_OPCODE_TXB:
2305	 if (inst->shadow_compare) {
2306	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE_GEN5;
2307	 } else {
2308	    msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5;
2309	 }
2310	 break;
2311      }
2312   } else {
2313      switch (inst->opcode) {
2314      case FS_OPCODE_TEX:
2315	 /* Note that G45 and older determines shadow compare and dispatch width
2316	  * from message length for most messages.
2317	  */
2318	 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
2319	 if (inst->shadow_compare) {
2320	    assert(inst->mlen == 6);
2321	 } else {
2322	    assert(inst->mlen <= 4);
2323	 }
2324	 break;
2325      case FS_OPCODE_TXB:
2326	 if (inst->shadow_compare) {
2327	    assert(inst->mlen == 6);
2328	    msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
2329	 } else {
2330	    assert(inst->mlen == 9);
2331	    msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
2332	    simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
2333	 }
2334	 break;
2335      }
2336   }
2337   assert(msg_type != -1);
2338
2339   if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
2340      rlen = 8;
2341      dst = vec16(dst);
2342   }
2343
2344   brw_SAMPLE(p,
2345	      retype(dst, BRW_REGISTER_TYPE_UW),
2346	      inst->base_mrf,
2347	      src,
2348              SURF_INDEX_TEXTURE(inst->sampler),
2349	      inst->sampler,
2350	      WRITEMASK_XYZW,
2351	      msg_type,
2352	      rlen,
2353	      inst->mlen,
2354	      0,
2355	      1,
2356	      simd_mode);
2357}
2358
2359
2360/* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
2361 * looking like:
2362 *
2363 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
2364 *
2365 * and we're trying to produce:
2366 *
2367 *           DDX                     DDY
2368 * dst: (ss0.tr - ss0.tl)     (ss0.tl - ss0.bl)
2369 *      (ss0.tr - ss0.tl)     (ss0.tr - ss0.br)
2370 *      (ss0.br - ss0.bl)     (ss0.tl - ss0.bl)
2371 *      (ss0.br - ss0.bl)     (ss0.tr - ss0.br)
2372 *      (ss1.tr - ss1.tl)     (ss1.tl - ss1.bl)
2373 *      (ss1.tr - ss1.tl)     (ss1.tr - ss1.br)
2374 *      (ss1.br - ss1.bl)     (ss1.tl - ss1.bl)
2375 *      (ss1.br - ss1.bl)     (ss1.tr - ss1.br)
2376 *
2377 * and add another set of two more subspans if in 16-pixel dispatch mode.
2378 *
2379 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
2380 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
2381 * pair. But for DDY, it's harder, as we want to produce the pairs swizzled
2382 * between each other.  We could probably do it like ddx and swizzle the right
2383 * order later, but bail for now and just produce
2384 * ((ss0.tl - ss0.bl)x4 (ss1.tl - ss1.bl)x4)
2385 */
2386void
2387fs_visitor::generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2388{
2389   struct brw_reg src0 = brw_reg(src.file, src.nr, 1,
2390				 BRW_REGISTER_TYPE_F,
2391				 BRW_VERTICAL_STRIDE_2,
2392				 BRW_WIDTH_2,
2393				 BRW_HORIZONTAL_STRIDE_0,
2394				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2395   struct brw_reg src1 = brw_reg(src.file, src.nr, 0,
2396				 BRW_REGISTER_TYPE_F,
2397				 BRW_VERTICAL_STRIDE_2,
2398				 BRW_WIDTH_2,
2399				 BRW_HORIZONTAL_STRIDE_0,
2400				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2401   brw_ADD(p, dst, src0, negate(src1));
2402}
2403
2404void
2405fs_visitor::generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2406{
2407   struct brw_reg src0 = brw_reg(src.file, src.nr, 0,
2408				 BRW_REGISTER_TYPE_F,
2409				 BRW_VERTICAL_STRIDE_4,
2410				 BRW_WIDTH_4,
2411				 BRW_HORIZONTAL_STRIDE_0,
2412				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2413   struct brw_reg src1 = brw_reg(src.file, src.nr, 2,
2414				 BRW_REGISTER_TYPE_F,
2415				 BRW_VERTICAL_STRIDE_4,
2416				 BRW_WIDTH_4,
2417				 BRW_HORIZONTAL_STRIDE_0,
2418				 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2419   brw_ADD(p, dst, src0, negate(src1));
2420}
2421
2422void
2423fs_visitor::generate_discard_not(fs_inst *inst, struct brw_reg mask)
2424{
2425   if (intel->gen >= 6) {
2426      /* Gen6 no longer has the mask reg for us to just read the
2427       * active channels from.  However, cmp updates just the channels
2428       * of the flag reg that are enabled, so we can get at the
2429       * channel enables that way.  In this step, make a reg of ones
2430       * we'll compare to.
2431       */
2432      brw_MOV(p, mask, brw_imm_ud(1));
2433   } else {
2434      brw_push_insn_state(p);
2435      brw_set_mask_control(p, BRW_MASK_DISABLE);
2436      brw_NOT(p, mask, brw_mask_reg(1)); /* IMASK */
2437      brw_pop_insn_state(p);
2438   }
2439}
2440
2441void
2442fs_visitor::generate_discard_and(fs_inst *inst, struct brw_reg mask)
2443{
2444   if (intel->gen >= 6) {
2445      struct brw_reg f0 = brw_flag_reg();
2446      struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
2447
2448      brw_push_insn_state(p);
2449      brw_set_mask_control(p, BRW_MASK_DISABLE);
2450      brw_MOV(p, f0, brw_imm_uw(0xffff)); /* inactive channels undiscarded */
2451      brw_pop_insn_state(p);
2452
2453      brw_CMP(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
2454	      BRW_CONDITIONAL_Z, mask, brw_imm_ud(0)); /* active channels fail test */
2455      /* Undo CMP's whacking of predication*/
2456      brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2457
2458      brw_push_insn_state(p);
2459      brw_set_mask_control(p, BRW_MASK_DISABLE);
2460      brw_AND(p, g1, f0, g1);
2461      brw_pop_insn_state(p);
2462   } else {
2463      struct brw_reg g0 = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
2464
2465      mask = brw_uw1_reg(mask.file, mask.nr, 0);
2466
2467      brw_push_insn_state(p);
2468      brw_set_mask_control(p, BRW_MASK_DISABLE);
2469      brw_AND(p, g0, mask, g0);
2470      brw_pop_insn_state(p);
2471   }
2472}
2473
2474void
2475fs_visitor::generate_spill(fs_inst *inst, struct brw_reg src)
2476{
2477   assert(inst->mlen != 0);
2478
2479   brw_MOV(p,
2480	   retype(brw_message_reg(inst->base_mrf + 1), BRW_REGISTER_TYPE_UD),
2481	   retype(src, BRW_REGISTER_TYPE_UD));
2482   brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf), 1,
2483				 inst->offset);
2484}
2485
2486void
2487fs_visitor::generate_unspill(fs_inst *inst, struct brw_reg dst)
2488{
2489   assert(inst->mlen != 0);
2490
2491   /* Clear any post destination dependencies that would be ignored by
2492    * the block read.  See the B-Spec for pre-gen5 send instruction.
2493    *
2494    * This could use a better solution, since texture sampling and
2495    * math reads could potentially run into it as well -- anywhere
2496    * that we have a SEND with a destination that is a register that
2497    * was written but not read within the last N instructions (what's
2498    * N?  unsure).  This is rare because of dead code elimination, but
2499    * not impossible.
2500    */
2501   if (intel->gen == 4 && !intel->is_g4x)
2502      brw_MOV(p, brw_null_reg(), dst);
2503
2504   brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf), 1,
2505				inst->offset);
2506
2507   if (intel->gen == 4 && !intel->is_g4x) {
2508      /* gen4 errata: destination from a send can't be used as a
2509       * destination until it's been read.  Just read it so we don't
2510       * have to worry.
2511       */
2512      brw_MOV(p, brw_null_reg(), dst);
2513   }
2514}
2515
2516
2517void
2518fs_visitor::generate_pull_constant_load(fs_inst *inst, struct brw_reg dst)
2519{
2520   assert(inst->mlen != 0);
2521
2522   /* Clear any post destination dependencies that would be ignored by
2523    * the block read.  See the B-Spec for pre-gen5 send instruction.
2524    *
2525    * This could use a better solution, since texture sampling and
2526    * math reads could potentially run into it as well -- anywhere
2527    * that we have a SEND with a destination that is a register that
2528    * was written but not read within the last N instructions (what's
2529    * N?  unsure).  This is rare because of dead code elimination, but
2530    * not impossible.
2531    */
2532   if (intel->gen == 4 && !intel->is_g4x)
2533      brw_MOV(p, brw_null_reg(), dst);
2534
2535   brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
2536			inst->offset, SURF_INDEX_FRAG_CONST_BUFFER);
2537
2538   if (intel->gen == 4 && !intel->is_g4x) {
2539      /* gen4 errata: destination from a send can't be used as a
2540       * destination until it's been read.  Just read it so we don't
2541       * have to worry.
2542       */
2543      brw_MOV(p, brw_null_reg(), dst);
2544   }
2545}
2546
2547/**
2548 * To be called after the last _mesa_add_state_reference() call, to
2549 * set up prog_data.param[] for assign_curb_setup() and
2550 * setup_pull_constants().
2551 */
2552void
2553fs_visitor::setup_paramvalues_refs()
2554{
2555   /* Set up the pointers to ParamValues now that that array is finalized. */
2556   for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
2557      c->prog_data.param[i] =
2558	 fp->Base.Parameters->ParameterValues[this->param_index[i]] +
2559	 this->param_offset[i];
2560   }
2561}
2562
2563void
2564fs_visitor::assign_curb_setup()
2565{
2566   c->prog_data.first_curbe_grf = c->nr_payload_regs;
2567   c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
2568
2569   /* Map the offsets in the UNIFORM file to fixed HW regs. */
2570   foreach_iter(exec_list_iterator, iter, this->instructions) {
2571      fs_inst *inst = (fs_inst *)iter.get();
2572
2573      for (unsigned int i = 0; i < 3; i++) {
2574	 if (inst->src[i].file == UNIFORM) {
2575	    int constant_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
2576	    struct brw_reg brw_reg = brw_vec1_grf(c->prog_data.first_curbe_grf +
2577						  constant_nr / 8,
2578						  constant_nr % 8);
2579
2580	    inst->src[i].file = FIXED_HW_REG;
2581	    inst->src[i].fixed_hw_reg = retype(brw_reg, inst->src[i].type);
2582	 }
2583      }
2584   }
2585}
2586
2587void
2588fs_visitor::calculate_urb_setup()
2589{
2590   for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2591      urb_setup[i] = -1;
2592   }
2593
2594   int urb_next = 0;
2595   /* Figure out where each of the incoming setup attributes lands. */
2596   if (intel->gen >= 6) {
2597      for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2598	 if (brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(i)) {
2599	    urb_setup[i] = urb_next++;
2600	 }
2601      }
2602   } else {
2603      /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
2604      for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) {
2605	 if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
2606	    int fp_index;
2607
2608	    if (i >= VERT_RESULT_VAR0)
2609	       fp_index = i - (VERT_RESULT_VAR0 - FRAG_ATTRIB_VAR0);
2610	    else if (i <= VERT_RESULT_TEX7)
2611	       fp_index = i;
2612	    else
2613	       fp_index = -1;
2614
2615	    if (fp_index >= 0)
2616	       urb_setup[fp_index] = urb_next++;
2617	 }
2618      }
2619   }
2620
2621   /* Each attribute is 4 setup channels, each of which is half a reg. */
2622   c->prog_data.urb_read_length = urb_next * 2;
2623}
2624
2625void
2626fs_visitor::assign_urb_setup()
2627{
2628   int urb_start = c->prog_data.first_curbe_grf + c->prog_data.curb_read_length;
2629
2630   /* Offset all the urb_setup[] index by the actual position of the
2631    * setup regs, now that the location of the constants has been chosen.
2632    */
2633   foreach_iter(exec_list_iterator, iter, this->instructions) {
2634      fs_inst *inst = (fs_inst *)iter.get();
2635
2636      if (inst->opcode == FS_OPCODE_LINTERP) {
2637	 assert(inst->src[2].file == FIXED_HW_REG);
2638	 inst->src[2].fixed_hw_reg.nr += urb_start;
2639      }
2640
2641      if (inst->opcode == FS_OPCODE_CINTERP) {
2642	 assert(inst->src[0].file == FIXED_HW_REG);
2643	 inst->src[0].fixed_hw_reg.nr += urb_start;
2644      }
2645   }
2646
2647   this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
2648}
2649
2650/**
2651 * Split large virtual GRFs into separate components if we can.
2652 *
2653 * This is mostly duplicated with what brw_fs_vector_splitting does,
2654 * but that's really conservative because it's afraid of doing
2655 * splitting that doesn't result in real progress after the rest of
2656 * the optimization phases, which would cause infinite looping in
2657 * optimization.  We can do it once here, safely.  This also has the
2658 * opportunity to split interpolated values, or maybe even uniforms,
2659 * which we don't have at the IR level.
2660 *
2661 * We want to split, because virtual GRFs are what we register
2662 * allocate and spill (due to contiguousness requirements for some
2663 * instructions), and they're what we naturally generate in the
2664 * codegen process, but most virtual GRFs don't actually need to be
2665 * contiguous sets of GRFs.  If we split, we'll end up with reduced
2666 * live intervals and better dead code elimination and coalescing.
2667 */
2668void
2669fs_visitor::split_virtual_grfs()
2670{
2671   int num_vars = this->virtual_grf_next;
2672   bool split_grf[num_vars];
2673   int new_virtual_grf[num_vars];
2674
2675   /* Try to split anything > 0 sized. */
2676   for (int i = 0; i < num_vars; i++) {
2677      if (this->virtual_grf_sizes[i] != 1)
2678	 split_grf[i] = true;
2679      else
2680	 split_grf[i] = false;
2681   }
2682
2683   if (brw->has_pln) {
2684      /* PLN opcodes rely on the delta_xy being contiguous. */
2685      split_grf[this->delta_x.reg] = false;
2686   }
2687
2688   foreach_iter(exec_list_iterator, iter, this->instructions) {
2689      fs_inst *inst = (fs_inst *)iter.get();
2690
2691      /* Texturing produces 4 contiguous registers, so no splitting. */
2692      if (inst->is_tex()) {
2693	 split_grf[inst->dst.reg] = false;
2694      }
2695   }
2696
2697   /* Allocate new space for split regs.  Note that the virtual
2698    * numbers will be contiguous.
2699    */
2700   for (int i = 0; i < num_vars; i++) {
2701      if (split_grf[i]) {
2702	 new_virtual_grf[i] = virtual_grf_alloc(1);
2703	 for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
2704	    int reg = virtual_grf_alloc(1);
2705	    assert(reg == new_virtual_grf[i] + j - 1);
2706	    (void) reg;
2707	 }
2708	 this->virtual_grf_sizes[i] = 1;
2709      }
2710   }
2711
2712   foreach_iter(exec_list_iterator, iter, this->instructions) {
2713      fs_inst *inst = (fs_inst *)iter.get();
2714
2715      if (inst->dst.file == GRF &&
2716	  split_grf[inst->dst.reg] &&
2717	  inst->dst.reg_offset != 0) {
2718	 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
2719			  inst->dst.reg_offset - 1);
2720	 inst->dst.reg_offset = 0;
2721      }
2722      for (int i = 0; i < 3; i++) {
2723	 if (inst->src[i].file == GRF &&
2724	     split_grf[inst->src[i].reg] &&
2725	     inst->src[i].reg_offset != 0) {
2726	    inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
2727				inst->src[i].reg_offset - 1);
2728	    inst->src[i].reg_offset = 0;
2729	 }
2730      }
2731   }
2732   this->live_intervals_valid = false;
2733}
2734
2735/**
2736 * Choose accesses from the UNIFORM file to demote to using the pull
2737 * constant buffer.
2738 *
2739 * We allow a fragment shader to have more than the specified minimum
2740 * maximum number of fragment shader uniform components (64).  If
2741 * there are too many of these, they'd fill up all of register space.
2742 * So, this will push some of them out to the pull constant buffer and
2743 * update the program to load them.
2744 */
2745void
2746fs_visitor::setup_pull_constants()
2747{
2748   /* Only allow 16 registers (128 uniform components) as push constants. */
2749   unsigned int max_uniform_components = 16 * 8;
2750   if (c->prog_data.nr_params <= max_uniform_components)
2751      return;
2752
2753   /* Just demote the end of the list.  We could probably do better
2754    * here, demoting things that are rarely used in the program first.
2755    */
2756   int pull_uniform_base = max_uniform_components;
2757   int pull_uniform_count = c->prog_data.nr_params - pull_uniform_base;
2758
2759   foreach_iter(exec_list_iterator, iter, this->instructions) {
2760      fs_inst *inst = (fs_inst *)iter.get();
2761
2762      for (int i = 0; i < 3; i++) {
2763	 if (inst->src[i].file != UNIFORM)
2764	    continue;
2765
2766	 int uniform_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
2767	 if (uniform_nr < pull_uniform_base)
2768	    continue;
2769
2770	 fs_reg dst = fs_reg(this, glsl_type::float_type);
2771	 fs_inst *pull = new(mem_ctx) fs_inst(FS_OPCODE_PULL_CONSTANT_LOAD,
2772					      dst);
2773	 pull->offset = ((uniform_nr - pull_uniform_base) * 4) & ~15;
2774	 pull->ir = inst->ir;
2775	 pull->annotation = inst->annotation;
2776	 pull->base_mrf = 14;
2777	 pull->mlen = 1;
2778
2779	 inst->insert_before(pull);
2780
2781	 inst->src[i].file = GRF;
2782	 inst->src[i].reg = dst.reg;
2783	 inst->src[i].reg_offset = 0;
2784	 inst->src[i].smear = (uniform_nr - pull_uniform_base) & 3;
2785      }
2786   }
2787
2788   for (int i = 0; i < pull_uniform_count; i++) {
2789      c->prog_data.pull_param[i] = c->prog_data.param[pull_uniform_base + i];
2790      c->prog_data.pull_param_convert[i] =
2791	 c->prog_data.param_convert[pull_uniform_base + i];
2792   }
2793   c->prog_data.nr_params -= pull_uniform_count;
2794   c->prog_data.nr_pull_params = pull_uniform_count;
2795}
2796
2797void
2798fs_visitor::calculate_live_intervals()
2799{
2800   int num_vars = this->virtual_grf_next;
2801   int *def = ralloc_array(mem_ctx, int, num_vars);
2802   int *use = ralloc_array(mem_ctx, int, num_vars);
2803   int loop_depth = 0;
2804   int loop_start = 0;
2805   int bb_header_ip = 0;
2806
2807   if (this->live_intervals_valid)
2808      return;
2809
2810   for (int i = 0; i < num_vars; i++) {
2811      def[i] = MAX_INSTRUCTION;
2812      use[i] = -1;
2813   }
2814
2815   int ip = 0;
2816   foreach_iter(exec_list_iterator, iter, this->instructions) {
2817      fs_inst *inst = (fs_inst *)iter.get();
2818
2819      if (inst->opcode == BRW_OPCODE_DO) {
2820	 if (loop_depth++ == 0)
2821	    loop_start = ip;
2822      } else if (inst->opcode == BRW_OPCODE_WHILE) {
2823	 loop_depth--;
2824
2825	 if (loop_depth == 0) {
2826	    /* Patches up the use of vars marked for being live across
2827	     * the whole loop.
2828	     */
2829	    for (int i = 0; i < num_vars; i++) {
2830	       if (use[i] == loop_start) {
2831		  use[i] = ip;
2832	       }
2833	    }
2834	 }
2835      } else {
2836	 for (unsigned int i = 0; i < 3; i++) {
2837	    if (inst->src[i].file == GRF && inst->src[i].reg != 0) {
2838	       int reg = inst->src[i].reg;
2839
2840	       if (!loop_depth || (this->virtual_grf_sizes[reg] == 1 &&
2841				   def[reg] >= bb_header_ip)) {
2842		  use[reg] = ip;
2843	       } else {
2844		  def[reg] = MIN2(loop_start, def[reg]);
2845		  use[reg] = loop_start;
2846
2847		  /* Nobody else is going to go smash our start to
2848		   * later in the loop now, because def[reg] now
2849		   * points before the bb header.
2850		   */
2851	       }
2852	    }
2853	 }
2854	 if (inst->dst.file == GRF && inst->dst.reg != 0) {
2855	    int reg = inst->dst.reg;
2856
2857	    if (!loop_depth || (this->virtual_grf_sizes[reg] == 1 &&
2858				!inst->predicated)) {
2859	       def[reg] = MIN2(def[reg], ip);
2860	    } else {
2861	       def[reg] = MIN2(def[reg], loop_start);
2862	    }
2863	 }
2864      }
2865
2866      ip++;
2867
2868      /* Set the basic block header IP.  This is used for determining
2869       * if a complete def of single-register virtual GRF in a loop
2870       * dominates a use in the same basic block.  It's a quick way to
2871       * reduce the live interval range of most register used in a
2872       * loop.
2873       */
2874      if (inst->opcode == BRW_OPCODE_IF ||
2875	  inst->opcode == BRW_OPCODE_ELSE ||
2876	  inst->opcode == BRW_OPCODE_ENDIF ||
2877	  inst->opcode == BRW_OPCODE_DO ||
2878	  inst->opcode == BRW_OPCODE_WHILE ||
2879	  inst->opcode == BRW_OPCODE_BREAK ||
2880	  inst->opcode == BRW_OPCODE_CONTINUE) {
2881	 bb_header_ip = ip;
2882      }
2883   }
2884
2885   ralloc_free(this->virtual_grf_def);
2886   ralloc_free(this->virtual_grf_use);
2887   this->virtual_grf_def = def;
2888   this->virtual_grf_use = use;
2889
2890   this->live_intervals_valid = true;
2891}
2892
2893/**
2894 * Attempts to move immediate constants into the immediate
2895 * constant slot of following instructions.
2896 *
2897 * Immediate constants are a bit tricky -- they have to be in the last
2898 * operand slot, you can't do abs/negate on them,
2899 */
2900
2901bool
2902fs_visitor::propagate_constants()
2903{
2904   bool progress = false;
2905
2906   calculate_live_intervals();
2907
2908   foreach_iter(exec_list_iterator, iter, this->instructions) {
2909      fs_inst *inst = (fs_inst *)iter.get();
2910
2911      if (inst->opcode != BRW_OPCODE_MOV ||
2912	  inst->predicated ||
2913	  inst->dst.file != GRF || inst->src[0].file != IMM ||
2914	  inst->dst.type != inst->src[0].type)
2915	 continue;
2916
2917      /* Don't bother with cases where we should have had the
2918       * operation on the constant folded in GLSL already.
2919       */
2920      if (inst->saturate)
2921	 continue;
2922
2923      /* Found a move of a constant to a GRF.  Find anything else using the GRF
2924       * before it's written, and replace it with the constant if we can.
2925       */
2926      exec_list_iterator scan_iter = iter;
2927      scan_iter.next();
2928      for (; scan_iter.has_next(); scan_iter.next()) {
2929	 fs_inst *scan_inst = (fs_inst *)scan_iter.get();
2930
2931	 if (scan_inst->opcode == BRW_OPCODE_DO ||
2932	     scan_inst->opcode == BRW_OPCODE_WHILE ||
2933	     scan_inst->opcode == BRW_OPCODE_ELSE ||
2934	     scan_inst->opcode == BRW_OPCODE_ENDIF) {
2935	    break;
2936	 }
2937
2938	 for (int i = 2; i >= 0; i--) {
2939	    if (scan_inst->src[i].file != GRF ||
2940		scan_inst->src[i].reg != inst->dst.reg ||
2941		scan_inst->src[i].reg_offset != inst->dst.reg_offset)
2942	       continue;
2943
2944	    /* Don't bother with cases where we should have had the
2945	     * operation on the constant folded in GLSL already.
2946	     */
2947	    if (scan_inst->src[i].negate || scan_inst->src[i].abs)
2948	       continue;
2949
2950	    switch (scan_inst->opcode) {
2951	    case BRW_OPCODE_MOV:
2952	       scan_inst->src[i] = inst->src[0];
2953	       progress = true;
2954	       break;
2955
2956	    case BRW_OPCODE_MUL:
2957	    case BRW_OPCODE_ADD:
2958	       if (i == 1) {
2959		  scan_inst->src[i] = inst->src[0];
2960		  progress = true;
2961	       } else if (i == 0 && scan_inst->src[1].file != IMM) {
2962		  /* Fit this constant in by commuting the operands */
2963		  scan_inst->src[0] = scan_inst->src[1];
2964		  scan_inst->src[1] = inst->src[0];
2965		  progress = true;
2966	       }
2967	       break;
2968	    case BRW_OPCODE_CMP:
2969	    case BRW_OPCODE_SEL:
2970	       if (i == 1) {
2971		  scan_inst->src[i] = inst->src[0];
2972		  progress = true;
2973	       }
2974	    }
2975	 }
2976
2977	 if (scan_inst->dst.file == GRF &&
2978	     scan_inst->dst.reg == inst->dst.reg &&
2979	     (scan_inst->dst.reg_offset == inst->dst.reg_offset ||
2980	      scan_inst->is_tex())) {
2981	    break;
2982	 }
2983      }
2984   }
2985
2986   if (progress)
2987       this->live_intervals_valid = false;
2988
2989   return progress;
2990}
2991/**
2992 * Must be called after calculate_live_intervales() to remove unused
2993 * writes to registers -- register allocation will fail otherwise
2994 * because something deffed but not used won't be considered to
2995 * interfere with other regs.
2996 */
2997bool
2998fs_visitor::dead_code_eliminate()
2999{
3000   bool progress = false;
3001   int pc = 0;
3002
3003   calculate_live_intervals();
3004
3005   foreach_iter(exec_list_iterator, iter, this->instructions) {
3006      fs_inst *inst = (fs_inst *)iter.get();
3007
3008      if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) {
3009	 inst->remove();
3010	 progress = true;
3011      }
3012
3013      pc++;
3014   }
3015
3016   if (progress)
3017      live_intervals_valid = false;
3018
3019   return progress;
3020}
3021
3022bool
3023fs_visitor::register_coalesce()
3024{
3025   bool progress = false;
3026   int if_depth = 0;
3027   int loop_depth = 0;
3028
3029   foreach_iter(exec_list_iterator, iter, this->instructions) {
3030      fs_inst *inst = (fs_inst *)iter.get();
3031
3032      /* Make sure that we dominate the instructions we're going to
3033       * scan for interfering with our coalescing, or we won't have
3034       * scanned enough to see if anything interferes with our
3035       * coalescing.  We don't dominate the following instructions if
3036       * we're in a loop or an if block.
3037       */
3038      switch (inst->opcode) {
3039      case BRW_OPCODE_DO:
3040	 loop_depth++;
3041	 break;
3042      case BRW_OPCODE_WHILE:
3043	 loop_depth--;
3044	 break;
3045      case BRW_OPCODE_IF:
3046	 if_depth++;
3047	 break;
3048      case BRW_OPCODE_ENDIF:
3049	 if_depth--;
3050	 break;
3051      }
3052      if (loop_depth || if_depth)
3053	 continue;
3054
3055      if (inst->opcode != BRW_OPCODE_MOV ||
3056	  inst->predicated ||
3057	  inst->saturate ||
3058	  inst->dst.file != GRF || inst->src[0].file != GRF ||
3059	  inst->dst.type != inst->src[0].type)
3060	 continue;
3061
3062      bool has_source_modifiers = inst->src[0].abs || inst->src[0].negate;
3063
3064      /* Found a move of a GRF to a GRF.  Let's see if we can coalesce
3065       * them: check for no writes to either one until the exit of the
3066       * program.
3067       */
3068      bool interfered = false;
3069      exec_list_iterator scan_iter = iter;
3070      scan_iter.next();
3071      for (; scan_iter.has_next(); scan_iter.next()) {
3072	 fs_inst *scan_inst = (fs_inst *)scan_iter.get();
3073
3074	 if (scan_inst->dst.file == GRF) {
3075	    if (scan_inst->dst.reg == inst->dst.reg &&
3076		(scan_inst->dst.reg_offset == inst->dst.reg_offset ||
3077		 scan_inst->is_tex())) {
3078	       interfered = true;
3079	       break;
3080	    }
3081	    if (scan_inst->dst.reg == inst->src[0].reg &&
3082		(scan_inst->dst.reg_offset == inst->src[0].reg_offset ||
3083		 scan_inst->is_tex())) {
3084	       interfered = true;
3085	       break;
3086	    }
3087	 }
3088
3089	 /* The gen6 MATH instruction can't handle source modifiers, so avoid
3090	  * coalescing those for now.  We should do something more specific.
3091	  */
3092	 if (intel->gen == 6 && scan_inst->is_math() && has_source_modifiers) {
3093	    interfered = true;
3094	    break;
3095	 }
3096      }
3097      if (interfered) {
3098	 continue;
3099      }
3100
3101      /* Rewrite the later usage to point at the source of the move to
3102       * be removed.
3103       */
3104      for (exec_list_iterator scan_iter = iter; scan_iter.has_next();
3105	   scan_iter.next()) {
3106	 fs_inst *scan_inst = (fs_inst *)scan_iter.get();
3107
3108	 for (int i = 0; i < 3; i++) {
3109	    if (scan_inst->src[i].file == GRF &&
3110		scan_inst->src[i].reg == inst->dst.reg &&
3111		scan_inst->src[i].reg_offset == inst->dst.reg_offset) {
3112	       scan_inst->src[i].reg = inst->src[0].reg;
3113	       scan_inst->src[i].reg_offset = inst->src[0].reg_offset;
3114	       scan_inst->src[i].abs |= inst->src[0].abs;
3115	       scan_inst->src[i].negate ^= inst->src[0].negate;
3116	       scan_inst->src[i].smear = inst->src[0].smear;
3117	    }
3118	 }
3119      }
3120
3121      inst->remove();
3122      progress = true;
3123   }
3124
3125   if (progress)
3126      live_intervals_valid = false;
3127
3128   return progress;
3129}
3130
3131
3132bool
3133fs_visitor::compute_to_mrf()
3134{
3135   bool progress = false;
3136   int next_ip = 0;
3137
3138   calculate_live_intervals();
3139
3140   foreach_iter(exec_list_iterator, iter, this->instructions) {
3141      fs_inst *inst = (fs_inst *)iter.get();
3142
3143      int ip = next_ip;
3144      next_ip++;
3145
3146      if (inst->opcode != BRW_OPCODE_MOV ||
3147	  inst->predicated ||
3148	  inst->dst.file != MRF || inst->src[0].file != GRF ||
3149	  inst->dst.type != inst->src[0].type ||
3150	  inst->src[0].abs || inst->src[0].negate || inst->src[0].smear != -1)
3151	 continue;
3152
3153      /* Can't compute-to-MRF this GRF if someone else was going to
3154       * read it later.
3155       */
3156      if (this->virtual_grf_use[inst->src[0].reg] > ip)
3157	 continue;
3158
3159      /* Found a move of a GRF to a MRF.  Let's see if we can go
3160       * rewrite the thing that made this GRF to write into the MRF.
3161       */
3162      fs_inst *scan_inst;
3163      for (scan_inst = (fs_inst *)inst->prev;
3164	   scan_inst->prev != NULL;
3165	   scan_inst = (fs_inst *)scan_inst->prev) {
3166	 if (scan_inst->dst.file == GRF &&
3167	     scan_inst->dst.reg == inst->src[0].reg) {
3168	    /* Found the last thing to write our reg we want to turn
3169	     * into a compute-to-MRF.
3170	     */
3171
3172	    if (scan_inst->is_tex()) {
3173	       /* texturing writes several continuous regs, so we can't
3174		* compute-to-mrf that.
3175		*/
3176	       break;
3177	    }
3178
3179	    /* If it's predicated, it (probably) didn't populate all
3180	     * the channels.
3181	     */
3182	    if (scan_inst->predicated)
3183	       break;
3184
3185	    /* SEND instructions can't have MRF as a destination. */
3186	    if (scan_inst->mlen)
3187	       break;
3188
3189	    if (intel->gen >= 6) {
3190	       /* gen6 math instructions must have the destination be
3191		* GRF, so no compute-to-MRF for them.
3192		*/
3193	       if (scan_inst->is_math()) {
3194		  break;
3195	       }
3196	    }
3197
3198	    if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
3199	       /* Found the creator of our MRF's source value. */
3200	       scan_inst->dst.file = MRF;
3201	       scan_inst->dst.hw_reg = inst->dst.hw_reg;
3202	       scan_inst->saturate |= inst->saturate;
3203	       inst->remove();
3204	       progress = true;
3205	    }
3206	    break;
3207	 }
3208
3209	 /* We don't handle flow control here.  Most computation of
3210	  * values that end up in MRFs are shortly before the MRF
3211	  * write anyway.
3212	  */
3213	 if (scan_inst->opcode == BRW_OPCODE_DO ||
3214	     scan_inst->opcode == BRW_OPCODE_WHILE ||
3215	     scan_inst->opcode == BRW_OPCODE_ELSE ||
3216	     scan_inst->opcode == BRW_OPCODE_ENDIF) {
3217	    break;
3218	 }
3219
3220	 /* You can't read from an MRF, so if someone else reads our
3221	  * MRF's source GRF that we wanted to rewrite, that stops us.
3222	  */
3223	 bool interfered = false;
3224	 for (int i = 0; i < 3; i++) {
3225	    if (scan_inst->src[i].file == GRF &&
3226		scan_inst->src[i].reg == inst->src[0].reg &&
3227		scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
3228	       interfered = true;
3229	    }
3230	 }
3231	 if (interfered)
3232	    break;
3233
3234	 if (scan_inst->dst.file == MRF &&
3235	     scan_inst->dst.hw_reg == inst->dst.hw_reg) {
3236	    /* Somebody else wrote our MRF here, so we can't can't
3237	     * compute-to-MRF before that.
3238	     */
3239	    break;
3240	 }
3241
3242	 if (scan_inst->mlen > 0) {
3243	    /* Found a SEND instruction, which means that there are
3244	     * live values in MRFs from base_mrf to base_mrf +
3245	     * scan_inst->mlen - 1.  Don't go pushing our MRF write up
3246	     * above it.
3247	     */
3248	    if (inst->dst.hw_reg >= scan_inst->base_mrf &&
3249		inst->dst.hw_reg < scan_inst->base_mrf + scan_inst->mlen) {
3250	       break;
3251	    }
3252	 }
3253      }
3254   }
3255
3256   return progress;
3257}
3258
3259/**
3260 * Walks through basic blocks, locking for repeated MRF writes and
3261 * removing the later ones.
3262 */
3263bool
3264fs_visitor::remove_duplicate_mrf_writes()
3265{
3266   fs_inst *last_mrf_move[16];
3267   bool progress = false;
3268
3269   memset(last_mrf_move, 0, sizeof(last_mrf_move));
3270
3271   foreach_iter(exec_list_iterator, iter, this->instructions) {
3272      fs_inst *inst = (fs_inst *)iter.get();
3273
3274      switch (inst->opcode) {
3275      case BRW_OPCODE_DO:
3276      case BRW_OPCODE_WHILE:
3277      case BRW_OPCODE_IF:
3278      case BRW_OPCODE_ELSE:
3279      case BRW_OPCODE_ENDIF:
3280	 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3281	 continue;
3282      default:
3283	 break;
3284      }
3285
3286      if (inst->opcode == BRW_OPCODE_MOV &&
3287	  inst->dst.file == MRF) {
3288	 fs_inst *prev_inst = last_mrf_move[inst->dst.hw_reg];
3289	 if (prev_inst && inst->equals(prev_inst)) {
3290	    inst->remove();
3291	    progress = true;
3292	    continue;
3293	 }
3294      }
3295
3296      /* Clear out the last-write records for MRFs that were overwritten. */
3297      if (inst->dst.file == MRF) {
3298	 last_mrf_move[inst->dst.hw_reg] = NULL;
3299      }
3300
3301      if (inst->mlen > 0) {
3302	 /* Found a SEND instruction, which will include two or fewer
3303	  * implied MRF writes.  We could do better here.
3304	  */
3305	 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3306	    last_mrf_move[inst->base_mrf + i] = NULL;
3307	 }
3308      }
3309
3310      /* Clear out any MRF move records whose sources got overwritten. */
3311      if (inst->dst.file == GRF) {
3312	 for (unsigned int i = 0; i < Elements(last_mrf_move); i++) {
3313	    if (last_mrf_move[i] &&
3314		last_mrf_move[i]->src[0].reg == inst->dst.reg) {
3315	       last_mrf_move[i] = NULL;
3316	    }
3317	 }
3318      }
3319
3320      if (inst->opcode == BRW_OPCODE_MOV &&
3321	  inst->dst.file == MRF &&
3322	  inst->src[0].file == GRF &&
3323	  !inst->predicated) {
3324	 last_mrf_move[inst->dst.hw_reg] = inst;
3325      }
3326   }
3327
3328   return progress;
3329}
3330
3331bool
3332fs_visitor::virtual_grf_interferes(int a, int b)
3333{
3334   int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
3335   int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
3336
3337   /* We can't handle dead register writes here, without iterating
3338    * over the whole instruction stream to find every single dead
3339    * write to that register to compare to the live interval of the
3340    * other register.  Just assert that dead_code_eliminate() has been
3341    * called.
3342    */
3343   assert((this->virtual_grf_use[a] != -1 ||
3344	   this->virtual_grf_def[a] == MAX_INSTRUCTION) &&
3345	  (this->virtual_grf_use[b] != -1 ||
3346	   this->virtual_grf_def[b] == MAX_INSTRUCTION));
3347
3348   return start < end;
3349}
3350
3351static struct brw_reg brw_reg_from_fs_reg(fs_reg *reg)
3352{
3353   struct brw_reg brw_reg;
3354
3355   switch (reg->file) {
3356   case GRF:
3357   case ARF:
3358   case MRF:
3359      if (reg->smear == -1) {
3360	 brw_reg = brw_vec8_reg(reg->file,
3361				reg->hw_reg, 0);
3362      } else {
3363	 brw_reg = brw_vec1_reg(reg->file,
3364				reg->hw_reg, reg->smear);
3365      }
3366      brw_reg = retype(brw_reg, reg->type);
3367      break;
3368   case IMM:
3369      switch (reg->type) {
3370      case BRW_REGISTER_TYPE_F:
3371	 brw_reg = brw_imm_f(reg->imm.f);
3372	 break;
3373      case BRW_REGISTER_TYPE_D:
3374	 brw_reg = brw_imm_d(reg->imm.i);
3375	 break;
3376      case BRW_REGISTER_TYPE_UD:
3377	 brw_reg = brw_imm_ud(reg->imm.u);
3378	 break;
3379      default:
3380	 assert(!"not reached");
3381	 brw_reg = brw_null_reg();
3382	 break;
3383      }
3384      break;
3385   case FIXED_HW_REG:
3386      brw_reg = reg->fixed_hw_reg;
3387      break;
3388   case BAD_FILE:
3389      /* Probably unused. */
3390      brw_reg = brw_null_reg();
3391      break;
3392   case UNIFORM:
3393      assert(!"not reached");
3394      brw_reg = brw_null_reg();
3395      break;
3396   default:
3397      assert(!"not reached");
3398      brw_reg = brw_null_reg();
3399      break;
3400   }
3401   if (reg->abs)
3402      brw_reg = brw_abs(brw_reg);
3403   if (reg->negate)
3404      brw_reg = negate(brw_reg);
3405
3406   return brw_reg;
3407}
3408
3409void
3410fs_visitor::generate_code()
3411{
3412   int last_native_inst = 0;
3413   const char *last_annotation_string = NULL;
3414   ir_instruction *last_annotation_ir = NULL;
3415
3416   int if_stack_array_size = 16;
3417   int loop_stack_array_size = 16;
3418   int if_stack_depth = 0, loop_stack_depth = 0;
3419   brw_instruction **if_stack =
3420      rzalloc_array(this->mem_ctx, brw_instruction *, if_stack_array_size);
3421   brw_instruction **loop_stack =
3422      rzalloc_array(this->mem_ctx, brw_instruction *, loop_stack_array_size);
3423   int *if_depth_in_loop =
3424      rzalloc_array(this->mem_ctx, int, loop_stack_array_size);
3425
3426
3427   if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
3428      printf("Native code for fragment shader %d:\n",
3429	     ctx->Shader.CurrentFragmentProgram->Name);
3430   }
3431
3432   foreach_iter(exec_list_iterator, iter, this->instructions) {
3433      fs_inst *inst = (fs_inst *)iter.get();
3434      struct brw_reg src[3], dst;
3435
3436      if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
3437	 if (last_annotation_ir != inst->ir) {
3438	    last_annotation_ir = inst->ir;
3439	    if (last_annotation_ir) {
3440	       printf("   ");
3441	       last_annotation_ir->print();
3442	       printf("\n");
3443	    }
3444	 }
3445	 if (last_annotation_string != inst->annotation) {
3446	    last_annotation_string = inst->annotation;
3447	    if (last_annotation_string)
3448	       printf("   %s\n", last_annotation_string);
3449	 }
3450      }
3451
3452      for (unsigned int i = 0; i < 3; i++) {
3453	 src[i] = brw_reg_from_fs_reg(&inst->src[i]);
3454      }
3455      dst = brw_reg_from_fs_reg(&inst->dst);
3456
3457      brw_set_conditionalmod(p, inst->conditional_mod);
3458      brw_set_predicate_control(p, inst->predicated);
3459      brw_set_saturate(p, inst->saturate);
3460
3461      switch (inst->opcode) {
3462      case BRW_OPCODE_MOV:
3463	 brw_MOV(p, dst, src[0]);
3464	 break;
3465      case BRW_OPCODE_ADD:
3466	 brw_ADD(p, dst, src[0], src[1]);
3467	 break;
3468      case BRW_OPCODE_MUL:
3469	 brw_MUL(p, dst, src[0], src[1]);
3470	 break;
3471
3472      case BRW_OPCODE_FRC:
3473	 brw_FRC(p, dst, src[0]);
3474	 break;
3475      case BRW_OPCODE_RNDD:
3476	 brw_RNDD(p, dst, src[0]);
3477	 break;
3478      case BRW_OPCODE_RNDE:
3479	 brw_RNDE(p, dst, src[0]);
3480	 break;
3481      case BRW_OPCODE_RNDZ:
3482	 brw_RNDZ(p, dst, src[0]);
3483	 break;
3484
3485      case BRW_OPCODE_AND:
3486	 brw_AND(p, dst, src[0], src[1]);
3487	 break;
3488      case BRW_OPCODE_OR:
3489	 brw_OR(p, dst, src[0], src[1]);
3490	 break;
3491      case BRW_OPCODE_XOR:
3492	 brw_XOR(p, dst, src[0], src[1]);
3493	 break;
3494      case BRW_OPCODE_NOT:
3495	 brw_NOT(p, dst, src[0]);
3496	 break;
3497      case BRW_OPCODE_ASR:
3498	 brw_ASR(p, dst, src[0], src[1]);
3499	 break;
3500      case BRW_OPCODE_SHR:
3501	 brw_SHR(p, dst, src[0], src[1]);
3502	 break;
3503      case BRW_OPCODE_SHL:
3504	 brw_SHL(p, dst, src[0], src[1]);
3505	 break;
3506
3507      case BRW_OPCODE_CMP:
3508	 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
3509	 break;
3510      case BRW_OPCODE_SEL:
3511	 brw_SEL(p, dst, src[0], src[1]);
3512	 break;
3513
3514      case BRW_OPCODE_IF:
3515	 if (inst->src[0].file != BAD_FILE) {
3516	    assert(intel->gen >= 6);
3517	    if_stack[if_stack_depth] = brw_IF_gen6(p, inst->conditional_mod, src[0], src[1]);
3518	 } else {
3519	    if_stack[if_stack_depth] = brw_IF(p, BRW_EXECUTE_8);
3520	 }
3521	 if_depth_in_loop[loop_stack_depth]++;
3522	 if_stack_depth++;
3523	 if (if_stack_array_size <= if_stack_depth) {
3524	    if_stack_array_size *= 2;
3525	    if_stack = reralloc(this->mem_ctx, if_stack, brw_instruction *,
3526			        if_stack_array_size);
3527	 }
3528	 break;
3529
3530      case BRW_OPCODE_ELSE:
3531	 if_stack[if_stack_depth - 1] =
3532	    brw_ELSE(p, if_stack[if_stack_depth - 1]);
3533	 break;
3534      case BRW_OPCODE_ENDIF:
3535	 if_stack_depth--;
3536	 brw_ENDIF(p , if_stack[if_stack_depth]);
3537	 if_depth_in_loop[loop_stack_depth]--;
3538	 break;
3539
3540      case BRW_OPCODE_DO:
3541	 loop_stack[loop_stack_depth++] = brw_DO(p, BRW_EXECUTE_8);
3542	 if (loop_stack_array_size <= loop_stack_depth) {
3543	    loop_stack_array_size *= 2;
3544	    loop_stack = reralloc(this->mem_ctx, loop_stack, brw_instruction *,
3545				  loop_stack_array_size);
3546	    if_depth_in_loop = reralloc(this->mem_ctx, if_depth_in_loop, int,
3547				        loop_stack_array_size);
3548	 }
3549	 if_depth_in_loop[loop_stack_depth] = 0;
3550	 break;
3551
3552      case BRW_OPCODE_BREAK:
3553	 brw_BREAK(p, if_depth_in_loop[loop_stack_depth]);
3554	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
3555	 break;
3556      case BRW_OPCODE_CONTINUE:
3557	 /* FINISHME: We need to write the loop instruction support still. */
3558	 if (intel->gen >= 6)
3559	    brw_CONT_gen6(p, loop_stack[loop_stack_depth - 1]);
3560	 else
3561	    brw_CONT(p, if_depth_in_loop[loop_stack_depth]);
3562	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
3563	 break;
3564
3565      case BRW_OPCODE_WHILE: {
3566	 struct brw_instruction *inst0, *inst1;
3567	 GLuint br = 1;
3568
3569	 if (intel->gen >= 5)
3570	    br = 2;
3571
3572	 assert(loop_stack_depth > 0);
3573	 loop_stack_depth--;
3574	 inst0 = inst1 = brw_WHILE(p, loop_stack[loop_stack_depth]);
3575	 if (intel->gen < 6) {
3576	    /* patch all the BREAK/CONT instructions from last BGNLOOP */
3577	    while (inst0 > loop_stack[loop_stack_depth]) {
3578	       inst0--;
3579	       if (inst0->header.opcode == BRW_OPCODE_BREAK &&
3580		   inst0->bits3.if_else.jump_count == 0) {
3581		  inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
3582	    }
3583	       else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
3584			inst0->bits3.if_else.jump_count == 0) {
3585		  inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
3586	       }
3587	    }
3588	 }
3589      }
3590	 break;
3591
3592      case FS_OPCODE_RCP:
3593      case FS_OPCODE_RSQ:
3594      case FS_OPCODE_SQRT:
3595      case FS_OPCODE_EXP2:
3596      case FS_OPCODE_LOG2:
3597      case FS_OPCODE_POW:
3598      case FS_OPCODE_SIN:
3599      case FS_OPCODE_COS:
3600	 generate_math(inst, dst, src);
3601	 break;
3602      case FS_OPCODE_CINTERP:
3603	 brw_MOV(p, dst, src[0]);
3604	 break;
3605      case FS_OPCODE_LINTERP:
3606	 generate_linterp(inst, dst, src);
3607	 break;
3608      case FS_OPCODE_TEX:
3609      case FS_OPCODE_TXB:
3610      case FS_OPCODE_TXL:
3611	 generate_tex(inst, dst, src[0]);
3612	 break;
3613      case FS_OPCODE_DISCARD_NOT:
3614	 generate_discard_not(inst, dst);
3615	 break;
3616      case FS_OPCODE_DISCARD_AND:
3617	 generate_discard_and(inst, src[0]);
3618	 break;
3619      case FS_OPCODE_DDX:
3620	 generate_ddx(inst, dst, src[0]);
3621	 break;
3622      case FS_OPCODE_DDY:
3623	 generate_ddy(inst, dst, src[0]);
3624	 break;
3625
3626      case FS_OPCODE_SPILL:
3627	 generate_spill(inst, src[0]);
3628	 break;
3629
3630      case FS_OPCODE_UNSPILL:
3631	 generate_unspill(inst, dst);
3632	 break;
3633
3634      case FS_OPCODE_PULL_CONSTANT_LOAD:
3635	 generate_pull_constant_load(inst, dst);
3636	 break;
3637
3638      case FS_OPCODE_FB_WRITE:
3639	 generate_fb_write(inst);
3640	 break;
3641      default:
3642	 if (inst->opcode < (int)ARRAY_SIZE(brw_opcodes)) {
3643	    _mesa_problem(ctx, "Unsupported opcode `%s' in FS",
3644			  brw_opcodes[inst->opcode].name);
3645	 } else {
3646	    _mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode);
3647	 }
3648	 this->fail = true;
3649      }
3650
3651      if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
3652	 for (unsigned int i = last_native_inst; i < p->nr_insn; i++) {
3653	    if (0) {
3654	       printf("0x%08x 0x%08x 0x%08x 0x%08x ",
3655		      ((uint32_t *)&p->store[i])[3],
3656		      ((uint32_t *)&p->store[i])[2],
3657		      ((uint32_t *)&p->store[i])[1],
3658		      ((uint32_t *)&p->store[i])[0]);
3659	    }
3660	    brw_disasm(stdout, &p->store[i], intel->gen);
3661	 }
3662      }
3663
3664      last_native_inst = p->nr_insn;
3665   }
3666
3667   ralloc_free(if_stack);
3668   ralloc_free(loop_stack);
3669   ralloc_free(if_depth_in_loop);
3670
3671   brw_set_uip_jip(p);
3672
3673   /* OK, while the INTEL_DEBUG=wm above is very nice for debugging FS
3674    * emit issues, it doesn't get the jump distances into the output,
3675    * which is often something we want to debug.  So this is here in
3676    * case you're doing that.
3677    */
3678   if (0) {
3679      if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
3680	 for (unsigned int i = 0; i < p->nr_insn; i++) {
3681	    printf("0x%08x 0x%08x 0x%08x 0x%08x ",
3682		   ((uint32_t *)&p->store[i])[3],
3683		   ((uint32_t *)&p->store[i])[2],
3684		   ((uint32_t *)&p->store[i])[1],
3685		   ((uint32_t *)&p->store[i])[0]);
3686	    brw_disasm(stdout, &p->store[i], intel->gen);
3687	 }
3688      }
3689   }
3690}
3691
3692GLboolean
3693brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c)
3694{
3695   struct intel_context *intel = &brw->intel;
3696   struct gl_context *ctx = &intel->ctx;
3697   struct gl_shader_program *prog = ctx->Shader.CurrentFragmentProgram;
3698
3699   if (!prog)
3700      return GL_FALSE;
3701
3702   struct brw_shader *shader =
3703     (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
3704   if (!shader)
3705      return GL_FALSE;
3706
3707   /* We always use 8-wide mode, at least for now.  For one, flow
3708    * control only works in 8-wide.  Also, when we're fragment shader
3709    * bound, we're almost always under register pressure as well, so
3710    * 8-wide would save us from the performance cliff of spilling
3711    * regs.
3712    */
3713   c->dispatch_width = 8;
3714
3715   if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
3716      printf("GLSL IR for native fragment shader %d:\n", prog->Name);
3717      _mesa_print_ir(shader->ir, NULL);
3718      printf("\n");
3719   }
3720
3721   /* Now the main event: Visit the shader IR and generate our FS IR for it.
3722    */
3723   fs_visitor v(c, shader);
3724
3725   if (0) {
3726      v.emit_dummy_fs();
3727   } else {
3728      v.calculate_urb_setup();
3729      if (intel->gen < 6)
3730	 v.emit_interpolation_setup_gen4();
3731      else
3732	 v.emit_interpolation_setup_gen6();
3733
3734      /* Generate FS IR for main().  (the visitor only descends into
3735       * functions called "main").
3736       */
3737      foreach_iter(exec_list_iterator, iter, *shader->ir) {
3738	 ir_instruction *ir = (ir_instruction *)iter.get();
3739	 v.base_ir = ir;
3740	 ir->accept(&v);
3741      }
3742
3743      v.emit_fb_writes();
3744
3745      v.split_virtual_grfs();
3746
3747      v.setup_paramvalues_refs();
3748      v.setup_pull_constants();
3749
3750      bool progress;
3751      do {
3752	 progress = false;
3753
3754	 progress = v.remove_duplicate_mrf_writes() || progress;
3755
3756	 progress = v.propagate_constants() || progress;
3757	 progress = v.register_coalesce() || progress;
3758	 progress = v.compute_to_mrf() || progress;
3759	 progress = v.dead_code_eliminate() || progress;
3760      } while (progress);
3761
3762      v.schedule_instructions();
3763
3764      v.assign_curb_setup();
3765      v.assign_urb_setup();
3766
3767      if (0) {
3768	 /* Debug of register spilling: Go spill everything. */
3769	 int virtual_grf_count = v.virtual_grf_next;
3770	 for (int i = 1; i < virtual_grf_count; i++) {
3771	    v.spill_reg(i);
3772	 }
3773      }
3774
3775      if (0)
3776	 v.assign_regs_trivial();
3777      else {
3778	 while (!v.assign_regs()) {
3779	    if (v.fail)
3780	       break;
3781	 }
3782      }
3783   }
3784
3785   if (!v.fail)
3786      v.generate_code();
3787
3788   assert(!v.fail); /* FINISHME: Cleanly fail, tested at link time, etc. */
3789
3790   if (v.fail)
3791      return GL_FALSE;
3792
3793   c->prog_data.total_grf = v.grf_used;
3794
3795   return GL_TRUE;
3796}
3797