brw_vs.c revision 018ea68d8780ab5baeef0b8122b8410e5e55ae6d
1/*
2 Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28  * Authors:
29  *   Keith Whitwell <keith@tungstengraphics.com>
30  */
31
32
33#include "main/compiler.h"
34#include "brw_context.h"
35#include "brw_vs.h"
36#include "brw_util.h"
37#include "brw_state.h"
38#include "program/prog_print.h"
39#include "program/prog_parameter.h"
40
41#include "glsl/ralloc.h"
42
43static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44                                   int vert_result)
45{
46   /* Make sure this vert_result hasn't been assigned a slot already */
47   assert (vue_map->vert_result_to_slot[vert_result] == -1);
48
49   vue_map->vert_result_to_slot[vert_result] = vue_map->num_slots;
50   vue_map->slot_to_vert_result[vue_map->num_slots++] = vert_result;
51}
52
53/**
54 * Compute the VUE map for vertex shader program.
55 */
56void
57brw_compute_vue_map(struct brw_vue_map *vue_map,
58                    const struct intel_context *intel,
59                    bool userclip_active,
60                    GLbitfield64 outputs_written)
61{
62   int i;
63
64   vue_map->num_slots = 0;
65   for (i = 0; i < BRW_VERT_RESULT_MAX; ++i) {
66      vue_map->vert_result_to_slot[i] = -1;
67      vue_map->slot_to_vert_result[i] = BRW_VERT_RESULT_MAX;
68   }
69
70   /* VUE header: format depends on chip generation and whether clipping is
71    * enabled.
72    */
73   switch (intel->gen) {
74   case 4:
75      /* There are 8 dwords in VUE header pre-Ironlake:
76       * dword 0-3 is indices, point width, clip flags.
77       * dword 4-7 is ndc position
78       * dword 8-11 is the first vertex data.
79       */
80      assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
81      assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
82      assign_vue_slot(vue_map, VERT_RESULT_HPOS);
83      break;
84   case 5:
85      /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
86       * dword 0-3 of the header is indices, point width, clip flags.
87       * dword 4-7 is the ndc position
88       * dword 8-11 of the vertex header is the 4D space position
89       * dword 12-19 of the vertex header is the user clip distance.
90       * dword 20-23 is a pad so that the vertex element data is aligned
91       * dword 24-27 is the first vertex data we fill.
92       *
93       * Note: future pipeline stages expect 4D space position to be
94       * contiguous with the other vert_results, so we make dword 24-27 a
95       * duplicate copy of the 4D space position.
96       */
97      assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
98      assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
99      assign_vue_slot(vue_map, BRW_VERT_RESULT_HPOS_DUPLICATE);
100      assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
101      assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
102      assign_vue_slot(vue_map, BRW_VERT_RESULT_PAD);
103      assign_vue_slot(vue_map, VERT_RESULT_HPOS);
104      break;
105   case 6:
106   case 7:
107      /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
108       * dword 0-3 of the header is indices, point width, clip flags.
109       * dword 4-7 is the 4D space position
110       * dword 8-15 of the vertex header is the user clip distance if
111       * enabled.
112       * dword 8-11 or 16-19 is the first vertex element data we fill.
113       */
114      assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
115      assign_vue_slot(vue_map, VERT_RESULT_HPOS);
116      if (userclip_active) {
117         assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
118         assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
119      }
120      /* front and back colors need to be consecutive so that we can use
121       * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
122       * two-sided color.
123       */
124      if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL0))
125         assign_vue_slot(vue_map, VERT_RESULT_COL0);
126      if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC0))
127         assign_vue_slot(vue_map, VERT_RESULT_BFC0);
128      if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL1))
129         assign_vue_slot(vue_map, VERT_RESULT_COL1);
130      if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC1))
131         assign_vue_slot(vue_map, VERT_RESULT_BFC1);
132      break;
133   default:
134      assert (!"VUE map not known for this chip generation");
135      break;
136   }
137
138   /* The hardware doesn't care about the rest of the vertex outputs, so just
139    * assign them contiguously.  Don't reassign outputs that already have a
140    * slot.
141    *
142    * Also, don't assign a slot for VERT_RESULT_CLIP_VERTEX, since it is
143    * unsupported in pre-GEN6, and in GEN6+ the vertex shader converts it into
144    * clip distances.
145    */
146   for (int i = 0; i < VERT_RESULT_MAX; ++i) {
147      if ((outputs_written & BITFIELD64_BIT(i)) &&
148          vue_map->vert_result_to_slot[i] == -1 &&
149          i != VERT_RESULT_CLIP_VERTEX) {
150         assign_vue_slot(vue_map, i);
151      }
152   }
153}
154
155
156/**
157 * Decide which set of clip planes should be used when clipping via
158 * gl_Position or gl_ClipVertex.
159 */
160gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
161{
162   if (ctx->Shader.CurrentVertexProgram) {
163      /* There is currently a GLSL vertex shader, so clip according to GLSL
164       * rules, which means compare gl_ClipVertex (or gl_Position, if
165       * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
166       * that were stored in EyeUserPlane at the time the clip planes were
167       * specified.
168       */
169      return ctx->Transform.EyeUserPlane;
170   } else {
171      /* Either we are using fixed function or an ARB vertex program.  In
172       * either case the clip planes are going to be compared against
173       * gl_Position (which is in clip coordinates) so we have to clip using
174       * _ClipUserPlane, which was transformed into clip coordinates by Mesa
175       * core.
176       */
177      return ctx->Transform._ClipUserPlane;
178   }
179}
180
181
182static bool
183do_vs_prog(struct brw_context *brw,
184	   struct gl_shader_program *prog,
185	   struct brw_vertex_program *vp,
186	   struct brw_vs_prog_key *key)
187{
188   struct gl_context *ctx = &brw->intel.ctx;
189   struct intel_context *intel = &brw->intel;
190   GLuint program_size;
191   const GLuint *program;
192   struct brw_vs_compile c;
193   void *mem_ctx;
194   int aux_size;
195   int i;
196
197   memset(&c, 0, sizeof(c));
198   memcpy(&c.key, key, sizeof(*key));
199
200   mem_ctx = ralloc_context(NULL);
201
202   brw_init_compile(brw, &c.func, mem_ctx);
203   c.vp = vp;
204
205   c.prog_data.outputs_written = vp->program.Base.OutputsWritten;
206   c.prog_data.inputs_read = vp->program.Base.InputsRead;
207
208   if (c.key.copy_edgeflag) {
209      c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_EDGE);
210      c.prog_data.inputs_read |= 1<<VERT_ATTRIB_EDGEFLAG;
211   }
212
213   /* Put dummy slots into the VUE for the SF to put the replaced
214    * point sprite coords in.  We shouldn't need these dummy slots,
215    * which take up precious URB space, but it would mean that the SF
216    * doesn't get nice aligned pairs of input coords into output
217    * coords, which would be a pain to handle.
218    */
219   for (i = 0; i < 8; i++) {
220      if (c.key.point_coord_replace & (1 << i))
221	 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_TEX0 + i);
222   }
223
224   if (0) {
225      _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
226			       GL_TRUE);
227   }
228
229   /* Emit GEN4 code.
230    */
231   if (brw->new_vs_backend && prog) {
232      if (!brw_vs_emit(prog, &c)) {
233	 ralloc_free(mem_ctx);
234	 return false;
235      }
236   } else {
237      brw_old_vs_emit(&c);
238   }
239
240   /* Scratch space is used for register spilling */
241   if (c.last_scratch) {
242      c.prog_data.total_scratch = brw_get_scratch_size(c.last_scratch);
243
244      brw_get_scratch_bo(intel, &brw->vs.scratch_bo,
245			 c.prog_data.total_scratch * brw->vs_max_threads);
246   }
247
248   /* get the program
249    */
250   program = brw_get_program(&c.func, &program_size);
251
252   /* We upload from &c.prog_data including the constant_map assuming
253    * they're packed together.  It would be nice to have a
254    * compile-time assert macro here.
255    */
256   assert(c.constant_map == (int8_t *)&c.prog_data +
257	  sizeof(c.prog_data));
258   assert(ctx->Const.VertexProgram.MaxNativeParameters ==
259	  ARRAY_SIZE(c.constant_map));
260   (void) ctx;
261
262   aux_size = sizeof(c.prog_data);
263   /* constant_map */
264   aux_size += c.vp->program.Base.Parameters->NumParameters;
265
266   brw_upload_cache(&brw->cache, BRW_VS_PROG,
267		    &c.key, sizeof(c.key),
268		    program, program_size,
269		    &c.prog_data, aux_size,
270		    &brw->vs.prog_offset, &brw->vs.prog_data);
271   ralloc_free(mem_ctx);
272
273   return true;
274}
275
276
277static void brw_upload_vs_prog(struct brw_context *brw)
278{
279   struct intel_context *intel = &brw->intel;
280   struct gl_context *ctx = &intel->ctx;
281   struct brw_vs_prog_key key;
282   struct brw_vertex_program *vp =
283      (struct brw_vertex_program *)brw->vertex_program;
284   int i;
285
286   memset(&key, 0, sizeof(key));
287
288   /* Just upload the program verbatim for now.  Always send it all
289    * the inputs it asks for, whether they are varying or not.
290    */
291   key.program_string_id = vp->id;
292   key.userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
293   key.uses_clip_distance = vp->program.UsesClipDistance;
294   if (key.userclip_active && !key.uses_clip_distance) {
295      if (intel->gen < 6) {
296         key.nr_userclip_plane_consts
297            = _mesa_bitcount_64(ctx->Transform.ClipPlanesEnabled);
298         key.userclip_planes_enabled_gen_4_5
299            = ctx->Transform.ClipPlanesEnabled;
300      } else {
301         key.nr_userclip_plane_consts
302            = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
303      }
304   }
305   key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
306			ctx->Polygon.BackMode != GL_FILL);
307
308   /* _NEW_LIGHT | _NEW_BUFFERS */
309   key.clamp_vertex_color = ctx->Light._ClampVertexColor;
310
311   /* _NEW_POINT */
312   if (ctx->Point.PointSprite) {
313      for (i = 0; i < 8; i++) {
314	 if (ctx->Point.CoordReplace[i])
315	    key.point_coord_replace |= (1 << i);
316      }
317   }
318
319   /* BRW_NEW_VERTICES */
320   for (i = 0; i < VERT_ATTRIB_MAX; i++) {
321      if (vp->program.Base.InputsRead & (1 << i) &&
322	  brw->vb.inputs[i].glarray->Type == GL_FIXED) {
323	 key.gl_fixed_input_size[i] = brw->vb.inputs[i].glarray->Size;
324      }
325   }
326
327   if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
328			 &key, sizeof(key),
329			 &brw->vs.prog_offset, &brw->vs.prog_data)) {
330      bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
331				vp, &key);
332
333      assert(success);
334   }
335   brw->vs.constant_map = ((int8_t *)brw->vs.prog_data +
336			   sizeof(*brw->vs.prog_data));
337}
338
339/* See brw_vs.c:
340 */
341const struct brw_tracked_state brw_vs_prog = {
342   .dirty = {
343      .mesa  = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
344		_NEW_BUFFERS),
345      .brw   = (BRW_NEW_VERTEX_PROGRAM |
346		BRW_NEW_VERTICES),
347      .cache = 0
348   },
349   .prepare = brw_upload_vs_prog
350};
351
352bool
353brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
354{
355   struct brw_context *brw = brw_context(ctx);
356   struct brw_vs_prog_key key;
357   struct gl_vertex_program *vp = prog->VertexProgram;
358   struct brw_vertex_program *bvp = brw_vertex_program(vp);
359   uint32_t old_prog_offset = brw->vs.prog_offset;
360   struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
361   bool success;
362
363   if (!vp)
364      return true;
365
366   memset(&key, 0, sizeof(key));
367
368   key.program_string_id = bvp->id;
369   key.clamp_vertex_color = true;
370
371   success = do_vs_prog(brw, prog, bvp, &key);
372
373   brw->vs.prog_offset = old_prog_offset;
374   brw->vs.prog_data = old_prog_data;
375
376   return success;
377}
378