brw_vs.c revision bdedd03b701781c8b71e162f7eb834e6a11105de
1/*
2 Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28  * Authors:
29  *   Keith Whitwell <keith@tungstengraphics.com>
30  */
31
32
33#include "main/compiler.h"
34#include "brw_context.h"
35#include "brw_vs.h"
36#include "brw_util.h"
37#include "brw_state.h"
38#include "program/prog_print.h"
39#include "program/prog_parameter.h"
40
41#include "glsl/ralloc.h"
42
43static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44                                   int vert_result)
45{
46   /* Make sure this vert_result hasn't been assigned a slot already */
47   assert (vue_map->vert_result_to_slot[vert_result] == -1);
48
49   vue_map->vert_result_to_slot[vert_result] = vue_map->num_slots;
50   vue_map->slot_to_vert_result[vue_map->num_slots++] = vert_result;
51}
52
53/**
54 * Compute the VUE map for vertex shader program.
55 */
56void
57brw_compute_vue_map(struct brw_vue_map *vue_map,
58                    const struct intel_context *intel,
59                    bool userclip_active,
60                    GLbitfield64 outputs_written)
61{
62   int i;
63
64   vue_map->num_slots = 0;
65   for (i = 0; i < BRW_VERT_RESULT_MAX; ++i) {
66      vue_map->vert_result_to_slot[i] = -1;
67      vue_map->slot_to_vert_result[i] = BRW_VERT_RESULT_MAX;
68   }
69
70   /* VUE header: format depends on chip generation and whether clipping is
71    * enabled.
72    */
73   switch (intel->gen) {
74   case 4:
75      /* There are 8 dwords in VUE header pre-Ironlake:
76       * dword 0-3 is indices, point width, clip flags.
77       * dword 4-7 is ndc position
78       * dword 8-11 is the first vertex data.
79       */
80      assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
81      assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
82      assign_vue_slot(vue_map, VERT_RESULT_HPOS);
83      break;
84   case 5:
85      /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
86       * dword 0-3 of the header is indices, point width, clip flags.
87       * dword 4-7 is the ndc position
88       * dword 8-11 of the vertex header is the 4D space position
89       * dword 12-19 of the vertex header is the user clip distance.
90       * dword 20-23 is a pad so that the vertex element data is aligned
91       * dword 24-27 is the first vertex data we fill.
92       *
93       * Note: future pipeline stages expect 4D space position to be
94       * contiguous with the other vert_results, so we make dword 24-27 a
95       * duplicate copy of the 4D space position.
96       */
97      assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
98      assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
99      assign_vue_slot(vue_map, BRW_VERT_RESULT_HPOS_DUPLICATE);
100      assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
101      assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
102      assign_vue_slot(vue_map, BRW_VERT_RESULT_PAD);
103      assign_vue_slot(vue_map, VERT_RESULT_HPOS);
104      break;
105   case 6:
106   case 7:
107      /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
108       * dword 0-3 of the header is indices, point width, clip flags.
109       * dword 4-7 is the 4D space position
110       * dword 8-15 of the vertex header is the user clip distance if
111       * enabled.
112       * dword 8-11 or 16-19 is the first vertex element data we fill.
113       */
114      assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
115      assign_vue_slot(vue_map, VERT_RESULT_HPOS);
116      if (userclip_active) {
117         assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
118         assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
119      }
120      /* front and back colors need to be consecutive so that we can use
121       * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
122       * two-sided color.
123       */
124      if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL0))
125         assign_vue_slot(vue_map, VERT_RESULT_COL0);
126      if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC0))
127         assign_vue_slot(vue_map, VERT_RESULT_BFC0);
128      if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL1))
129         assign_vue_slot(vue_map, VERT_RESULT_COL1);
130      if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC1))
131         assign_vue_slot(vue_map, VERT_RESULT_BFC1);
132      break;
133   default:
134      assert (!"VUE map not known for this chip generation");
135      break;
136   }
137
138   /* The hardware doesn't care about the rest of the vertex outputs, so just
139    * assign them contiguously.  Don't reassign outputs that already have a
140    * slot.
141    *
142    * Also, prior to Gen6, don't assign a slot for VERT_RESULT_CLIP_VERTEX,
143    * since it is unsupported.  In Gen6 and above, VERT_RESULT_CLIP_VERTEX may
144    * be needed for transform feedback; since we don't want to have to
145    * recompute the VUE map (and everything that depends on it) when transform
146    * feedback is enabled or disabled, just go ahead and assign a slot for it.
147    */
148   for (int i = 0; i < VERT_RESULT_MAX; ++i) {
149      if (intel->gen < 6 && i == VERT_RESULT_CLIP_VERTEX)
150         continue;
151      if ((outputs_written & BITFIELD64_BIT(i)) &&
152          vue_map->vert_result_to_slot[i] == -1) {
153         assign_vue_slot(vue_map, i);
154      }
155   }
156}
157
158
159/**
160 * Decide which set of clip planes should be used when clipping via
161 * gl_Position or gl_ClipVertex.
162 */
163gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
164{
165   if (ctx->Shader.CurrentVertexProgram) {
166      /* There is currently a GLSL vertex shader, so clip according to GLSL
167       * rules, which means compare gl_ClipVertex (or gl_Position, if
168       * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
169       * that were stored in EyeUserPlane at the time the clip planes were
170       * specified.
171       */
172      return ctx->Transform.EyeUserPlane;
173   } else {
174      /* Either we are using fixed function or an ARB vertex program.  In
175       * either case the clip planes are going to be compared against
176       * gl_Position (which is in clip coordinates) so we have to clip using
177       * _ClipUserPlane, which was transformed into clip coordinates by Mesa
178       * core.
179       */
180      return ctx->Transform._ClipUserPlane;
181   }
182}
183
184
185static bool
186do_vs_prog(struct brw_context *brw,
187	   struct gl_shader_program *prog,
188	   struct brw_vertex_program *vp,
189	   struct brw_vs_prog_key *key)
190{
191   struct gl_context *ctx = &brw->intel.ctx;
192   struct intel_context *intel = &brw->intel;
193   GLuint program_size;
194   const GLuint *program;
195   struct brw_vs_compile c;
196   void *mem_ctx;
197   int aux_size;
198   int i;
199
200   memset(&c, 0, sizeof(c));
201   memcpy(&c.key, key, sizeof(*key));
202
203   mem_ctx = ralloc_context(NULL);
204
205   brw_init_compile(brw, &c.func, mem_ctx);
206   c.vp = vp;
207
208   c.prog_data.outputs_written = vp->program.Base.OutputsWritten;
209   c.prog_data.inputs_read = vp->program.Base.InputsRead;
210
211   if (c.key.copy_edgeflag) {
212      c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_EDGE);
213      c.prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
214   }
215
216   /* Put dummy slots into the VUE for the SF to put the replaced
217    * point sprite coords in.  We shouldn't need these dummy slots,
218    * which take up precious URB space, but it would mean that the SF
219    * doesn't get nice aligned pairs of input coords into output
220    * coords, which would be a pain to handle.
221    */
222   for (i = 0; i < 8; i++) {
223      if (c.key.point_coord_replace & (1 << i))
224	 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_TEX0 + i);
225   }
226
227   if (0) {
228      _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
229			       true);
230   }
231
232   /* Emit GEN4 code.
233    */
234   if (prog) {
235      if (!brw_vs_emit(prog, &c)) {
236	 ralloc_free(mem_ctx);
237	 return false;
238      }
239   } else {
240      brw_old_vs_emit(&c);
241   }
242
243   /* Scratch space is used for register spilling */
244   if (c.last_scratch) {
245      c.prog_data.total_scratch = brw_get_scratch_size(c.last_scratch);
246
247      brw_get_scratch_bo(intel, &brw->vs.scratch_bo,
248			 c.prog_data.total_scratch * brw->max_vs_threads);
249   }
250
251   /* get the program
252    */
253   program = brw_get_program(&c.func, &program_size);
254
255   /* We upload from &c.prog_data including the constant_map assuming
256    * they're packed together.  It would be nice to have a
257    * compile-time assert macro here.
258    */
259   assert(c.constant_map == (int8_t *)&c.prog_data +
260	  sizeof(c.prog_data));
261   assert(ctx->Const.VertexProgram.MaxNativeParameters ==
262	  ARRAY_SIZE(c.constant_map));
263   (void) ctx;
264
265   aux_size = sizeof(c.prog_data);
266   /* constant_map */
267   aux_size += c.vp->program.Base.Parameters->NumParameters;
268
269   brw_upload_cache(&brw->cache, BRW_VS_PROG,
270		    &c.key, sizeof(c.key),
271		    program, program_size,
272		    &c.prog_data, aux_size,
273		    &brw->vs.prog_offset, &brw->vs.prog_data);
274   ralloc_free(mem_ctx);
275
276   return true;
277}
278
279
280static void brw_upload_vs_prog(struct brw_context *brw)
281{
282   struct intel_context *intel = &brw->intel;
283   struct gl_context *ctx = &intel->ctx;
284   struct brw_vs_prog_key key;
285   /* BRW_NEW_VERTEX_PROGRAM */
286   struct brw_vertex_program *vp =
287      (struct brw_vertex_program *)brw->vertex_program;
288   struct gl_program *prog = (struct gl_program *) brw->vertex_program;
289   int i;
290
291   memset(&key, 0, sizeof(key));
292
293   /* Just upload the program verbatim for now.  Always send it all
294    * the inputs it asks for, whether they are varying or not.
295    */
296   key.program_string_id = vp->id;
297   key.userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
298   key.uses_clip_distance = vp->program.UsesClipDistance;
299   if (key.userclip_active && !key.uses_clip_distance) {
300      if (intel->gen < 6) {
301         key.nr_userclip_plane_consts
302            = _mesa_bitcount_64(ctx->Transform.ClipPlanesEnabled);
303         key.userclip_planes_enabled_gen_4_5
304            = ctx->Transform.ClipPlanesEnabled;
305      } else {
306         key.nr_userclip_plane_consts
307            = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
308      }
309   }
310   key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
311			ctx->Polygon.BackMode != GL_FILL);
312
313   /* _NEW_LIGHT | _NEW_BUFFERS */
314   key.clamp_vertex_color = ctx->Light._ClampVertexColor;
315
316   /* _NEW_POINT */
317   if (ctx->Point.PointSprite) {
318      for (i = 0; i < 8; i++) {
319	 if (ctx->Point.CoordReplace[i])
320	    key.point_coord_replace |= (1 << i);
321      }
322   }
323
324   /* _NEW_TEXTURE */
325   for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
326      if (prog->TexturesUsed[i])
327	 brw_populate_sampler_prog_key_data(ctx, &key.tex, i);
328   }
329
330   /* BRW_NEW_VERTICES */
331   for (i = 0; i < VERT_ATTRIB_MAX; i++) {
332      if (vp->program.Base.InputsRead & BITFIELD64_BIT(i) &&
333	  brw->vb.inputs[i].glarray->Type == GL_FIXED) {
334	 key.gl_fixed_input_size[i] = brw->vb.inputs[i].glarray->Size;
335      }
336   }
337
338   if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
339			 &key, sizeof(key),
340			 &brw->vs.prog_offset, &brw->vs.prog_data)) {
341      bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
342				vp, &key);
343
344      assert(success);
345   }
346   brw->vs.constant_map = ((int8_t *)brw->vs.prog_data +
347			   sizeof(*brw->vs.prog_data));
348}
349
350/* See brw_vs.c:
351 */
352const struct brw_tracked_state brw_vs_prog = {
353   .dirty = {
354      .mesa  = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
355		_NEW_TEXTURE |
356		_NEW_BUFFERS),
357      .brw   = (BRW_NEW_VERTEX_PROGRAM |
358		BRW_NEW_VERTICES),
359      .cache = 0
360   },
361   .emit = brw_upload_vs_prog
362};
363
364bool
365brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
366{
367   struct brw_context *brw = brw_context(ctx);
368   struct brw_vs_prog_key key;
369   uint32_t old_prog_offset = brw->vs.prog_offset;
370   struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
371   bool success;
372
373   if (!prog->_LinkedShaders[MESA_SHADER_VERTEX])
374      return true;
375
376   struct gl_vertex_program *vp = (struct gl_vertex_program *)
377      prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
378   struct brw_vertex_program *bvp = brw_vertex_program(vp);
379
380   memset(&key, 0, sizeof(key));
381
382   key.program_string_id = bvp->id;
383   key.clamp_vertex_color = true;
384
385   success = do_vs_prog(brw, prog, bvp, &key);
386
387   brw->vs.prog_offset = old_prog_offset;
388   brw->vs.prog_data = old_prog_data;
389
390   return success;
391}
392