platform-linux.cc revision d0582a6c46733687d045e4188a1bcd0123c758a1
1// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28// Platform specific code for Linux goes here. For the POSIX comaptible parts
29// the implementation is in platform-posix.cc.
30
31#include <pthread.h>
32#include <semaphore.h>
33#include <signal.h>
34#include <sys/time.h>
35#include <sys/resource.h>
36#include <sys/types.h>
37#include <stdlib.h>
38
39// Ubuntu Dapper requires memory pages to be marked as
40// executable. Otherwise, OS raises an exception when executing code
41// in that page.
42#include <sys/types.h>  // mmap & munmap
43#include <sys/mman.h>   // mmap & munmap
44#include <sys/stat.h>   // open
45#include <fcntl.h>      // open
46#include <unistd.h>     // sysconf
47#ifdef __GLIBC__
48#include <execinfo.h>   // backtrace, backtrace_symbols
49#endif  // def __GLIBC__
50#include <strings.h>    // index
51#include <errno.h>
52#include <stdarg.h>
53
54#undef MAP_TYPE
55
56#include "v8.h"
57
58#include "platform.h"
59#include "top.h"
60#include "v8threads.h"
61
62
63namespace v8 {
64namespace internal {
65
66// 0 is never a valid thread id on Linux since tids and pids share a
67// name space and pid 0 is reserved (see man 2 kill).
68static const pthread_t kNoThread = (pthread_t) 0;
69
70
71double ceiling(double x) {
72  return ceil(x);
73}
74
75
76void OS::Setup() {
77  // Seed the random number generator.
78  // Convert the current time to a 64-bit integer first, before converting it
79  // to an unsigned. Going directly can cause an overflow and the seed to be
80  // set to all ones. The seed will be identical for different instances that
81  // call this setup code within the same millisecond.
82  uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
83  srandom(static_cast<unsigned int>(seed));
84}
85
86
87uint64_t OS::CpuFeaturesImpliedByPlatform() {
88#if (defined(__VFP_FP__) && !defined(__SOFTFP__))
89  // Here gcc is telling us that we are on an ARM and gcc is assuming that we
90  // have VFP3 instructions.  If gcc can assume it then so can we.
91  return 1u << VFP3;
92#else
93  return 0;  // Linux runs on anything.
94#endif
95}
96
97
98#ifdef __arm__
99bool OS::ArmCpuHasFeature(CpuFeature feature) {
100  const char* search_string = NULL;
101  const char* file_name = "/proc/cpuinfo";
102  // Simple detection of VFP at runtime for Linux.
103  // It is based on /proc/cpuinfo, which reveals hardware configuration
104  // to user-space applications.  According to ARM (mid 2009), no similar
105  // facility is universally available on the ARM architectures,
106  // so it's up to individual OSes to provide such.
107  //
108  // This is written as a straight shot one pass parser
109  // and not using STL string and ifstream because,
110  // on Linux, it's reading from a (non-mmap-able)
111  // character special device.
112  switch (feature) {
113    case VFP3:
114      search_string = "vfp";
115      break;
116    default:
117      UNREACHABLE();
118  }
119
120  FILE* f = NULL;
121  const char* what = search_string;
122
123  if (NULL == (f = fopen(file_name, "r")))
124    return false;
125
126  int k;
127  while (EOF != (k = fgetc(f))) {
128    if (k == *what) {
129      ++what;
130      while ((*what != '\0') && (*what == fgetc(f))) {
131        ++what;
132      }
133      if (*what == '\0') {
134        fclose(f);
135        return true;
136      } else {
137        what = search_string;
138      }
139    }
140  }
141  fclose(f);
142
143  // Did not find string in the proc file.
144  return false;
145}
146#endif  // def __arm__
147
148
149int OS::ActivationFrameAlignment() {
150#ifdef V8_TARGET_ARCH_ARM
151  // On EABI ARM targets this is required for fp correctness in the
152  // runtime system.
153  return 8;
154#else
155  // With gcc 4.4 the tree vectorization optimiser can generate code
156  // that requires 16 byte alignment such as movdqa on x86.
157  return 16;
158#endif
159}
160
161
162// We keep the lowest and highest addresses mapped as a quick way of
163// determining that pointers are outside the heap (used mostly in assertions
164// and verification).  The estimate is conservative, ie, not all addresses in
165// 'allocated' space are actually allocated to our heap.  The range is
166// [lowest, highest), inclusive on the low and and exclusive on the high end.
167static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
168static void* highest_ever_allocated = reinterpret_cast<void*>(0);
169
170
171static void UpdateAllocatedSpaceLimits(void* address, int size) {
172  lowest_ever_allocated = Min(lowest_ever_allocated, address);
173  highest_ever_allocated =
174      Max(highest_ever_allocated,
175          reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
176}
177
178
179bool OS::IsOutsideAllocatedSpace(void* address) {
180  return address < lowest_ever_allocated || address >= highest_ever_allocated;
181}
182
183
184size_t OS::AllocateAlignment() {
185  return sysconf(_SC_PAGESIZE);
186}
187
188
189void* OS::Allocate(const size_t requested,
190                   size_t* allocated,
191                   bool is_executable) {
192  const size_t msize = RoundUp(requested, sysconf(_SC_PAGESIZE));
193  int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
194  void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
195  if (mbase == MAP_FAILED) {
196    LOG(StringEvent("OS::Allocate", "mmap failed"));
197    return NULL;
198  }
199  *allocated = msize;
200  UpdateAllocatedSpaceLimits(mbase, msize);
201  return mbase;
202}
203
204
205void OS::Free(void* address, const size_t size) {
206  // TODO(1240712): munmap has a return value which is ignored here.
207  int result = munmap(address, size);
208  USE(result);
209  ASSERT(result == 0);
210}
211
212
213#ifdef ENABLE_HEAP_PROTECTION
214
215void OS::Protect(void* address, size_t size) {
216  // TODO(1240712): mprotect has a return value which is ignored here.
217  mprotect(address, size, PROT_READ);
218}
219
220
221void OS::Unprotect(void* address, size_t size, bool is_executable) {
222  // TODO(1240712): mprotect has a return value which is ignored here.
223  int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
224  mprotect(address, size, prot);
225}
226
227#endif
228
229
230void OS::Sleep(int milliseconds) {
231  unsigned int ms = static_cast<unsigned int>(milliseconds);
232  usleep(1000 * ms);
233}
234
235
236void OS::Abort() {
237  // Redirect to std abort to signal abnormal program termination.
238  abort();
239}
240
241
242void OS::DebugBreak() {
243// TODO(lrn): Introduce processor define for runtime system (!= V8_ARCH_x,
244//  which is the architecture of generated code).
245#if defined(__arm__) || defined(__thumb__)
246  asm("bkpt 0");
247#else
248  asm("int $3");
249#endif
250}
251
252
253class PosixMemoryMappedFile : public OS::MemoryMappedFile {
254 public:
255  PosixMemoryMappedFile(FILE* file, void* memory, int size)
256    : file_(file), memory_(memory), size_(size) { }
257  virtual ~PosixMemoryMappedFile();
258  virtual void* memory() { return memory_; }
259 private:
260  FILE* file_;
261  void* memory_;
262  int size_;
263};
264
265
266OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
267    void* initial) {
268  FILE* file = fopen(name, "w+");
269  if (file == NULL) return NULL;
270  int result = fwrite(initial, size, 1, file);
271  if (result < 1) {
272    fclose(file);
273    return NULL;
274  }
275  void* memory =
276      mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
277  return new PosixMemoryMappedFile(file, memory, size);
278}
279
280
281PosixMemoryMappedFile::~PosixMemoryMappedFile() {
282  if (memory_) munmap(memory_, size_);
283  fclose(file_);
284}
285
286
287void OS::LogSharedLibraryAddresses() {
288#ifdef ENABLE_LOGGING_AND_PROFILING
289  // This function assumes that the layout of the file is as follows:
290  // hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
291  // If we encounter an unexpected situation we abort scanning further entries.
292  FILE* fp = fopen("/proc/self/maps", "r");
293  if (fp == NULL) return;
294
295  // Allocate enough room to be able to store a full file name.
296  const int kLibNameLen = FILENAME_MAX + 1;
297  char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
298
299  // This loop will terminate once the scanning hits an EOF.
300  while (true) {
301    uintptr_t start, end;
302    char attr_r, attr_w, attr_x, attr_p;
303    // Parse the addresses and permission bits at the beginning of the line.
304    if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
305    if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
306
307    int c;
308    if (attr_r == 'r' && attr_x == 'x') {
309      // Found a readable and executable entry. Skip characters until we reach
310      // the beginning of the filename or the end of the line.
311      do {
312        c = getc(fp);
313      } while ((c != EOF) && (c != '\n') && (c != '/'));
314      if (c == EOF) break;  // EOF: Was unexpected, just exit.
315
316      // Process the filename if found.
317      if (c == '/') {
318        ungetc(c, fp);  // Push the '/' back into the stream to be read below.
319
320        // Read to the end of the line. Exit if the read fails.
321        if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
322
323        // Drop the newline character read by fgets. We do not need to check
324        // for a zero-length string because we know that we at least read the
325        // '/' character.
326        lib_name[strlen(lib_name) - 1] = '\0';
327      } else {
328        // No library name found, just record the raw address range.
329        snprintf(lib_name, kLibNameLen,
330                 "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
331      }
332      LOG(SharedLibraryEvent(lib_name, start, end));
333    } else {
334      // Entry not describing executable data. Skip to end of line to setup
335      // reading the next entry.
336      do {
337        c = getc(fp);
338      } while ((c != EOF) && (c != '\n'));
339      if (c == EOF) break;
340    }
341  }
342  free(lib_name);
343  fclose(fp);
344#endif
345}
346
347
348int OS::StackWalk(Vector<OS::StackFrame> frames) {
349  // backtrace is a glibc extension.
350#ifdef __GLIBC__
351  int frames_size = frames.length();
352  void** addresses = NewArray<void*>(frames_size);
353
354  int frames_count = backtrace(addresses, frames_size);
355
356  char** symbols;
357  symbols = backtrace_symbols(addresses, frames_count);
358  if (symbols == NULL) {
359    DeleteArray(addresses);
360    return kStackWalkError;
361  }
362
363  for (int i = 0; i < frames_count; i++) {
364    frames[i].address = addresses[i];
365    // Format a text representation of the frame based on the information
366    // available.
367    SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
368             "%s",
369             symbols[i]);
370    // Make sure line termination is in place.
371    frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
372  }
373
374  DeleteArray(addresses);
375  free(symbols);
376
377  return frames_count;
378#else  // ndef __GLIBC__
379  return 0;
380#endif  // ndef __GLIBC__
381}
382
383
384// Constants used for mmap.
385static const int kMmapFd = -1;
386static const int kMmapFdOffset = 0;
387
388
389VirtualMemory::VirtualMemory(size_t size) {
390  address_ = mmap(NULL, size, PROT_NONE,
391                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
392                  kMmapFd, kMmapFdOffset);
393  size_ = size;
394}
395
396
397VirtualMemory::~VirtualMemory() {
398  if (IsReserved()) {
399    if (0 == munmap(address(), size())) address_ = MAP_FAILED;
400  }
401}
402
403
404bool VirtualMemory::IsReserved() {
405  return address_ != MAP_FAILED;
406}
407
408
409bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
410  int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
411  if (MAP_FAILED == mmap(address, size, prot,
412                         MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
413                         kMmapFd, kMmapFdOffset)) {
414    return false;
415  }
416
417  UpdateAllocatedSpaceLimits(address, size);
418  return true;
419}
420
421
422bool VirtualMemory::Uncommit(void* address, size_t size) {
423  return mmap(address, size, PROT_NONE,
424              MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
425              kMmapFd, kMmapFdOffset) != MAP_FAILED;
426}
427
428
429class ThreadHandle::PlatformData : public Malloced {
430 public:
431  explicit PlatformData(ThreadHandle::Kind kind) {
432    Initialize(kind);
433  }
434
435  void Initialize(ThreadHandle::Kind kind) {
436    switch (kind) {
437      case ThreadHandle::SELF: thread_ = pthread_self(); break;
438      case ThreadHandle::INVALID: thread_ = kNoThread; break;
439    }
440  }
441
442  pthread_t thread_;  // Thread handle for pthread.
443};
444
445
446ThreadHandle::ThreadHandle(Kind kind) {
447  data_ = new PlatformData(kind);
448}
449
450
451void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
452  data_->Initialize(kind);
453}
454
455
456ThreadHandle::~ThreadHandle() {
457  delete data_;
458}
459
460
461bool ThreadHandle::IsSelf() const {
462  return pthread_equal(data_->thread_, pthread_self());
463}
464
465
466bool ThreadHandle::IsValid() const {
467  return data_->thread_ != kNoThread;
468}
469
470
471Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
472}
473
474
475Thread::~Thread() {
476}
477
478
479static void* ThreadEntry(void* arg) {
480  Thread* thread = reinterpret_cast<Thread*>(arg);
481  // This is also initialized by the first argument to pthread_create() but we
482  // don't know which thread will run first (the original thread or the new
483  // one) so we initialize it here too.
484  thread->thread_handle_data()->thread_ = pthread_self();
485  ASSERT(thread->IsValid());
486  thread->Run();
487  return NULL;
488}
489
490
491void Thread::Start() {
492  pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this);
493  ASSERT(IsValid());
494}
495
496
497void Thread::Join() {
498  pthread_join(thread_handle_data()->thread_, NULL);
499}
500
501
502Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
503  pthread_key_t key;
504  int result = pthread_key_create(&key, NULL);
505  USE(result);
506  ASSERT(result == 0);
507  return static_cast<LocalStorageKey>(key);
508}
509
510
511void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
512  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
513  int result = pthread_key_delete(pthread_key);
514  USE(result);
515  ASSERT(result == 0);
516}
517
518
519void* Thread::GetThreadLocal(LocalStorageKey key) {
520  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
521  return pthread_getspecific(pthread_key);
522}
523
524
525void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
526  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
527  pthread_setspecific(pthread_key, value);
528}
529
530
531void Thread::YieldCPU() {
532  sched_yield();
533}
534
535
536class LinuxMutex : public Mutex {
537 public:
538
539  LinuxMutex() {
540    pthread_mutexattr_t attrs;
541    int result = pthread_mutexattr_init(&attrs);
542    ASSERT(result == 0);
543    result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
544    ASSERT(result == 0);
545    result = pthread_mutex_init(&mutex_, &attrs);
546    ASSERT(result == 0);
547  }
548
549  virtual ~LinuxMutex() { pthread_mutex_destroy(&mutex_); }
550
551  virtual int Lock() {
552    int result = pthread_mutex_lock(&mutex_);
553    return result;
554  }
555
556  virtual int Unlock() {
557    int result = pthread_mutex_unlock(&mutex_);
558    return result;
559  }
560
561 private:
562  pthread_mutex_t mutex_;   // Pthread mutex for POSIX platforms.
563};
564
565
566Mutex* OS::CreateMutex() {
567  return new LinuxMutex();
568}
569
570
571class LinuxSemaphore : public Semaphore {
572 public:
573  explicit LinuxSemaphore(int count) {  sem_init(&sem_, 0, count); }
574  virtual ~LinuxSemaphore() { sem_destroy(&sem_); }
575
576  virtual void Wait();
577  virtual bool Wait(int timeout);
578  virtual void Signal() { sem_post(&sem_); }
579 private:
580  sem_t sem_;
581};
582
583
584void LinuxSemaphore::Wait() {
585  while (true) {
586    int result = sem_wait(&sem_);
587    if (result == 0) return;  // Successfully got semaphore.
588    CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
589  }
590}
591
592
593#ifndef TIMEVAL_TO_TIMESPEC
594#define TIMEVAL_TO_TIMESPEC(tv, ts) do {                            \
595    (ts)->tv_sec = (tv)->tv_sec;                                    \
596    (ts)->tv_nsec = (tv)->tv_usec * 1000;                           \
597} while (false)
598#endif
599
600
601bool LinuxSemaphore::Wait(int timeout) {
602  const long kOneSecondMicros = 1000000;  // NOLINT
603
604  // Split timeout into second and nanosecond parts.
605  struct timeval delta;
606  delta.tv_usec = timeout % kOneSecondMicros;
607  delta.tv_sec = timeout / kOneSecondMicros;
608
609  struct timeval current_time;
610  // Get the current time.
611  if (gettimeofday(&current_time, NULL) == -1) {
612    return false;
613  }
614
615  // Calculate time for end of timeout.
616  struct timeval end_time;
617  timeradd(&current_time, &delta, &end_time);
618
619  struct timespec ts;
620  TIMEVAL_TO_TIMESPEC(&end_time, &ts);
621  // Wait for semaphore signalled or timeout.
622  while (true) {
623    int result = sem_timedwait(&sem_, &ts);
624    if (result == 0) return true;  // Successfully got semaphore.
625    if (result > 0) {
626      // For glibc prior to 2.3.4 sem_timedwait returns the error instead of -1.
627      errno = result;
628      result = -1;
629    }
630    if (result == -1 && errno == ETIMEDOUT) return false;  // Timeout.
631    CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
632  }
633}
634
635
636Semaphore* OS::CreateSemaphore(int count) {
637  return new LinuxSemaphore(count);
638}
639
640
641#ifdef ENABLE_LOGGING_AND_PROFILING
642
643static Sampler* active_sampler_ = NULL;
644static pthread_t vm_thread_ = 0;
645
646
647#if !defined(__GLIBC__) && (defined(__arm__) || defined(__thumb__))
648// Android runs a fairly new Linux kernel, so signal info is there,
649// but the C library doesn't have the structs defined.
650
651struct sigcontext {
652  uint32_t trap_no;
653  uint32_t error_code;
654  uint32_t oldmask;
655  uint32_t gregs[16];
656  uint32_t arm_cpsr;
657  uint32_t fault_address;
658};
659typedef uint32_t __sigset_t;
660typedef struct sigcontext mcontext_t;
661typedef struct ucontext {
662  uint32_t uc_flags;
663  struct ucontext* uc_link;
664  stack_t uc_stack;
665  mcontext_t uc_mcontext;
666  __sigset_t uc_sigmask;
667} ucontext_t;
668enum ArmRegisters {R15 = 15, R13 = 13, R11 = 11};
669
670#endif
671
672
673// A function that determines if a signal handler is called in the context
674// of a VM thread.
675//
676// The problem is that SIGPROF signal can be delivered to an arbitrary thread
677// (see http://code.google.com/p/google-perftools/issues/detail?id=106#c2)
678// So, if the signal is being handled in the context of a non-VM thread,
679// it means that the VM thread is running, and trying to sample its stack can
680// cause a crash.
681static inline bool IsVmThread() {
682  // In the case of a single VM thread, this check is enough.
683  if (pthread_equal(pthread_self(), vm_thread_)) return true;
684  // If there are multiple threads that use VM, they must have a thread id
685  // stored in TLS. To verify that the thread is really executing VM,
686  // we check Top's data. Having that ThreadManager::RestoreThread first
687  // restores ThreadLocalTop from TLS, and only then erases the TLS value,
688  // reading Top::thread_id() should not be affected by races.
689  if (ThreadManager::HasId() && !ThreadManager::IsArchived() &&
690      ThreadManager::CurrentId() == Top::thread_id()) {
691    return true;
692  }
693  return false;
694}
695
696
697static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
698  USE(info);
699  if (signal != SIGPROF) return;
700  if (active_sampler_ == NULL) return;
701
702  TickSample sample;
703
704  // If profiling, we extract the current pc and sp.
705  if (active_sampler_->IsProfiling()) {
706    // Extracting the sample from the context is extremely machine dependent.
707    ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
708    mcontext_t& mcontext = ucontext->uc_mcontext;
709#if V8_HOST_ARCH_IA32
710    sample.pc = mcontext.gregs[REG_EIP];
711    sample.sp = mcontext.gregs[REG_ESP];
712    sample.fp = mcontext.gregs[REG_EBP];
713#elif V8_HOST_ARCH_X64
714    sample.pc = mcontext.gregs[REG_RIP];
715    sample.sp = mcontext.gregs[REG_RSP];
716    sample.fp = mcontext.gregs[REG_RBP];
717#elif V8_HOST_ARCH_ARM
718// An undefined macro evaluates to 0, so this applies to Android's Bionic also.
719#if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
720    sample.pc = mcontext.gregs[R15];
721    sample.sp = mcontext.gregs[R13];
722    sample.fp = mcontext.gregs[R11];
723#else
724    sample.pc = mcontext.arm_pc;
725    sample.sp = mcontext.arm_sp;
726    sample.fp = mcontext.arm_fp;
727#endif
728#endif
729    if (IsVmThread())
730      active_sampler_->SampleStack(&sample);
731  }
732
733  // We always sample the VM state.
734  sample.state = Logger::state();
735
736  active_sampler_->Tick(&sample);
737}
738
739
740class Sampler::PlatformData : public Malloced {
741 public:
742  PlatformData() {
743    signal_handler_installed_ = false;
744  }
745
746  bool signal_handler_installed_;
747  struct sigaction old_signal_handler_;
748  struct itimerval old_timer_value_;
749};
750
751
752Sampler::Sampler(int interval, bool profiling)
753    : interval_(interval), profiling_(profiling), active_(false) {
754  data_ = new PlatformData();
755}
756
757
758Sampler::~Sampler() {
759  delete data_;
760}
761
762
763void Sampler::Start() {
764  // There can only be one active sampler at the time on POSIX
765  // platforms.
766  if (active_sampler_ != NULL) return;
767
768  vm_thread_ = pthread_self();
769
770  // Request profiling signals.
771  struct sigaction sa;
772  sa.sa_sigaction = ProfilerSignalHandler;
773  sigemptyset(&sa.sa_mask);
774  sa.sa_flags = SA_SIGINFO;
775  if (sigaction(SIGPROF, &sa, &data_->old_signal_handler_) != 0) return;
776  data_->signal_handler_installed_ = true;
777
778  // Set the itimer to generate a tick for each interval.
779  itimerval itimer;
780  itimer.it_interval.tv_sec = interval_ / 1000;
781  itimer.it_interval.tv_usec = (interval_ % 1000) * 1000;
782  itimer.it_value.tv_sec = itimer.it_interval.tv_sec;
783  itimer.it_value.tv_usec = itimer.it_interval.tv_usec;
784  setitimer(ITIMER_PROF, &itimer, &data_->old_timer_value_);
785
786  // Set this sampler as the active sampler.
787  active_sampler_ = this;
788  active_ = true;
789}
790
791
792void Sampler::Stop() {
793  // Restore old signal handler
794  if (data_->signal_handler_installed_) {
795    setitimer(ITIMER_PROF, &data_->old_timer_value_, NULL);
796    sigaction(SIGPROF, &data_->old_signal_handler_, 0);
797    data_->signal_handler_installed_ = false;
798  }
799
800  // This sampler is no longer the active sampler.
801  active_sampler_ = NULL;
802  active_ = false;
803}
804
805
806#endif  // ENABLE_LOGGING_AND_PROFILING
807
808} }  // namespace v8::internal
809