platform-linux.cc revision f87a203d89e1bbb6708282e0b64dbd13d59b723d
1// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28// Platform specific code for Linux goes here. For the POSIX comaptible parts
29// the implementation is in platform-posix.cc.
30
31#include <pthread.h>
32#include <semaphore.h>
33#include <signal.h>
34#include <sys/time.h>
35#include <sys/resource.h>
36#include <sys/types.h>
37#include <stdlib.h>
38
39// Ubuntu Dapper requires memory pages to be marked as
40// executable. Otherwise, OS raises an exception when executing code
41// in that page.
42#include <sys/types.h>  // mmap & munmap
43#include <sys/mman.h>   // mmap & munmap
44#include <sys/stat.h>   // open
45#include <fcntl.h>      // open
46#include <unistd.h>     // sysconf
47#ifdef __GLIBC__
48#include <execinfo.h>   // backtrace, backtrace_symbols
49#endif  // def __GLIBC__
50#include <strings.h>    // index
51#include <errno.h>
52#include <stdarg.h>
53
54#undef MAP_TYPE
55
56#include "v8.h"
57
58#include "platform.h"
59#include "top.h"
60#include "v8threads.h"
61
62
63namespace v8 {
64namespace internal {
65
66// 0 is never a valid thread id on Linux since tids and pids share a
67// name space and pid 0 is reserved (see man 2 kill).
68static const pthread_t kNoThread = (pthread_t) 0;
69
70
71double ceiling(double x) {
72  return ceil(x);
73}
74
75
76void OS::Setup() {
77  // Seed the random number generator.
78  // Convert the current time to a 64-bit integer first, before converting it
79  // to an unsigned. Going directly can cause an overflow and the seed to be
80  // set to all ones. The seed will be identical for different instances that
81  // call this setup code within the same millisecond.
82  uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
83  srandom(static_cast<unsigned int>(seed));
84}
85
86
87uint64_t OS::CpuFeaturesImpliedByPlatform() {
88#if (defined(__VFP_FP__) && !defined(__SOFTFP__))
89  // Here gcc is telling us that we are on an ARM and gcc is assuming that we
90  // have VFP3 instructions.  If gcc can assume it then so can we.
91  return 1u << VFP3;
92#elif CAN_USE_ARMV7_INSTRUCTIONS
93  return 1u << ARMv7;
94#else
95  return 0;  // Linux runs on anything.
96#endif
97}
98
99
100#ifdef __arm__
101bool OS::ArmCpuHasFeature(CpuFeature feature) {
102  const char* search_string = NULL;
103  const char* file_name = "/proc/cpuinfo";
104  // Simple detection of VFP at runtime for Linux.
105  // It is based on /proc/cpuinfo, which reveals hardware configuration
106  // to user-space applications.  According to ARM (mid 2009), no similar
107  // facility is universally available on the ARM architectures,
108  // so it's up to individual OSes to provide such.
109  //
110  // This is written as a straight shot one pass parser
111  // and not using STL string and ifstream because,
112  // on Linux, it's reading from a (non-mmap-able)
113  // character special device.
114  switch (feature) {
115    case VFP3:
116      search_string = "vfp";
117      break;
118    case ARMv7:
119      search_string = "ARMv7";
120      break;
121    default:
122      UNREACHABLE();
123  }
124
125  FILE* f = NULL;
126  const char* what = search_string;
127
128  if (NULL == (f = fopen(file_name, "r")))
129    return false;
130
131  int k;
132  while (EOF != (k = fgetc(f))) {
133    if (k == *what) {
134      ++what;
135      while ((*what != '\0') && (*what == fgetc(f))) {
136        ++what;
137      }
138      if (*what == '\0') {
139        fclose(f);
140        return true;
141      } else {
142        what = search_string;
143      }
144    }
145  }
146  fclose(f);
147
148  // Did not find string in the proc file.
149  return false;
150}
151#endif  // def __arm__
152
153
154int OS::ActivationFrameAlignment() {
155#ifdef V8_TARGET_ARCH_ARM
156  // On EABI ARM targets this is required for fp correctness in the
157  // runtime system.
158  return 8;
159#elif V8_TARGET_ARCH_MIPS
160  return 8;
161#endif
162  // With gcc 4.4 the tree vectorization optimizer can generate code
163  // that requires 16 byte alignment such as movdqa on x86.
164  return 16;
165}
166
167
168#ifdef V8_TARGET_ARCH_ARM
169// 0xffff0fa0 is the hard coded address of a function provided by
170// the kernel which implements a memory barrier. On older
171// ARM architecture revisions (pre-v6) this may be implemented using
172// a syscall. This address is stable, and in active use (hard coded)
173// by at least glibc-2.7 and the Android C library.
174typedef void (*LinuxKernelMemoryBarrierFunc)(void);
175LinuxKernelMemoryBarrierFunc pLinuxKernelMemoryBarrier __attribute__((weak)) =
176    (LinuxKernelMemoryBarrierFunc) 0xffff0fa0;
177#endif
178
179void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
180#if defined(V8_TARGET_ARCH_ARM) && defined(__arm__)
181  // Only use on ARM hardware.
182  pLinuxKernelMemoryBarrier();
183#else
184  __asm__ __volatile__("" : : : "memory");
185  // An x86 store acts as a release barrier.
186#endif
187  *ptr = value;
188}
189
190
191const char* OS::LocalTimezone(double time) {
192  if (isnan(time)) return "";
193  time_t tv = static_cast<time_t>(floor(time/msPerSecond));
194  struct tm* t = localtime(&tv);
195  if (NULL == t) return "";
196  return t->tm_zone;
197}
198
199
200double OS::LocalTimeOffset() {
201  time_t tv = time(NULL);
202  struct tm* t = localtime(&tv);
203  // tm_gmtoff includes any daylight savings offset, so subtract it.
204  return static_cast<double>(t->tm_gmtoff * msPerSecond -
205                             (t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
206}
207
208
209// We keep the lowest and highest addresses mapped as a quick way of
210// determining that pointers are outside the heap (used mostly in assertions
211// and verification).  The estimate is conservative, ie, not all addresses in
212// 'allocated' space are actually allocated to our heap.  The range is
213// [lowest, highest), inclusive on the low and and exclusive on the high end.
214static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
215static void* highest_ever_allocated = reinterpret_cast<void*>(0);
216
217
218static void UpdateAllocatedSpaceLimits(void* address, int size) {
219  lowest_ever_allocated = Min(lowest_ever_allocated, address);
220  highest_ever_allocated =
221      Max(highest_ever_allocated,
222          reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
223}
224
225
226bool OS::IsOutsideAllocatedSpace(void* address) {
227  return address < lowest_ever_allocated || address >= highest_ever_allocated;
228}
229
230
231size_t OS::AllocateAlignment() {
232  return sysconf(_SC_PAGESIZE);
233}
234
235
236void* OS::Allocate(const size_t requested,
237                   size_t* allocated,
238                   bool is_executable) {
239  // TODO(805): Port randomization of allocated executable memory to Linux.
240  const size_t msize = RoundUp(requested, sysconf(_SC_PAGESIZE));
241  int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
242  void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
243  if (mbase == MAP_FAILED) {
244    LOG(StringEvent("OS::Allocate", "mmap failed"));
245    return NULL;
246  }
247  *allocated = msize;
248  UpdateAllocatedSpaceLimits(mbase, msize);
249  return mbase;
250}
251
252
253void OS::Free(void* address, const size_t size) {
254  // TODO(1240712): munmap has a return value which is ignored here.
255  int result = munmap(address, size);
256  USE(result);
257  ASSERT(result == 0);
258}
259
260
261#ifdef ENABLE_HEAP_PROTECTION
262
263void OS::Protect(void* address, size_t size) {
264  // TODO(1240712): mprotect has a return value which is ignored here.
265  mprotect(address, size, PROT_READ);
266}
267
268
269void OS::Unprotect(void* address, size_t size, bool is_executable) {
270  // TODO(1240712): mprotect has a return value which is ignored here.
271  int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
272  mprotect(address, size, prot);
273}
274
275#endif
276
277
278void OS::Sleep(int milliseconds) {
279  unsigned int ms = static_cast<unsigned int>(milliseconds);
280  usleep(1000 * ms);
281}
282
283
284void OS::Abort() {
285  // Redirect to std abort to signal abnormal program termination.
286  abort();
287}
288
289
290void OS::DebugBreak() {
291// TODO(lrn): Introduce processor define for runtime system (!= V8_ARCH_x,
292//  which is the architecture of generated code).
293#if (defined(__arm__) || defined(__thumb__))
294# if defined(CAN_USE_ARMV5_INSTRUCTIONS)
295  asm("bkpt 0");
296# endif
297#elif defined(__mips__)
298  asm("break");
299#else
300  asm("int $3");
301#endif
302}
303
304
305class PosixMemoryMappedFile : public OS::MemoryMappedFile {
306 public:
307  PosixMemoryMappedFile(FILE* file, void* memory, int size)
308    : file_(file), memory_(memory), size_(size) { }
309  virtual ~PosixMemoryMappedFile();
310  virtual void* memory() { return memory_; }
311 private:
312  FILE* file_;
313  void* memory_;
314  int size_;
315};
316
317
318OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
319    void* initial) {
320  FILE* file = fopen(name, "w+");
321  if (file == NULL) return NULL;
322  int result = fwrite(initial, size, 1, file);
323  if (result < 1) {
324    fclose(file);
325    return NULL;
326  }
327  void* memory =
328      mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
329  return new PosixMemoryMappedFile(file, memory, size);
330}
331
332
333PosixMemoryMappedFile::~PosixMemoryMappedFile() {
334  if (memory_) munmap(memory_, size_);
335  fclose(file_);
336}
337
338
339void OS::LogSharedLibraryAddresses() {
340#ifdef ENABLE_LOGGING_AND_PROFILING
341  // This function assumes that the layout of the file is as follows:
342  // hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
343  // If we encounter an unexpected situation we abort scanning further entries.
344  FILE* fp = fopen("/proc/self/maps", "r");
345  if (fp == NULL) return;
346
347  // Allocate enough room to be able to store a full file name.
348  const int kLibNameLen = FILENAME_MAX + 1;
349  char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
350
351  // This loop will terminate once the scanning hits an EOF.
352  while (true) {
353    uintptr_t start, end;
354    char attr_r, attr_w, attr_x, attr_p;
355    // Parse the addresses and permission bits at the beginning of the line.
356    if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
357    if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
358
359    int c;
360    if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') {
361      // Found a read-only executable entry. Skip characters until we reach
362      // the beginning of the filename or the end of the line.
363      do {
364        c = getc(fp);
365      } while ((c != EOF) && (c != '\n') && (c != '/'));
366      if (c == EOF) break;  // EOF: Was unexpected, just exit.
367
368      // Process the filename if found.
369      if (c == '/') {
370        ungetc(c, fp);  // Push the '/' back into the stream to be read below.
371
372        // Read to the end of the line. Exit if the read fails.
373        if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
374
375        // Drop the newline character read by fgets. We do not need to check
376        // for a zero-length string because we know that we at least read the
377        // '/' character.
378        lib_name[strlen(lib_name) - 1] = '\0';
379      } else {
380        // No library name found, just record the raw address range.
381        snprintf(lib_name, kLibNameLen,
382                 "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
383      }
384      LOG(SharedLibraryEvent(lib_name, start, end));
385    } else {
386      // Entry not describing executable data. Skip to end of line to setup
387      // reading the next entry.
388      do {
389        c = getc(fp);
390      } while ((c != EOF) && (c != '\n'));
391      if (c == EOF) break;
392    }
393  }
394  free(lib_name);
395  fclose(fp);
396#endif
397}
398
399
400static const char kGCFakeMmap[] = "/tmp/__v8_gc__";
401
402
403void OS::SignalCodeMovingGC() {
404#ifdef ENABLE_LOGGING_AND_PROFILING
405  // Support for ll_prof.py.
406  //
407  // The Linux profiler built into the kernel logs all mmap's with
408  // PROT_EXEC so that analysis tools can properly attribute ticks. We
409  // do a mmap with a name known by ll_prof.py and immediately munmap
410  // it. This injects a GC marker into the stream of events generated
411  // by the kernel and allows us to synchronize V8 code log and the
412  // kernel log.
413  int size = sysconf(_SC_PAGESIZE);
414  FILE* f = fopen(kGCFakeMmap, "w+");
415  void* addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE,
416                    fileno(f), 0);
417  ASSERT(addr != MAP_FAILED);
418  munmap(addr, size);
419  fclose(f);
420#endif
421}
422
423
424int OS::StackWalk(Vector<OS::StackFrame> frames) {
425  // backtrace is a glibc extension.
426#ifdef __GLIBC__
427  int frames_size = frames.length();
428  ScopedVector<void*> addresses(frames_size);
429
430  int frames_count = backtrace(addresses.start(), frames_size);
431
432  char** symbols = backtrace_symbols(addresses.start(), frames_count);
433  if (symbols == NULL) {
434    return kStackWalkError;
435  }
436
437  for (int i = 0; i < frames_count; i++) {
438    frames[i].address = addresses[i];
439    // Format a text representation of the frame based on the information
440    // available.
441    SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
442             "%s",
443             symbols[i]);
444    // Make sure line termination is in place.
445    frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
446  }
447
448  free(symbols);
449
450  return frames_count;
451#else  // ndef __GLIBC__
452  return 0;
453#endif  // ndef __GLIBC__
454}
455
456
457// Constants used for mmap.
458static const int kMmapFd = -1;
459static const int kMmapFdOffset = 0;
460
461
462VirtualMemory::VirtualMemory(size_t size) {
463  address_ = mmap(NULL, size, PROT_NONE,
464                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
465                  kMmapFd, kMmapFdOffset);
466  size_ = size;
467}
468
469
470VirtualMemory::~VirtualMemory() {
471  if (IsReserved()) {
472    if (0 == munmap(address(), size())) address_ = MAP_FAILED;
473  }
474}
475
476
477bool VirtualMemory::IsReserved() {
478  return address_ != MAP_FAILED;
479}
480
481
482bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
483  int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
484  if (MAP_FAILED == mmap(address, size, prot,
485                         MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
486                         kMmapFd, kMmapFdOffset)) {
487    return false;
488  }
489
490  UpdateAllocatedSpaceLimits(address, size);
491  return true;
492}
493
494
495bool VirtualMemory::Uncommit(void* address, size_t size) {
496  return mmap(address, size, PROT_NONE,
497              MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
498              kMmapFd, kMmapFdOffset) != MAP_FAILED;
499}
500
501
502class ThreadHandle::PlatformData : public Malloced {
503 public:
504  explicit PlatformData(ThreadHandle::Kind kind) {
505    Initialize(kind);
506  }
507
508  void Initialize(ThreadHandle::Kind kind) {
509    switch (kind) {
510      case ThreadHandle::SELF: thread_ = pthread_self(); break;
511      case ThreadHandle::INVALID: thread_ = kNoThread; break;
512    }
513  }
514
515  pthread_t thread_;  // Thread handle for pthread.
516};
517
518
519ThreadHandle::ThreadHandle(Kind kind) {
520  data_ = new PlatformData(kind);
521}
522
523
524void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
525  data_->Initialize(kind);
526}
527
528
529ThreadHandle::~ThreadHandle() {
530  delete data_;
531}
532
533
534bool ThreadHandle::IsSelf() const {
535  return pthread_equal(data_->thread_, pthread_self());
536}
537
538
539bool ThreadHandle::IsValid() const {
540  return data_->thread_ != kNoThread;
541}
542
543
544Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
545}
546
547
548Thread::~Thread() {
549}
550
551
552static void* ThreadEntry(void* arg) {
553  Thread* thread = reinterpret_cast<Thread*>(arg);
554  // This is also initialized by the first argument to pthread_create() but we
555  // don't know which thread will run first (the original thread or the new
556  // one) so we initialize it here too.
557  thread->thread_handle_data()->thread_ = pthread_self();
558  ASSERT(thread->IsValid());
559  thread->Run();
560  return NULL;
561}
562
563
564void Thread::Start() {
565  pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this);
566  ASSERT(IsValid());
567}
568
569
570void Thread::Join() {
571  pthread_join(thread_handle_data()->thread_, NULL);
572}
573
574
575Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
576  pthread_key_t key;
577  int result = pthread_key_create(&key, NULL);
578  USE(result);
579  ASSERT(result == 0);
580  return static_cast<LocalStorageKey>(key);
581}
582
583
584void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
585  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
586  int result = pthread_key_delete(pthread_key);
587  USE(result);
588  ASSERT(result == 0);
589}
590
591
592void* Thread::GetThreadLocal(LocalStorageKey key) {
593  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
594  return pthread_getspecific(pthread_key);
595}
596
597
598void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
599  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
600  pthread_setspecific(pthread_key, value);
601}
602
603
604void Thread::YieldCPU() {
605  sched_yield();
606}
607
608
609class LinuxMutex : public Mutex {
610 public:
611
612  LinuxMutex() {
613    pthread_mutexattr_t attrs;
614    int result = pthread_mutexattr_init(&attrs);
615    ASSERT(result == 0);
616    result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
617    ASSERT(result == 0);
618    result = pthread_mutex_init(&mutex_, &attrs);
619    ASSERT(result == 0);
620  }
621
622  virtual ~LinuxMutex() { pthread_mutex_destroy(&mutex_); }
623
624  virtual int Lock() {
625    int result = pthread_mutex_lock(&mutex_);
626    return result;
627  }
628
629  virtual int Unlock() {
630    int result = pthread_mutex_unlock(&mutex_);
631    return result;
632  }
633
634 private:
635  pthread_mutex_t mutex_;   // Pthread mutex for POSIX platforms.
636};
637
638
639Mutex* OS::CreateMutex() {
640  return new LinuxMutex();
641}
642
643
644class LinuxSemaphore : public Semaphore {
645 public:
646  explicit LinuxSemaphore(int count) {  sem_init(&sem_, 0, count); }
647  virtual ~LinuxSemaphore() { sem_destroy(&sem_); }
648
649  virtual void Wait();
650  virtual bool Wait(int timeout);
651  virtual void Signal() { sem_post(&sem_); }
652 private:
653  sem_t sem_;
654};
655
656
657void LinuxSemaphore::Wait() {
658  while (true) {
659    int result = sem_wait(&sem_);
660    if (result == 0) return;  // Successfully got semaphore.
661    CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
662  }
663}
664
665
666#ifndef TIMEVAL_TO_TIMESPEC
667#define TIMEVAL_TO_TIMESPEC(tv, ts) do {                            \
668    (ts)->tv_sec = (tv)->tv_sec;                                    \
669    (ts)->tv_nsec = (tv)->tv_usec * 1000;                           \
670} while (false)
671#endif
672
673
674bool LinuxSemaphore::Wait(int timeout) {
675  const long kOneSecondMicros = 1000000;  // NOLINT
676
677  // Split timeout into second and nanosecond parts.
678  struct timeval delta;
679  delta.tv_usec = timeout % kOneSecondMicros;
680  delta.tv_sec = timeout / kOneSecondMicros;
681
682  struct timeval current_time;
683  // Get the current time.
684  if (gettimeofday(&current_time, NULL) == -1) {
685    return false;
686  }
687
688  // Calculate time for end of timeout.
689  struct timeval end_time;
690  timeradd(&current_time, &delta, &end_time);
691
692  struct timespec ts;
693  TIMEVAL_TO_TIMESPEC(&end_time, &ts);
694  // Wait for semaphore signalled or timeout.
695  while (true) {
696    int result = sem_timedwait(&sem_, &ts);
697    if (result == 0) return true;  // Successfully got semaphore.
698    if (result > 0) {
699      // For glibc prior to 2.3.4 sem_timedwait returns the error instead of -1.
700      errno = result;
701      result = -1;
702    }
703    if (result == -1 && errno == ETIMEDOUT) return false;  // Timeout.
704    CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
705  }
706}
707
708
709Semaphore* OS::CreateSemaphore(int count) {
710  return new LinuxSemaphore(count);
711}
712
713
714#ifdef ENABLE_LOGGING_AND_PROFILING
715
716static Sampler* active_sampler_ = NULL;
717static pthread_t vm_thread_ = 0;
718
719
720#if !defined(__GLIBC__) && (defined(__arm__) || defined(__thumb__))
721// Android runs a fairly new Linux kernel, so signal info is there,
722// but the C library doesn't have the structs defined.
723
724struct sigcontext {
725  uint32_t trap_no;
726  uint32_t error_code;
727  uint32_t oldmask;
728  uint32_t gregs[16];
729  uint32_t arm_cpsr;
730  uint32_t fault_address;
731};
732typedef uint32_t __sigset_t;
733typedef struct sigcontext mcontext_t;
734typedef struct ucontext {
735  uint32_t uc_flags;
736  struct ucontext* uc_link;
737  stack_t uc_stack;
738  mcontext_t uc_mcontext;
739  __sigset_t uc_sigmask;
740} ucontext_t;
741enum ArmRegisters {R15 = 15, R13 = 13, R11 = 11};
742
743#endif
744
745
746// A function that determines if a signal handler is called in the context
747// of a VM thread.
748//
749// The problem is that SIGPROF signal can be delivered to an arbitrary thread
750// (see http://code.google.com/p/google-perftools/issues/detail?id=106#c2)
751// So, if the signal is being handled in the context of a non-VM thread,
752// it means that the VM thread is running, and trying to sample its stack can
753// cause a crash.
754static inline bool IsVmThread() {
755  // In the case of a single VM thread, this check is enough.
756  if (pthread_equal(pthread_self(), vm_thread_)) return true;
757  // If there are multiple threads that use VM, they must have a thread id
758  // stored in TLS. To verify that the thread is really executing VM,
759  // we check Top's data. Having that ThreadManager::RestoreThread first
760  // restores ThreadLocalTop from TLS, and only then erases the TLS value,
761  // reading Top::thread_id() should not be affected by races.
762  if (ThreadManager::HasId() && !ThreadManager::IsArchived() &&
763      ThreadManager::CurrentId() == Top::thread_id()) {
764    return true;
765  }
766  return false;
767}
768
769
770static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
771#ifndef V8_HOST_ARCH_MIPS
772  USE(info);
773  if (signal != SIGPROF) return;
774  if (active_sampler_ == NULL) return;
775  if (!IsVmThread()) return;
776
777  TickSample sample_obj;
778  TickSample* sample = CpuProfiler::TickSampleEvent();
779  if (sample == NULL) sample = &sample_obj;
780
781  // We always sample the VM state.
782  sample->state = VMState::current_state();
783
784  // If profiling, we extract the current pc and sp.
785  if (active_sampler_->IsProfiling()) {
786    // Extracting the sample from the context is extremely machine dependent.
787    ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
788    mcontext_t& mcontext = ucontext->uc_mcontext;
789#if V8_HOST_ARCH_IA32
790    sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_EIP]);
791    sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_ESP]);
792    sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_EBP]);
793#elif V8_HOST_ARCH_X64
794    sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_RIP]);
795    sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_RSP]);
796    sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_RBP]);
797#elif V8_HOST_ARCH_ARM
798// An undefined macro evaluates to 0, so this applies to Android's Bionic also.
799#if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
800    sample->pc = reinterpret_cast<Address>(mcontext.gregs[R15]);
801    sample->sp = reinterpret_cast<Address>(mcontext.gregs[R13]);
802    sample->fp = reinterpret_cast<Address>(mcontext.gregs[R11]);
803#else
804    sample->pc = reinterpret_cast<Address>(mcontext.arm_pc);
805    sample->sp = reinterpret_cast<Address>(mcontext.arm_sp);
806    sample->fp = reinterpret_cast<Address>(mcontext.arm_fp);
807#endif
808#elif V8_HOST_ARCH_MIPS
809    // Implement this on MIPS.
810    UNIMPLEMENTED();
811#endif
812    active_sampler_->SampleStack(sample);
813  }
814
815  active_sampler_->Tick(sample);
816#endif
817}
818
819
820class Sampler::PlatformData : public Malloced {
821 public:
822  PlatformData() {
823    signal_handler_installed_ = false;
824  }
825
826  bool signal_handler_installed_;
827  struct sigaction old_signal_handler_;
828  struct itimerval old_timer_value_;
829};
830
831
832Sampler::Sampler(int interval, bool profiling)
833    : interval_(interval),
834      profiling_(profiling),
835      synchronous_(profiling),
836      active_(false) {
837  data_ = new PlatformData();
838}
839
840
841Sampler::~Sampler() {
842  delete data_;
843}
844
845
846void Sampler::Start() {
847  // There can only be one active sampler at the time on POSIX
848  // platforms.
849  if (active_sampler_ != NULL) return;
850
851  vm_thread_ = pthread_self();
852
853  // Request profiling signals.
854  struct sigaction sa;
855  sa.sa_sigaction = ProfilerSignalHandler;
856  sigemptyset(&sa.sa_mask);
857  sa.sa_flags = SA_SIGINFO;
858  if (sigaction(SIGPROF, &sa, &data_->old_signal_handler_) != 0) return;
859  data_->signal_handler_installed_ = true;
860
861  // Set the itimer to generate a tick for each interval.
862  itimerval itimer;
863  itimer.it_interval.tv_sec = interval_ / 1000;
864  itimer.it_interval.tv_usec = (interval_ % 1000) * 1000;
865  itimer.it_value.tv_sec = itimer.it_interval.tv_sec;
866  itimer.it_value.tv_usec = itimer.it_interval.tv_usec;
867  setitimer(ITIMER_PROF, &itimer, &data_->old_timer_value_);
868
869  // Set this sampler as the active sampler.
870  active_sampler_ = this;
871  active_ = true;
872}
873
874
875void Sampler::Stop() {
876  // Restore old signal handler
877  if (data_->signal_handler_installed_) {
878    setitimer(ITIMER_PROF, &data_->old_timer_value_, NULL);
879    sigaction(SIGPROF, &data_->old_signal_handler_, 0);
880    data_->signal_handler_installed_ = false;
881  }
882
883  // This sampler is no longer the active sampler.
884  active_sampler_ = NULL;
885  active_ = false;
886}
887
888
889#endif  // ENABLE_LOGGING_AND_PROFILING
890
891} }  // namespace v8::internal
892