crypto_openssl.c revision a54fa5fb807eaeff45464139b5a7759f060cec68
1/*
2 * Wrapper functions for OpenSSL libcrypto
3 * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9#include "includes.h"
10#include <openssl/opensslv.h>
11#include <openssl/err.h>
12#include <openssl/des.h>
13#include <openssl/aes.h>
14#include <openssl/bn.h>
15#include <openssl/evp.h>
16#include <openssl/dh.h>
17#include <openssl/hmac.h>
18#include <openssl/rand.h>
19#ifdef CONFIG_OPENSSL_CMAC
20#include <openssl/cmac.h>
21#endif /* CONFIG_OPENSSL_CMAC */
22#ifdef CONFIG_ECC
23#include <openssl/ec.h>
24#endif /* CONFIG_ECC */
25
26#include "common.h"
27#include "wpabuf.h"
28#include "dh_group5.h"
29#include "crypto.h"
30
31#if OPENSSL_VERSION_NUMBER < 0x00907000
32#define DES_key_schedule des_key_schedule
33#define DES_cblock des_cblock
34#define DES_set_key(key, schedule) des_set_key((key), *(schedule))
35#define DES_ecb_encrypt(input, output, ks, enc) \
36	des_ecb_encrypt((input), (output), *(ks), (enc))
37#endif /* openssl < 0.9.7 */
38
39static BIGNUM * get_group5_prime(void)
40{
41#if OPENSSL_VERSION_NUMBER < 0x00908000
42	static const unsigned char RFC3526_PRIME_1536[] = {
43		0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
44		0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
45		0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
46		0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
47		0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
48		0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
49		0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
50		0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
51		0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
52		0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
53		0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
54		0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
55		0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
56		0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
57		0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
58		0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
59	};
60        return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
61#else /* openssl < 0.9.8 */
62	return get_rfc3526_prime_1536(NULL);
63#endif /* openssl < 0.9.8 */
64}
65
66#if OPENSSL_VERSION_NUMBER < 0x00908000
67#ifndef OPENSSL_NO_SHA256
68#ifndef OPENSSL_FIPS
69#define NO_SHA256_WRAPPER
70#endif
71#endif
72
73#endif /* openssl < 0.9.8 */
74
75#ifdef OPENSSL_NO_SHA256
76#define NO_SHA256_WRAPPER
77#endif
78
79static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
80				 const u8 *addr[], const size_t *len, u8 *mac)
81{
82	EVP_MD_CTX ctx;
83	size_t i;
84	unsigned int mac_len;
85
86	EVP_MD_CTX_init(&ctx);
87	if (!EVP_DigestInit_ex(&ctx, type, NULL)) {
88		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
89			   ERR_error_string(ERR_get_error(), NULL));
90		return -1;
91	}
92	for (i = 0; i < num_elem; i++) {
93		if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) {
94			wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
95				   "failed: %s",
96				   ERR_error_string(ERR_get_error(), NULL));
97			return -1;
98		}
99	}
100	if (!EVP_DigestFinal(&ctx, mac, &mac_len)) {
101		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
102			   ERR_error_string(ERR_get_error(), NULL));
103		return -1;
104	}
105
106	return 0;
107}
108
109
110int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
111{
112	return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
113}
114
115
116void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
117{
118	u8 pkey[8], next, tmp;
119	int i;
120	DES_key_schedule ks;
121
122	/* Add parity bits to the key */
123	next = 0;
124	for (i = 0; i < 7; i++) {
125		tmp = key[i];
126		pkey[i] = (tmp >> i) | next | 1;
127		next = tmp << (7 - i);
128	}
129	pkey[i] = next | 1;
130
131	DES_set_key(&pkey, &ks);
132	DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
133			DES_ENCRYPT);
134}
135
136
137int rc4_skip(const u8 *key, size_t keylen, size_t skip,
138	     u8 *data, size_t data_len)
139{
140#ifdef OPENSSL_NO_RC4
141	return -1;
142#else /* OPENSSL_NO_RC4 */
143	EVP_CIPHER_CTX ctx;
144	int outl;
145	int res = -1;
146	unsigned char skip_buf[16];
147
148	EVP_CIPHER_CTX_init(&ctx);
149	if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) ||
150	    !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
151	    !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) ||
152	    !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1))
153		goto out;
154
155	while (skip >= sizeof(skip_buf)) {
156		size_t len = skip;
157		if (len > sizeof(skip_buf))
158			len = sizeof(skip_buf);
159		if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len))
160			goto out;
161		skip -= len;
162	}
163
164	if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len))
165		res = 0;
166
167out:
168	EVP_CIPHER_CTX_cleanup(&ctx);
169	return res;
170#endif /* OPENSSL_NO_RC4 */
171}
172
173
174int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
175{
176	return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
177}
178
179
180int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
181{
182	return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
183}
184
185
186#ifndef NO_SHA256_WRAPPER
187int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
188		  u8 *mac)
189{
190	return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
191}
192#endif /* NO_SHA256_WRAPPER */
193
194
195static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
196{
197	switch (keylen) {
198	case 16:
199		return EVP_aes_128_ecb();
200	case 24:
201		return EVP_aes_192_ecb();
202	case 32:
203		return EVP_aes_256_ecb();
204	}
205
206	return NULL;
207}
208
209
210void * aes_encrypt_init(const u8 *key, size_t len)
211{
212	EVP_CIPHER_CTX *ctx;
213	const EVP_CIPHER *type;
214
215	type = aes_get_evp_cipher(len);
216	if (type == NULL)
217		return NULL;
218
219	ctx = os_malloc(sizeof(*ctx));
220	if (ctx == NULL)
221		return NULL;
222	EVP_CIPHER_CTX_init(ctx);
223	if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
224		os_free(ctx);
225		return NULL;
226	}
227	EVP_CIPHER_CTX_set_padding(ctx, 0);
228	return ctx;
229}
230
231
232void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
233{
234	EVP_CIPHER_CTX *c = ctx;
235	int clen = 16;
236	if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
237		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
238			   ERR_error_string(ERR_get_error(), NULL));
239	}
240}
241
242
243void aes_encrypt_deinit(void *ctx)
244{
245	EVP_CIPHER_CTX *c = ctx;
246	u8 buf[16];
247	int len = sizeof(buf);
248	if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
249		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
250			   "%s", ERR_error_string(ERR_get_error(), NULL));
251	}
252	if (len != 0) {
253		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
254			   "in AES encrypt", len);
255	}
256	EVP_CIPHER_CTX_cleanup(c);
257	os_free(c);
258}
259
260
261void * aes_decrypt_init(const u8 *key, size_t len)
262{
263	EVP_CIPHER_CTX *ctx;
264	const EVP_CIPHER *type;
265
266	type = aes_get_evp_cipher(len);
267	if (type == NULL)
268		return NULL;
269
270	ctx = os_malloc(sizeof(*ctx));
271	if (ctx == NULL)
272		return NULL;
273	EVP_CIPHER_CTX_init(ctx);
274	if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
275		os_free(ctx);
276		return NULL;
277	}
278	EVP_CIPHER_CTX_set_padding(ctx, 0);
279	return ctx;
280}
281
282
283void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
284{
285	EVP_CIPHER_CTX *c = ctx;
286	int plen = 16;
287	if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
288		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
289			   ERR_error_string(ERR_get_error(), NULL));
290	}
291}
292
293
294void aes_decrypt_deinit(void *ctx)
295{
296	EVP_CIPHER_CTX *c = ctx;
297	u8 buf[16];
298	int len = sizeof(buf);
299	if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
300		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
301			   "%s", ERR_error_string(ERR_get_error(), NULL));
302	}
303	if (len != 0) {
304		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
305			   "in AES decrypt", len);
306	}
307	EVP_CIPHER_CTX_cleanup(c);
308	os_free(ctx);
309}
310
311
312int crypto_mod_exp(const u8 *base, size_t base_len,
313		   const u8 *power, size_t power_len,
314		   const u8 *modulus, size_t modulus_len,
315		   u8 *result, size_t *result_len)
316{
317	BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
318	int ret = -1;
319	BN_CTX *ctx;
320
321	ctx = BN_CTX_new();
322	if (ctx == NULL)
323		return -1;
324
325	bn_base = BN_bin2bn(base, base_len, NULL);
326	bn_exp = BN_bin2bn(power, power_len, NULL);
327	bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
328	bn_result = BN_new();
329
330	if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
331	    bn_result == NULL)
332		goto error;
333
334	if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
335		goto error;
336
337	*result_len = BN_bn2bin(bn_result, result);
338	ret = 0;
339
340error:
341	BN_free(bn_base);
342	BN_free(bn_exp);
343	BN_free(bn_modulus);
344	BN_free(bn_result);
345	BN_CTX_free(ctx);
346	return ret;
347}
348
349
350struct crypto_cipher {
351	EVP_CIPHER_CTX enc;
352	EVP_CIPHER_CTX dec;
353};
354
355
356struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
357					  const u8 *iv, const u8 *key,
358					  size_t key_len)
359{
360	struct crypto_cipher *ctx;
361	const EVP_CIPHER *cipher;
362
363	ctx = os_zalloc(sizeof(*ctx));
364	if (ctx == NULL)
365		return NULL;
366
367	switch (alg) {
368#ifndef OPENSSL_NO_RC4
369	case CRYPTO_CIPHER_ALG_RC4:
370		cipher = EVP_rc4();
371		break;
372#endif /* OPENSSL_NO_RC4 */
373#ifndef OPENSSL_NO_AES
374	case CRYPTO_CIPHER_ALG_AES:
375		switch (key_len) {
376		case 16:
377			cipher = EVP_aes_128_cbc();
378			break;
379		case 24:
380			cipher = EVP_aes_192_cbc();
381			break;
382		case 32:
383			cipher = EVP_aes_256_cbc();
384			break;
385		default:
386			os_free(ctx);
387			return NULL;
388		}
389		break;
390#endif /* OPENSSL_NO_AES */
391#ifndef OPENSSL_NO_DES
392	case CRYPTO_CIPHER_ALG_3DES:
393		cipher = EVP_des_ede3_cbc();
394		break;
395	case CRYPTO_CIPHER_ALG_DES:
396		cipher = EVP_des_cbc();
397		break;
398#endif /* OPENSSL_NO_DES */
399#ifndef OPENSSL_NO_RC2
400	case CRYPTO_CIPHER_ALG_RC2:
401		cipher = EVP_rc2_ecb();
402		break;
403#endif /* OPENSSL_NO_RC2 */
404	default:
405		os_free(ctx);
406		return NULL;
407	}
408
409	EVP_CIPHER_CTX_init(&ctx->enc);
410	EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
411	if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
412	    !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
413	    !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) {
414		EVP_CIPHER_CTX_cleanup(&ctx->enc);
415		os_free(ctx);
416		return NULL;
417	}
418
419	EVP_CIPHER_CTX_init(&ctx->dec);
420	EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
421	if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
422	    !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
423	    !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) {
424		EVP_CIPHER_CTX_cleanup(&ctx->enc);
425		EVP_CIPHER_CTX_cleanup(&ctx->dec);
426		os_free(ctx);
427		return NULL;
428	}
429
430	return ctx;
431}
432
433
434int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
435			  u8 *crypt, size_t len)
436{
437	int outl;
438	if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
439		return -1;
440	return 0;
441}
442
443
444int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
445			  u8 *plain, size_t len)
446{
447	int outl;
448	outl = len;
449	if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
450		return -1;
451	return 0;
452}
453
454
455void crypto_cipher_deinit(struct crypto_cipher *ctx)
456{
457	EVP_CIPHER_CTX_cleanup(&ctx->enc);
458	EVP_CIPHER_CTX_cleanup(&ctx->dec);
459	os_free(ctx);
460}
461
462
463void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
464{
465	DH *dh;
466	struct wpabuf *pubkey = NULL, *privkey = NULL;
467	size_t publen, privlen;
468
469	*priv = NULL;
470	*publ = NULL;
471
472	dh = DH_new();
473	if (dh == NULL)
474		return NULL;
475
476	dh->g = BN_new();
477	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
478		goto err;
479
480	dh->p = get_group5_prime();
481	if (dh->p == NULL)
482		goto err;
483
484	if (DH_generate_key(dh) != 1)
485		goto err;
486
487	publen = BN_num_bytes(dh->pub_key);
488	pubkey = wpabuf_alloc(publen);
489	if (pubkey == NULL)
490		goto err;
491	privlen = BN_num_bytes(dh->priv_key);
492	privkey = wpabuf_alloc(privlen);
493	if (privkey == NULL)
494		goto err;
495
496	BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
497	BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
498
499	*priv = privkey;
500	*publ = pubkey;
501	return dh;
502
503err:
504	wpabuf_free(pubkey);
505	wpabuf_free(privkey);
506	DH_free(dh);
507	return NULL;
508}
509
510
511void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
512{
513	DH *dh;
514
515	dh = DH_new();
516	if (dh == NULL)
517		return NULL;
518
519	dh->g = BN_new();
520	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
521		goto err;
522
523	dh->p = get_group5_prime();
524	if (dh->p == NULL)
525		goto err;
526
527	dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
528	if (dh->priv_key == NULL)
529		goto err;
530
531	dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
532	if (dh->pub_key == NULL)
533		goto err;
534
535	if (DH_generate_key(dh) != 1)
536		goto err;
537
538	return dh;
539
540err:
541	DH_free(dh);
542	return NULL;
543}
544
545
546struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
547				  const struct wpabuf *own_private)
548{
549	BIGNUM *pub_key;
550	struct wpabuf *res = NULL;
551	size_t rlen;
552	DH *dh = ctx;
553	int keylen;
554
555	if (ctx == NULL)
556		return NULL;
557
558	pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
559			    NULL);
560	if (pub_key == NULL)
561		return NULL;
562
563	rlen = DH_size(dh);
564	res = wpabuf_alloc(rlen);
565	if (res == NULL)
566		goto err;
567
568	keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
569	if (keylen < 0)
570		goto err;
571	wpabuf_put(res, keylen);
572	BN_free(pub_key);
573
574	return res;
575
576err:
577	BN_free(pub_key);
578	wpabuf_free(res);
579	return NULL;
580}
581
582
583void dh5_free(void *ctx)
584{
585	DH *dh;
586	if (ctx == NULL)
587		return;
588	dh = ctx;
589	DH_free(dh);
590}
591
592
593struct crypto_hash {
594	HMAC_CTX ctx;
595};
596
597
598struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
599				      size_t key_len)
600{
601	struct crypto_hash *ctx;
602	const EVP_MD *md;
603
604	switch (alg) {
605#ifndef OPENSSL_NO_MD5
606	case CRYPTO_HASH_ALG_HMAC_MD5:
607		md = EVP_md5();
608		break;
609#endif /* OPENSSL_NO_MD5 */
610#ifndef OPENSSL_NO_SHA
611	case CRYPTO_HASH_ALG_HMAC_SHA1:
612		md = EVP_sha1();
613		break;
614#endif /* OPENSSL_NO_SHA */
615#ifndef OPENSSL_NO_SHA256
616#ifdef CONFIG_SHA256
617	case CRYPTO_HASH_ALG_HMAC_SHA256:
618		md = EVP_sha256();
619		break;
620#endif /* CONFIG_SHA256 */
621#endif /* OPENSSL_NO_SHA256 */
622	default:
623		return NULL;
624	}
625
626	ctx = os_zalloc(sizeof(*ctx));
627	if (ctx == NULL)
628		return NULL;
629	HMAC_CTX_init(&ctx->ctx);
630
631#if OPENSSL_VERSION_NUMBER < 0x00909000
632	HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL);
633#else /* openssl < 0.9.9 */
634	if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) {
635		os_free(ctx);
636		return NULL;
637	}
638#endif /* openssl < 0.9.9 */
639
640	return ctx;
641}
642
643
644void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
645{
646	if (ctx == NULL)
647		return;
648	HMAC_Update(&ctx->ctx, data, len);
649}
650
651
652int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
653{
654	unsigned int mdlen;
655	int res;
656
657	if (ctx == NULL)
658		return -2;
659
660	if (mac == NULL || len == NULL) {
661		os_free(ctx);
662		return 0;
663	}
664
665	mdlen = *len;
666#if OPENSSL_VERSION_NUMBER < 0x00909000
667	HMAC_Final(&ctx->ctx, mac, &mdlen);
668	res = 1;
669#else /* openssl < 0.9.9 */
670	res = HMAC_Final(&ctx->ctx, mac, &mdlen);
671#endif /* openssl < 0.9.9 */
672	HMAC_CTX_cleanup(&ctx->ctx);
673	os_free(ctx);
674
675	if (res == 1) {
676		*len = mdlen;
677		return 0;
678	}
679
680	return -1;
681}
682
683
684int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
685		int iterations, u8 *buf, size_t buflen)
686{
687#if OPENSSL_VERSION_NUMBER < 0x00908000
688	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase),
689				   (unsigned char *) ssid,
690				   ssid_len, 4096, buflen, buf) != 1)
691		return -1;
692#else /* openssl < 0.9.8 */
693	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
694				   ssid_len, 4096, buflen, buf) != 1)
695		return -1;
696#endif /* openssl < 0.9.8 */
697	return 0;
698}
699
700
701int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
702		     const u8 *addr[], const size_t *len, u8 *mac)
703{
704	HMAC_CTX ctx;
705	size_t i;
706	unsigned int mdlen;
707	int res;
708
709	HMAC_CTX_init(&ctx);
710#if OPENSSL_VERSION_NUMBER < 0x00909000
711	HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL);
712#else /* openssl < 0.9.9 */
713	if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL) != 1)
714		return -1;
715#endif /* openssl < 0.9.9 */
716
717	for (i = 0; i < num_elem; i++)
718		HMAC_Update(&ctx, addr[i], len[i]);
719
720	mdlen = 20;
721#if OPENSSL_VERSION_NUMBER < 0x00909000
722	HMAC_Final(&ctx, mac, &mdlen);
723	res = 1;
724#else /* openssl < 0.9.9 */
725	res = HMAC_Final(&ctx, mac, &mdlen);
726#endif /* openssl < 0.9.9 */
727	HMAC_CTX_cleanup(&ctx);
728
729	return res == 1 ? 0 : -1;
730}
731
732
733int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
734	       u8 *mac)
735{
736	return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
737}
738
739
740#ifdef CONFIG_SHA256
741
742int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
743		       const u8 *addr[], const size_t *len, u8 *mac)
744{
745	HMAC_CTX ctx;
746	size_t i;
747	unsigned int mdlen;
748	int res;
749
750	HMAC_CTX_init(&ctx);
751#if OPENSSL_VERSION_NUMBER < 0x00909000
752	HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL);
753#else /* openssl < 0.9.9 */
754	if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL) != 1)
755		return -1;
756#endif /* openssl < 0.9.9 */
757
758	for (i = 0; i < num_elem; i++)
759		HMAC_Update(&ctx, addr[i], len[i]);
760
761	mdlen = 32;
762#if OPENSSL_VERSION_NUMBER < 0x00909000
763	HMAC_Final(&ctx, mac, &mdlen);
764	res = 1;
765#else /* openssl < 0.9.9 */
766	res = HMAC_Final(&ctx, mac, &mdlen);
767#endif /* openssl < 0.9.9 */
768	HMAC_CTX_cleanup(&ctx);
769
770	return res == 1 ? 0 : -1;
771}
772
773
774int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
775		size_t data_len, u8 *mac)
776{
777	return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
778}
779
780#endif /* CONFIG_SHA256 */
781
782
783int crypto_get_random(void *buf, size_t len)
784{
785	if (RAND_bytes(buf, len) != 1)
786		return -1;
787	return 0;
788}
789
790
791#ifdef CONFIG_OPENSSL_CMAC
792int omac1_aes_128_vector(const u8 *key, size_t num_elem,
793			 const u8 *addr[], const size_t *len, u8 *mac)
794{
795	CMAC_CTX *ctx;
796	int ret = -1;
797	size_t outlen, i;
798
799	ctx = CMAC_CTX_new();
800	if (ctx == NULL)
801		return -1;
802
803	if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
804		goto fail;
805	for (i = 0; i < num_elem; i++) {
806		if (!CMAC_Update(ctx, addr[i], len[i]))
807			goto fail;
808	}
809	if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
810		goto fail;
811
812	ret = 0;
813fail:
814	CMAC_CTX_free(ctx);
815	return ret;
816}
817
818
819int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
820{
821	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
822}
823#endif /* CONFIG_OPENSSL_CMAC */
824
825
826struct crypto_bignum * crypto_bignum_init(void)
827{
828	return (struct crypto_bignum *) BN_new();
829}
830
831
832struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
833{
834	BIGNUM *bn = BN_bin2bn(buf, len, NULL);
835	return (struct crypto_bignum *) bn;
836}
837
838
839void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
840{
841	if (clear)
842		BN_clear_free((BIGNUM *) n);
843	else
844		BN_free((BIGNUM *) n);
845}
846
847
848int crypto_bignum_to_bin(const struct crypto_bignum *a,
849			 u8 *buf, size_t buflen, size_t padlen)
850{
851	int num_bytes, offset;
852
853	if (padlen > buflen)
854		return -1;
855
856	num_bytes = BN_num_bytes((const BIGNUM *) a);
857	if ((size_t) num_bytes > buflen)
858		return -1;
859	if (padlen > (size_t) num_bytes)
860		offset = padlen - num_bytes;
861	else
862		offset = 0;
863
864	os_memset(buf, 0, offset);
865	BN_bn2bin((const BIGNUM *) a, buf + offset);
866
867	return num_bytes + offset;
868}
869
870
871int crypto_bignum_add(const struct crypto_bignum *a,
872		      const struct crypto_bignum *b,
873		      struct crypto_bignum *c)
874{
875	return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
876		0 : -1;
877}
878
879
880int crypto_bignum_mod(const struct crypto_bignum *a,
881		      const struct crypto_bignum *b,
882		      struct crypto_bignum *c)
883{
884	int res;
885	BN_CTX *bnctx;
886
887	bnctx = BN_CTX_new();
888	if (bnctx == NULL)
889		return -1;
890	res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
891		     bnctx);
892	BN_CTX_free(bnctx);
893
894	return res ? 0 : -1;
895}
896
897
898int crypto_bignum_exptmod(const struct crypto_bignum *a,
899			  const struct crypto_bignum *b,
900			  const struct crypto_bignum *c,
901			  struct crypto_bignum *d)
902{
903	int res;
904	BN_CTX *bnctx;
905
906	bnctx = BN_CTX_new();
907	if (bnctx == NULL)
908		return -1;
909	res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
910			 (const BIGNUM *) c, bnctx);
911	BN_CTX_free(bnctx);
912
913	return res ? 0 : -1;
914}
915
916
917int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
918			 struct crypto_bignum *b)
919{
920	return BN_rshift((BIGNUM *) b, (const BIGNUM *) a, n) ? 0 : -1;
921}
922
923
924int crypto_bignum_inverse(const struct crypto_bignum *a,
925			  const struct crypto_bignum *b,
926			  struct crypto_bignum *c)
927{
928	BIGNUM *res;
929	BN_CTX *bnctx;
930
931	bnctx = BN_CTX_new();
932	if (bnctx == NULL)
933		return -1;
934	res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
935			     (const BIGNUM *) b, bnctx);
936	BN_CTX_free(bnctx);
937
938	return res ? 0 : -1;
939}
940
941
942int crypto_bignum_sub(const struct crypto_bignum *a,
943		      const struct crypto_bignum *b,
944		      struct crypto_bignum *c)
945{
946	return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
947		0 : -1;
948}
949
950
951int crypto_bignum_div(const struct crypto_bignum *a,
952		      const struct crypto_bignum *b,
953		      struct crypto_bignum *c)
954{
955	int res;
956
957	BN_CTX *bnctx;
958
959	bnctx = BN_CTX_new();
960	if (bnctx == NULL)
961		return -1;
962	res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
963		     (const BIGNUM *) b, bnctx);
964	BN_CTX_free(bnctx);
965
966	return res ? 0 : -1;
967}
968
969
970int crypto_bignum_mulmod(const struct crypto_bignum *a,
971			 const struct crypto_bignum *b,
972			 const struct crypto_bignum *c,
973			 struct crypto_bignum *d)
974{
975	int res;
976
977	BN_CTX *bnctx;
978
979	bnctx = BN_CTX_new();
980	if (bnctx == NULL)
981		return -1;
982	res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
983			 (const BIGNUM *) c, bnctx);
984	BN_CTX_free(bnctx);
985
986	return res ? 0 : -1;
987}
988
989
990int crypto_bignum_cmp(const struct crypto_bignum *a,
991		      const struct crypto_bignum *b)
992{
993	return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
994}
995
996
997int crypto_bignum_bits(const struct crypto_bignum *a)
998{
999	return BN_num_bits((const BIGNUM *) a);
1000}
1001
1002
1003int crypto_bignum_is_zero(const struct crypto_bignum *a)
1004{
1005	return BN_is_zero((const BIGNUM *) a);
1006}
1007
1008
1009int crypto_bignum_is_one(const struct crypto_bignum *a)
1010{
1011	return BN_is_one((const BIGNUM *) a);
1012}
1013
1014
1015#ifdef CONFIG_ECC
1016
1017struct crypto_ec {
1018	EC_GROUP *group;
1019	BN_CTX *bnctx;
1020	BIGNUM *prime;
1021	BIGNUM *order;
1022};
1023
1024struct crypto_ec * crypto_ec_init(int group)
1025{
1026	struct crypto_ec *e;
1027	int nid;
1028
1029	/* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1030	switch (group) {
1031	case 19:
1032		nid = NID_X9_62_prime256v1;
1033		break;
1034	case 20:
1035		nid = NID_secp384r1;
1036		break;
1037	case 21:
1038		nid = NID_secp521r1;
1039		break;
1040	case 25:
1041		nid = NID_X9_62_prime192v1;
1042		break;
1043	case 26:
1044		nid = NID_secp224r1;
1045		break;
1046	default:
1047		return NULL;
1048	}
1049
1050	e = os_zalloc(sizeof(*e));
1051	if (e == NULL)
1052		return NULL;
1053
1054	e->bnctx = BN_CTX_new();
1055	e->group = EC_GROUP_new_by_curve_name(nid);
1056	e->prime = BN_new();
1057	e->order = BN_new();
1058	if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1059	    e->order == NULL ||
1060	    !EC_GROUP_get_curve_GFp(e->group, e->prime, NULL, NULL, e->bnctx) ||
1061	    !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1062		crypto_ec_deinit(e);
1063		e = NULL;
1064	}
1065
1066	return e;
1067}
1068
1069
1070void crypto_ec_deinit(struct crypto_ec *e)
1071{
1072	if (e == NULL)
1073		return;
1074	BN_free(e->order);
1075	EC_GROUP_free(e->group);
1076	BN_CTX_free(e->bnctx);
1077	os_free(e);
1078}
1079
1080
1081struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1082{
1083	if (e == NULL)
1084		return NULL;
1085	return (struct crypto_ec_point *) EC_POINT_new(e->group);
1086}
1087
1088
1089size_t crypto_ec_prime_len(struct crypto_ec *e)
1090{
1091	return BN_num_bytes(e->prime);
1092}
1093
1094
1095size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1096{
1097	return BN_num_bits(e->prime);
1098}
1099
1100
1101const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1102{
1103	return (const struct crypto_bignum *) e->prime;
1104}
1105
1106
1107const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1108{
1109	return (const struct crypto_bignum *) e->order;
1110}
1111
1112
1113void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1114{
1115	if (clear)
1116		EC_POINT_clear_free((EC_POINT *) p);
1117	else
1118		EC_POINT_free((EC_POINT *) p);
1119}
1120
1121
1122int crypto_ec_point_to_bin(struct crypto_ec *e,
1123			   const struct crypto_ec_point *point, u8 *x, u8 *y)
1124{
1125	BIGNUM *x_bn, *y_bn;
1126	int ret = -1;
1127	int len = BN_num_bytes(e->prime);
1128
1129	x_bn = BN_new();
1130	y_bn = BN_new();
1131
1132	if (x_bn && y_bn &&
1133	    EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1134						x_bn, y_bn, e->bnctx)) {
1135		if (x) {
1136			crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1137					     x, len, len);
1138		}
1139		if (y) {
1140			crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1141					     y, len, len);
1142		}
1143		ret = 0;
1144	}
1145
1146	BN_free(x_bn);
1147	BN_free(y_bn);
1148	return ret;
1149}
1150
1151
1152struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1153						  const u8 *val)
1154{
1155	BIGNUM *x, *y;
1156	EC_POINT *elem;
1157	int len = BN_num_bytes(e->prime);
1158
1159	x = BN_bin2bn(val, len, NULL);
1160	y = BN_bin2bn(val + len, len, NULL);
1161	elem = EC_POINT_new(e->group);
1162	if (x == NULL || y == NULL || elem == NULL) {
1163		BN_free(x);
1164		BN_free(y);
1165		EC_POINT_free(elem);
1166		return NULL;
1167	}
1168
1169	if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1170						 e->bnctx)) {
1171		EC_POINT_free(elem);
1172		elem = NULL;
1173	}
1174
1175	BN_free(x);
1176	BN_free(y);
1177
1178	return (struct crypto_ec_point *) elem;
1179}
1180
1181
1182int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1183			const struct crypto_ec_point *b,
1184			struct crypto_ec_point *c)
1185{
1186	return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1187			    (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1188}
1189
1190
1191int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1192			const struct crypto_bignum *b,
1193			struct crypto_ec_point *res)
1194{
1195	return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1196			    (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1197		? 0 : -1;
1198}
1199
1200
1201int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1202{
1203	return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1204}
1205
1206
1207int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1208				  struct crypto_ec_point *p,
1209				  const struct crypto_bignum *x, int y_bit)
1210{
1211	if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1212						     (const BIGNUM *) x, y_bit,
1213						     e->bnctx) ||
1214	    !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1215		return -1;
1216	return 0;
1217}
1218
1219
1220int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1221				   const struct crypto_ec_point *p)
1222{
1223	return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1224}
1225
1226
1227int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1228				const struct crypto_ec_point *p)
1229{
1230	return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, e->bnctx);
1231}
1232
1233#endif /* CONFIG_ECC */
1234