InputDispatcher.h revision f3b57def9345d6d3cac3604d6a970f6d48f345ec
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef _UI_INPUT_DISPATCHER_H
18#define _UI_INPUT_DISPATCHER_H
19
20#include <ui/Input.h>
21#include <ui/InputTransport.h>
22#include <utils/KeyedVector.h>
23#include <utils/Vector.h>
24#include <utils/threads.h>
25#include <utils/Timers.h>
26#include <utils/RefBase.h>
27#include <utils/String8.h>
28#include <utils/Looper.h>
29#include <utils/Pool.h>
30#include <utils/BitSet.h>
31
32#include <stddef.h>
33#include <unistd.h>
34#include <limits.h>
35
36#include "InputWindow.h"
37#include "InputApplication.h"
38
39
40namespace android {
41
42/*
43 * Constants used to report the outcome of input event injection.
44 */
45enum {
46    /* (INTERNAL USE ONLY) Specifies that injection is pending and its outcome is unknown. */
47    INPUT_EVENT_INJECTION_PENDING = -1,
48
49    /* Injection succeeded. */
50    INPUT_EVENT_INJECTION_SUCCEEDED = 0,
51
52    /* Injection failed because the injector did not have permission to inject
53     * into the application with input focus. */
54    INPUT_EVENT_INJECTION_PERMISSION_DENIED = 1,
55
56    /* Injection failed because there were no available input targets. */
57    INPUT_EVENT_INJECTION_FAILED = 2,
58
59    /* Injection failed due to a timeout. */
60    INPUT_EVENT_INJECTION_TIMED_OUT = 3
61};
62
63/*
64 * Constants used to determine the input event injection synchronization mode.
65 */
66enum {
67    /* Injection is asynchronous and is assumed always to be successful. */
68    INPUT_EVENT_INJECTION_SYNC_NONE = 0,
69
70    /* Waits for previous events to be dispatched so that the input dispatcher can determine
71     * whether input event injection willbe permitted based on the current input focus.
72     * Does not wait for the input event to finish processing. */
73    INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT = 1,
74
75    /* Waits for the input event to be completely processed. */
76    INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED = 2,
77};
78
79
80/*
81 * An input target specifies how an input event is to be dispatched to a particular window
82 * including the window's input channel, control flags, a timeout, and an X / Y offset to
83 * be added to input event coordinates to compensate for the absolute position of the
84 * window area.
85 */
86struct InputTarget {
87    enum {
88        /* This flag indicates that the event is being delivered to a foreground application. */
89        FLAG_FOREGROUND = 1 << 0,
90
91        /* This flag indicates that the target of a MotionEvent is partly or wholly
92         * obscured by another visible window above it.  The motion event should be
93         * delivered with flag AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED. */
94        FLAG_WINDOW_IS_OBSCURED = 1 << 1,
95
96        /* This flag indicates that a motion event is being split across multiple windows. */
97        FLAG_SPLIT = 1 << 2,
98
99        /* This flag indicates that the event should be sent as is.
100         * Should always be set unless the event is to be transmuted. */
101        FLAG_DISPATCH_AS_IS = 1 << 8,
102
103        /* This flag indicates that a MotionEvent with AMOTION_EVENT_ACTION_DOWN falls outside
104         * of the area of this target and so should instead be delivered as an
105         * AMOTION_EVENT_ACTION_OUTSIDE to this target. */
106        FLAG_DISPATCH_AS_OUTSIDE = 1 << 9,
107
108        /* This flag indicates that a hover sequence is starting in the given window.
109         * The event is transmuted into ACTION_HOVER_ENTER. */
110        FLAG_DISPATCH_AS_HOVER_ENTER = 1 << 10,
111
112        /* This flag indicates that a hover event happened outside of a window which handled
113         * previous hover events, signifying the end of the current hover sequence for that
114         * window.
115         * The event is transmuted into ACTION_HOVER_ENTER. */
116        FLAG_DISPATCH_AS_HOVER_EXIT = 1 << 11,
117
118        /* Mask for all dispatch modes. */
119        FLAG_DISPATCH_MASK = FLAG_DISPATCH_AS_IS
120                | FLAG_DISPATCH_AS_OUTSIDE
121                | FLAG_DISPATCH_AS_HOVER_ENTER
122                | FLAG_DISPATCH_AS_HOVER_EXIT,
123    };
124
125    // The input channel to be targeted.
126    sp<InputChannel> inputChannel;
127
128    // Flags for the input target.
129    int32_t flags;
130
131    // The x and y offset to add to a MotionEvent as it is delivered.
132    // (ignored for KeyEvents)
133    float xOffset, yOffset;
134
135    // Scaling factor to apply to MotionEvent as it is delivered.
136    // (ignored for KeyEvents)
137    float scaleFactor;
138
139    // The subset of pointer ids to include in motion events dispatched to this input target
140    // if FLAG_SPLIT is set.
141    BitSet32 pointerIds;
142};
143
144
145/*
146 * Input dispatcher configuration.
147 *
148 * Specifies various options that modify the behavior of the input dispatcher.
149 */
150struct InputDispatcherConfiguration {
151    // The key repeat initial timeout.
152    nsecs_t keyRepeatTimeout;
153
154    // The key repeat inter-key delay.
155    nsecs_t keyRepeatDelay;
156
157    // The maximum suggested event delivery rate per second.
158    // This value is used to throttle motion event movement actions on a per-device
159    // basis.  It is not intended to be a hard limit.
160    int32_t maxEventsPerSecond;
161
162    InputDispatcherConfiguration() :
163            keyRepeatTimeout(500 * 1000000LL),
164            keyRepeatDelay(50 * 1000000LL),
165            maxEventsPerSecond(60) { }
166};
167
168
169/*
170 * Input dispatcher policy interface.
171 *
172 * The input reader policy is used by the input reader to interact with the Window Manager
173 * and other system components.
174 *
175 * The actual implementation is partially supported by callbacks into the DVM
176 * via JNI.  This interface is also mocked in the unit tests.
177 */
178class InputDispatcherPolicyInterface : public virtual RefBase {
179protected:
180    InputDispatcherPolicyInterface() { }
181    virtual ~InputDispatcherPolicyInterface() { }
182
183public:
184    /* Notifies the system that a configuration change has occurred. */
185    virtual void notifyConfigurationChanged(nsecs_t when) = 0;
186
187    /* Notifies the system that an application is not responding.
188     * Returns a new timeout to continue waiting, or 0 to abort dispatch. */
189    virtual nsecs_t notifyANR(const sp<InputApplicationHandle>& inputApplicationHandle,
190            const sp<InputWindowHandle>& inputWindowHandle) = 0;
191
192    /* Notifies the system that an input channel is unrecoverably broken. */
193    virtual void notifyInputChannelBroken(const sp<InputWindowHandle>& inputWindowHandle) = 0;
194
195    /* Gets the input dispatcher configuration. */
196    virtual void getDispatcherConfiguration(InputDispatcherConfiguration* outConfig) = 0;
197
198    /* Returns true if automatic key repeating is enabled. */
199    virtual bool isKeyRepeatEnabled() = 0;
200
201    /* Filters an input event.
202     * Return true to dispatch the event unmodified, false to consume the event.
203     * A filter can also transform and inject events later by passing POLICY_FLAG_FILTERED
204     * to injectInputEvent.
205     */
206    virtual bool filterInputEvent(const InputEvent* inputEvent, uint32_t policyFlags) = 0;
207
208    /* Intercepts a key event immediately before queueing it.
209     * The policy can use this method as an opportunity to perform power management functions
210     * and early event preprocessing such as updating policy flags.
211     *
212     * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
213     * should be dispatched to applications.
214     */
215    virtual void interceptKeyBeforeQueueing(const KeyEvent* keyEvent, uint32_t& policyFlags) = 0;
216
217    /* Intercepts a touch, trackball or other motion event before queueing it.
218     * The policy can use this method as an opportunity to perform power management functions
219     * and early event preprocessing such as updating policy flags.
220     *
221     * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
222     * should be dispatched to applications.
223     */
224    virtual void interceptMotionBeforeQueueing(nsecs_t when, uint32_t& policyFlags) = 0;
225
226    /* Allows the policy a chance to intercept a key before dispatching. */
227    virtual bool interceptKeyBeforeDispatching(const sp<InputWindowHandle>& inputWindowHandle,
228            const KeyEvent* keyEvent, uint32_t policyFlags) = 0;
229
230    /* Allows the policy a chance to perform default processing for an unhandled key.
231     * Returns an alternate keycode to redispatch as a fallback, or 0 to give up. */
232    virtual bool dispatchUnhandledKey(const sp<InputWindowHandle>& inputWindowHandle,
233            const KeyEvent* keyEvent, uint32_t policyFlags, KeyEvent* outFallbackKeyEvent) = 0;
234
235    /* Notifies the policy about switch events.
236     */
237    virtual void notifySwitch(nsecs_t when,
238            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) = 0;
239
240    /* Poke user activity for an event dispatched to a window. */
241    virtual void pokeUserActivity(nsecs_t eventTime, int32_t eventType) = 0;
242
243    /* Checks whether a given application pid/uid has permission to inject input events
244     * into other applications.
245     *
246     * This method is special in that its implementation promises to be non-reentrant and
247     * is safe to call while holding other locks.  (Most other methods make no such guarantees!)
248     */
249    virtual bool checkInjectEventsPermissionNonReentrant(
250            int32_t injectorPid, int32_t injectorUid) = 0;
251};
252
253
254/* Notifies the system about input events generated by the input reader.
255 * The dispatcher is expected to be mostly asynchronous. */
256class InputDispatcherInterface : public virtual RefBase {
257protected:
258    InputDispatcherInterface() { }
259    virtual ~InputDispatcherInterface() { }
260
261public:
262    /* Dumps the state of the input dispatcher.
263     *
264     * This method may be called on any thread (usually by the input manager). */
265    virtual void dump(String8& dump) = 0;
266
267    /* Runs a single iteration of the dispatch loop.
268     * Nominally processes one queued event, a timeout, or a response from an input consumer.
269     *
270     * This method should only be called on the input dispatcher thread.
271     */
272    virtual void dispatchOnce() = 0;
273
274    /* Notifies the dispatcher about new events.
275     *
276     * These methods should only be called on the input reader thread.
277     */
278    virtual void notifyConfigurationChanged(nsecs_t eventTime) = 0;
279    virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, uint32_t source,
280            uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
281            int32_t scanCode, int32_t metaState, nsecs_t downTime) = 0;
282    virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, uint32_t source,
283            uint32_t policyFlags, int32_t action, int32_t flags,
284            int32_t metaState, int32_t buttonState, int32_t edgeFlags,
285            uint32_t pointerCount, const PointerProperties* pointerProperties,
286            const PointerCoords* pointerCoords,
287            float xPrecision, float yPrecision, nsecs_t downTime) = 0;
288    virtual void notifySwitch(nsecs_t when,
289            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) = 0;
290
291    /* Injects an input event and optionally waits for sync.
292     * The synchronization mode determines whether the method blocks while waiting for
293     * input injection to proceed.
294     * Returns one of the INPUT_EVENT_INJECTION_XXX constants.
295     *
296     * This method may be called on any thread (usually by the input manager).
297     */
298    virtual int32_t injectInputEvent(const InputEvent* event,
299            int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis,
300            uint32_t policyFlags) = 0;
301
302    /* Sets the list of input windows.
303     *
304     * This method may be called on any thread (usually by the input manager).
305     */
306    virtual void setInputWindows(const Vector<InputWindow>& inputWindows) = 0;
307
308    /* Sets the focused application.
309     *
310     * This method may be called on any thread (usually by the input manager).
311     */
312    virtual void setFocusedApplication(const InputApplication* inputApplication) = 0;
313
314    /* Sets the input dispatching mode.
315     *
316     * This method may be called on any thread (usually by the input manager).
317     */
318    virtual void setInputDispatchMode(bool enabled, bool frozen) = 0;
319
320    /* Sets whether input event filtering is enabled.
321     * When enabled, incoming input events are sent to the policy's filterInputEvent
322     * method instead of being dispatched.  The filter is expected to use
323     * injectInputEvent to inject the events it would like to have dispatched.
324     * It should include POLICY_FLAG_FILTERED in the policy flags during injection.
325     */
326    virtual void setInputFilterEnabled(bool enabled) = 0;
327
328    /* Transfers touch focus from the window associated with one channel to the
329     * window associated with the other channel.
330     *
331     * Returns true on success.  False if the window did not actually have touch focus.
332     */
333    virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
334            const sp<InputChannel>& toChannel) = 0;
335
336    /* Registers or unregister input channels that may be used as targets for input events.
337     * If monitor is true, the channel will receive a copy of all input events.
338     *
339     * These methods may be called on any thread (usually by the input manager).
340     */
341    virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel,
342            const sp<InputWindowHandle>& inputWindowHandle, bool monitor) = 0;
343    virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel) = 0;
344};
345
346/* Dispatches events to input targets.  Some functions of the input dispatcher, such as
347 * identifying input targets, are controlled by a separate policy object.
348 *
349 * IMPORTANT INVARIANT:
350 *     Because the policy can potentially block or cause re-entrance into the input dispatcher,
351 *     the input dispatcher never calls into the policy while holding its internal locks.
352 *     The implementation is also carefully designed to recover from scenarios such as an
353 *     input channel becoming unregistered while identifying input targets or processing timeouts.
354 *
355 *     Methods marked 'Locked' must be called with the lock acquired.
356 *
357 *     Methods marked 'LockedInterruptible' must be called with the lock acquired but
358 *     may during the course of their execution release the lock, call into the policy, and
359 *     then reacquire the lock.  The caller is responsible for recovering gracefully.
360 *
361 *     A 'LockedInterruptible' method may called a 'Locked' method, but NOT vice-versa.
362 */
363class InputDispatcher : public InputDispatcherInterface {
364protected:
365    virtual ~InputDispatcher();
366
367public:
368    explicit InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy);
369
370    virtual void dump(String8& dump);
371
372    virtual void dispatchOnce();
373
374    virtual void notifyConfigurationChanged(nsecs_t eventTime);
375    virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, uint32_t source,
376            uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
377            int32_t scanCode, int32_t metaState, nsecs_t downTime);
378    virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, uint32_t source,
379            uint32_t policyFlags, int32_t action, int32_t flags,
380            int32_t metaState, int32_t buttonState, int32_t edgeFlags,
381            uint32_t pointerCount, const PointerProperties* pointerProperties,
382            const PointerCoords* pointerCoords,
383            float xPrecision, float yPrecision, nsecs_t downTime);
384    virtual void notifySwitch(nsecs_t when,
385            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) ;
386
387    virtual int32_t injectInputEvent(const InputEvent* event,
388            int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis,
389            uint32_t policyFlags);
390
391    virtual void setInputWindows(const Vector<InputWindow>& inputWindows);
392    virtual void setFocusedApplication(const InputApplication* inputApplication);
393    virtual void setInputDispatchMode(bool enabled, bool frozen);
394    virtual void setInputFilterEnabled(bool enabled);
395
396    virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
397            const sp<InputChannel>& toChannel);
398
399    virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel,
400            const sp<InputWindowHandle>& inputWindowHandle, bool monitor);
401    virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel);
402
403private:
404    template <typename T>
405    struct Link {
406        T* next;
407        T* prev;
408    };
409
410    struct InjectionState {
411        mutable int32_t refCount;
412
413        int32_t injectorPid;
414        int32_t injectorUid;
415        int32_t injectionResult;  // initially INPUT_EVENT_INJECTION_PENDING
416        bool injectionIsAsync; // set to true if injection is not waiting for the result
417        int32_t pendingForegroundDispatches; // the number of foreground dispatches in progress
418    };
419
420    struct EventEntry : Link<EventEntry> {
421        enum {
422            TYPE_SENTINEL,
423            TYPE_CONFIGURATION_CHANGED,
424            TYPE_KEY,
425            TYPE_MOTION
426        };
427
428        mutable int32_t refCount;
429        int32_t type;
430        nsecs_t eventTime;
431        uint32_t policyFlags;
432        InjectionState* injectionState;
433
434        bool dispatchInProgress; // initially false, set to true while dispatching
435
436        inline bool isInjected() const { return injectionState != NULL; }
437    };
438
439    struct ConfigurationChangedEntry : EventEntry {
440    };
441
442    struct KeyEntry : EventEntry {
443        int32_t deviceId;
444        uint32_t source;
445        int32_t action;
446        int32_t flags;
447        int32_t keyCode;
448        int32_t scanCode;
449        int32_t metaState;
450        int32_t repeatCount;
451        nsecs_t downTime;
452
453        bool syntheticRepeat; // set to true for synthetic key repeats
454
455        enum InterceptKeyResult {
456            INTERCEPT_KEY_RESULT_UNKNOWN,
457            INTERCEPT_KEY_RESULT_SKIP,
458            INTERCEPT_KEY_RESULT_CONTINUE,
459        };
460        InterceptKeyResult interceptKeyResult; // set based on the interception result
461    };
462
463    struct MotionSample {
464        MotionSample* next;
465
466        nsecs_t eventTime; // may be updated during coalescing
467        nsecs_t eventTimeBeforeCoalescing; // not updated during coalescing
468        PointerCoords pointerCoords[MAX_POINTERS];
469    };
470
471    struct MotionEntry : EventEntry {
472        int32_t deviceId;
473        uint32_t source;
474        int32_t action;
475        int32_t flags;
476        int32_t metaState;
477        int32_t buttonState;
478        int32_t edgeFlags;
479        float xPrecision;
480        float yPrecision;
481        nsecs_t downTime;
482        uint32_t pointerCount;
483        PointerProperties pointerProperties[MAX_POINTERS];
484
485        // Linked list of motion samples associated with this motion event.
486        MotionSample firstSample;
487        MotionSample* lastSample;
488
489        uint32_t countSamples() const;
490
491        // Checks whether we can append samples, assuming the device id and source are the same.
492        bool canAppendSamples(int32_t action, uint32_t pointerCount,
493                const PointerProperties* pointerProperties) const;
494    };
495
496    // Tracks the progress of dispatching a particular event to a particular connection.
497    struct DispatchEntry : Link<DispatchEntry> {
498        EventEntry* eventEntry; // the event to dispatch
499        int32_t targetFlags;
500        float xOffset;
501        float yOffset;
502        float scaleFactor;
503
504        // True if dispatch has started.
505        bool inProgress;
506
507        // For motion events:
508        //   Pointer to the first motion sample to dispatch in this cycle.
509        //   Usually NULL to indicate that the list of motion samples begins at
510        //   MotionEntry::firstSample.  Otherwise, some samples were dispatched in a previous
511        //   cycle and this pointer indicates the location of the first remainining sample
512        //   to dispatch during the current cycle.
513        MotionSample* headMotionSample;
514        //   Pointer to a motion sample to dispatch in the next cycle if the dispatcher was
515        //   unable to send all motion samples during this cycle.  On the next cycle,
516        //   headMotionSample will be initialized to tailMotionSample and tailMotionSample
517        //   will be set to NULL.
518        MotionSample* tailMotionSample;
519
520        inline bool hasForegroundTarget() const {
521            return targetFlags & InputTarget::FLAG_FOREGROUND;
522        }
523
524        inline bool isSplit() const {
525            return targetFlags & InputTarget::FLAG_SPLIT;
526        }
527    };
528
529    // A command entry captures state and behavior for an action to be performed in the
530    // dispatch loop after the initial processing has taken place.  It is essentially
531    // a kind of continuation used to postpone sensitive policy interactions to a point
532    // in the dispatch loop where it is safe to release the lock (generally after finishing
533    // the critical parts of the dispatch cycle).
534    //
535    // The special thing about commands is that they can voluntarily release and reacquire
536    // the dispatcher lock at will.  Initially when the command starts running, the
537    // dispatcher lock is held.  However, if the command needs to call into the policy to
538    // do some work, it can release the lock, do the work, then reacquire the lock again
539    // before returning.
540    //
541    // This mechanism is a bit clunky but it helps to preserve the invariant that the dispatch
542    // never calls into the policy while holding its lock.
543    //
544    // Commands are implicitly 'LockedInterruptible'.
545    struct CommandEntry;
546    typedef void (InputDispatcher::*Command)(CommandEntry* commandEntry);
547
548    class Connection;
549    struct CommandEntry : Link<CommandEntry> {
550        CommandEntry();
551        ~CommandEntry();
552
553        Command command;
554
555        // parameters for the command (usage varies by command)
556        sp<Connection> connection;
557        nsecs_t eventTime;
558        KeyEntry* keyEntry;
559        sp<InputChannel> inputChannel;
560        sp<InputApplicationHandle> inputApplicationHandle;
561        sp<InputWindowHandle> inputWindowHandle;
562        int32_t userActivityEventType;
563        bool handled;
564    };
565
566    // Generic queue implementation.
567    template <typename T>
568    struct Queue {
569        T headSentinel;
570        T tailSentinel;
571
572        inline Queue() {
573            headSentinel.prev = NULL;
574            headSentinel.next = & tailSentinel;
575            tailSentinel.prev = & headSentinel;
576            tailSentinel.next = NULL;
577        }
578
579        inline bool isEmpty() const {
580            return headSentinel.next == & tailSentinel;
581        }
582
583        inline void enqueueAtTail(T* entry) {
584            T* last = tailSentinel.prev;
585            last->next = entry;
586            entry->prev = last;
587            entry->next = & tailSentinel;
588            tailSentinel.prev = entry;
589        }
590
591        inline void enqueueAtHead(T* entry) {
592            T* first = headSentinel.next;
593            headSentinel.next = entry;
594            entry->prev = & headSentinel;
595            entry->next = first;
596            first->prev = entry;
597        }
598
599        inline void dequeue(T* entry) {
600            entry->prev->next = entry->next;
601            entry->next->prev = entry->prev;
602        }
603
604        inline T* dequeueAtHead() {
605            T* first = headSentinel.next;
606            dequeue(first);
607            return first;
608        }
609
610        uint32_t count() const;
611    };
612
613    /* Allocates queue entries and performs reference counting as needed. */
614    class Allocator {
615    public:
616        Allocator();
617
618        InjectionState* obtainInjectionState(int32_t injectorPid, int32_t injectorUid);
619        ConfigurationChangedEntry* obtainConfigurationChangedEntry(nsecs_t eventTime);
620        KeyEntry* obtainKeyEntry(nsecs_t eventTime,
621                int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action,
622                int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
623                int32_t repeatCount, nsecs_t downTime);
624        MotionEntry* obtainMotionEntry(nsecs_t eventTime,
625                int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action,
626                int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags,
627                float xPrecision, float yPrecision,
628                nsecs_t downTime, uint32_t pointerCount,
629                const PointerProperties* pointerProperties, const PointerCoords* pointerCoords);
630        DispatchEntry* obtainDispatchEntry(EventEntry* eventEntry,
631                int32_t targetFlags, float xOffset, float yOffset, float scaleFactor);
632        CommandEntry* obtainCommandEntry(Command command);
633
634        void releaseInjectionState(InjectionState* injectionState);
635        void releaseEventEntry(EventEntry* entry);
636        void releaseConfigurationChangedEntry(ConfigurationChangedEntry* entry);
637        void releaseKeyEntry(KeyEntry* entry);
638        void releaseMotionEntry(MotionEntry* entry);
639        void freeMotionSample(MotionSample* sample);
640        void releaseDispatchEntry(DispatchEntry* entry);
641        void releaseCommandEntry(CommandEntry* entry);
642
643        void recycleKeyEntry(KeyEntry* entry);
644
645        void appendMotionSample(MotionEntry* motionEntry,
646                nsecs_t eventTime, const PointerCoords* pointerCoords);
647
648    private:
649        Pool<InjectionState> mInjectionStatePool;
650        Pool<ConfigurationChangedEntry> mConfigurationChangeEntryPool;
651        Pool<KeyEntry> mKeyEntryPool;
652        Pool<MotionEntry> mMotionEntryPool;
653        Pool<MotionSample> mMotionSamplePool;
654        Pool<DispatchEntry> mDispatchEntryPool;
655        Pool<CommandEntry> mCommandEntryPool;
656
657        void initializeEventEntry(EventEntry* entry, int32_t type, nsecs_t eventTime,
658                uint32_t policyFlags);
659        void releaseEventEntryInjectionState(EventEntry* entry);
660    };
661
662    /* Specifies which events are to be canceled and why. */
663    struct CancelationOptions {
664        enum Mode {
665            CANCEL_ALL_EVENTS = 0,
666            CANCEL_POINTER_EVENTS = 1,
667            CANCEL_NON_POINTER_EVENTS = 2,
668            CANCEL_FALLBACK_EVENTS = 3,
669        };
670
671        // The criterion to use to determine which events should be canceled.
672        Mode mode;
673
674        // Descriptive reason for the cancelation.
675        const char* reason;
676
677        // The specific keycode of the key event to cancel, or -1 to cancel any key event.
678        int32_t keyCode;
679
680        CancelationOptions(Mode mode, const char* reason) :
681                mode(mode), reason(reason), keyCode(-1) { }
682    };
683
684    /* Tracks dispatched key and motion event state so that cancelation events can be
685     * synthesized when events are dropped. */
686    class InputState {
687    public:
688        InputState();
689        ~InputState();
690
691        // Returns true if there is no state to be canceled.
692        bool isNeutral() const;
693
694        // Records tracking information for an event that has just been published.
695        void trackEvent(const EventEntry* entry, int32_t action);
696
697        // Records tracking information for a key event that has just been published.
698        void trackKey(const KeyEntry* entry, int32_t action);
699
700        // Records tracking information for a motion event that has just been published.
701        void trackMotion(const MotionEntry* entry, int32_t action);
702
703        // Synthesizes cancelation events for the current state and resets the tracked state.
704        void synthesizeCancelationEvents(nsecs_t currentTime, Allocator* allocator,
705                Vector<EventEntry*>& outEvents, const CancelationOptions& options);
706
707        // Clears the current state.
708        void clear();
709
710        // Copies pointer-related parts of the input state to another instance.
711        void copyPointerStateTo(InputState& other) const;
712
713        // Gets the fallback key associated with a keycode.
714        // Returns -1 if none.
715        // Returns AKEYCODE_UNKNOWN if we are only dispatching the unhandled key to the policy.
716        int32_t getFallbackKey(int32_t originalKeyCode);
717
718        // Sets the fallback key for a particular keycode.
719        void setFallbackKey(int32_t originalKeyCode, int32_t fallbackKeyCode);
720
721        // Removes the fallback key for a particular keycode.
722        void removeFallbackKey(int32_t originalKeyCode);
723
724        inline const KeyedVector<int32_t, int32_t>& getFallbackKeys() const {
725            return mFallbackKeys;
726        }
727
728    private:
729        struct KeyMemento {
730            int32_t deviceId;
731            uint32_t source;
732            int32_t keyCode;
733            int32_t scanCode;
734            int32_t flags;
735            nsecs_t downTime;
736        };
737
738        struct MotionMemento {
739            int32_t deviceId;
740            uint32_t source;
741            float xPrecision;
742            float yPrecision;
743            nsecs_t downTime;
744            uint32_t pointerCount;
745            PointerProperties pointerProperties[MAX_POINTERS];
746            PointerCoords pointerCoords[MAX_POINTERS];
747            bool hovering;
748
749            void setPointers(const MotionEntry* entry);
750        };
751
752        Vector<KeyMemento> mKeyMementos;
753        Vector<MotionMemento> mMotionMementos;
754        KeyedVector<int32_t, int32_t> mFallbackKeys;
755
756        static bool shouldCancelKey(const KeyMemento& memento,
757                const CancelationOptions& options);
758        static bool shouldCancelMotion(const MotionMemento& memento,
759                const CancelationOptions& options);
760    };
761
762    /* Manages the dispatch state associated with a single input channel. */
763    class Connection : public RefBase {
764    protected:
765        virtual ~Connection();
766
767    public:
768        enum Status {
769            // Everything is peachy.
770            STATUS_NORMAL,
771            // An unrecoverable communication error has occurred.
772            STATUS_BROKEN,
773            // The input channel has been unregistered.
774            STATUS_ZOMBIE
775        };
776
777        Status status;
778        sp<InputChannel> inputChannel; // never null
779        sp<InputWindowHandle> inputWindowHandle; // may be null
780        InputPublisher inputPublisher;
781        InputState inputState;
782        Queue<DispatchEntry> outboundQueue;
783
784        nsecs_t lastEventTime; // the time when the event was originally captured
785        nsecs_t lastDispatchTime; // the time when the last event was dispatched
786
787        explicit Connection(const sp<InputChannel>& inputChannel,
788                const sp<InputWindowHandle>& inputWindowHandle);
789
790        inline const char* getInputChannelName() const { return inputChannel->getName().string(); }
791
792        const char* getStatusLabel() const;
793
794        // Finds a DispatchEntry in the outbound queue associated with the specified event.
795        // Returns NULL if not found.
796        DispatchEntry* findQueuedDispatchEntryForEvent(const EventEntry* eventEntry) const;
797
798        // Gets the time since the current event was originally obtained from the input driver.
799        inline double getEventLatencyMillis(nsecs_t currentTime) const {
800            return (currentTime - lastEventTime) / 1000000.0;
801        }
802
803        // Gets the time since the current event entered the outbound dispatch queue.
804        inline double getDispatchLatencyMillis(nsecs_t currentTime) const {
805            return (currentTime - lastDispatchTime) / 1000000.0;
806        }
807
808        status_t initialize();
809    };
810
811    enum DropReason {
812        DROP_REASON_NOT_DROPPED = 0,
813        DROP_REASON_POLICY = 1,
814        DROP_REASON_APP_SWITCH = 2,
815        DROP_REASON_DISABLED = 3,
816        DROP_REASON_BLOCKED = 4,
817        DROP_REASON_STALE = 5,
818    };
819
820    sp<InputDispatcherPolicyInterface> mPolicy;
821    InputDispatcherConfiguration mConfig;
822
823    Mutex mLock;
824
825    Allocator mAllocator;
826    sp<Looper> mLooper;
827
828    EventEntry* mPendingEvent;
829    Queue<EventEntry> mInboundQueue;
830    Queue<CommandEntry> mCommandQueue;
831
832    Vector<EventEntry*> mTempCancelationEvents;
833
834    void dispatchOnceInnerLocked(nsecs_t* nextWakeupTime);
835
836    // Batches a new sample onto a motion entry.
837    // Assumes that the we have already checked that we can append samples.
838    void batchMotionLocked(MotionEntry* entry, nsecs_t eventTime, int32_t metaState,
839            const PointerCoords* pointerCoords, const char* eventDescription);
840
841    // Enqueues an inbound event.  Returns true if mLooper->wake() should be called.
842    bool enqueueInboundEventLocked(EventEntry* entry);
843
844    // Cleans up input state when dropping an inbound event.
845    void dropInboundEventLocked(EventEntry* entry, DropReason dropReason);
846
847    // App switch latency optimization.
848    bool mAppSwitchSawKeyDown;
849    nsecs_t mAppSwitchDueTime;
850
851    static bool isAppSwitchKeyCode(int32_t keyCode);
852    bool isAppSwitchKeyEventLocked(KeyEntry* keyEntry);
853    bool isAppSwitchPendingLocked();
854    void resetPendingAppSwitchLocked(bool handled);
855
856    // Stale event latency optimization.
857    static bool isStaleEventLocked(nsecs_t currentTime, EventEntry* entry);
858
859    // Blocked event latency optimization.  Drops old events when the user intends
860    // to transfer focus to a new application.
861    EventEntry* mNextUnblockedEvent;
862
863    const InputWindow* findTouchedWindowAtLocked(int32_t x, int32_t y);
864
865    // All registered connections mapped by receive pipe file descriptor.
866    KeyedVector<int, sp<Connection> > mConnectionsByReceiveFd;
867
868    ssize_t getConnectionIndexLocked(const sp<InputChannel>& inputChannel);
869
870    // Active connections are connections that have a non-empty outbound queue.
871    // We don't use a ref-counted pointer here because we explicitly abort connections
872    // during unregistration which causes the connection's outbound queue to be cleared
873    // and the connection itself to be deactivated.
874    Vector<Connection*> mActiveConnections;
875
876    // Input channels that will receive a copy of all input events.
877    Vector<sp<InputChannel> > mMonitoringChannels;
878
879    // Event injection and synchronization.
880    Condition mInjectionResultAvailableCondition;
881    bool hasInjectionPermission(int32_t injectorPid, int32_t injectorUid);
882    void setInjectionResultLocked(EventEntry* entry, int32_t injectionResult);
883
884    Condition mInjectionSyncFinishedCondition;
885    void incrementPendingForegroundDispatchesLocked(EventEntry* entry);
886    void decrementPendingForegroundDispatchesLocked(EventEntry* entry);
887
888    // Throttling state.
889    struct ThrottleState {
890        nsecs_t minTimeBetweenEvents;
891
892        nsecs_t lastEventTime;
893        int32_t lastDeviceId;
894        uint32_t lastSource;
895
896        uint32_t originalSampleCount; // only collected during debugging
897    } mThrottleState;
898
899    // Key repeat tracking.
900    struct KeyRepeatState {
901        KeyEntry* lastKeyEntry; // or null if no repeat
902        nsecs_t nextRepeatTime;
903    } mKeyRepeatState;
904
905    void resetKeyRepeatLocked();
906    KeyEntry* synthesizeKeyRepeatLocked(nsecs_t currentTime);
907
908    // Deferred command processing.
909    bool runCommandsLockedInterruptible();
910    CommandEntry* postCommandLocked(Command command);
911
912    // Inbound event processing.
913    void drainInboundQueueLocked();
914    void releasePendingEventLocked();
915    void releaseInboundEventLocked(EventEntry* entry);
916
917    // Dispatch state.
918    bool mDispatchEnabled;
919    bool mDispatchFrozen;
920    bool mInputFilterEnabled;
921
922    Vector<InputWindow> mWindows;
923
924    const InputWindow* getWindowLocked(const sp<InputChannel>& inputChannel);
925
926    // Focus tracking for keys, trackball, etc.
927    const InputWindow* mFocusedWindow;
928
929    // Focus tracking for touch.
930    struct TouchedWindow {
931        const InputWindow* window;
932        int32_t targetFlags;
933        BitSet32 pointerIds;        // zero unless target flag FLAG_SPLIT is set
934        sp<InputChannel> channel;
935    };
936    struct TouchState {
937        bool down;
938        bool split;
939        int32_t deviceId; // id of the device that is currently down, others are rejected
940        uint32_t source;  // source of the device that is current down, others are rejected
941        Vector<TouchedWindow> windows;
942
943        TouchState();
944        ~TouchState();
945        void reset();
946        void copyFrom(const TouchState& other);
947        void addOrUpdateWindow(const InputWindow* window, int32_t targetFlags, BitSet32 pointerIds);
948        void filterNonAsIsTouchWindows();
949        const InputWindow* getFirstForegroundWindow();
950    };
951
952    TouchState mTouchState;
953    TouchState mTempTouchState;
954
955    // Focused application.
956    InputApplication* mFocusedApplication;
957    InputApplication mFocusedApplicationStorage; // preallocated storage for mFocusedApplication
958    void releaseFocusedApplicationLocked();
959
960    // Dispatch inbound events.
961    bool dispatchConfigurationChangedLocked(
962            nsecs_t currentTime, ConfigurationChangedEntry* entry);
963    bool dispatchKeyLocked(
964            nsecs_t currentTime, KeyEntry* entry,
965            DropReason* dropReason, nsecs_t* nextWakeupTime);
966    bool dispatchMotionLocked(
967            nsecs_t currentTime, MotionEntry* entry,
968            DropReason* dropReason, nsecs_t* nextWakeupTime);
969    void dispatchEventToCurrentInputTargetsLocked(
970            nsecs_t currentTime, EventEntry* entry, bool resumeWithAppendedMotionSample);
971
972    void logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry);
973    void logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry);
974
975    // The input targets that were most recently identified for dispatch.
976    bool mCurrentInputTargetsValid; // false while targets are being recomputed
977    Vector<InputTarget> mCurrentInputTargets;
978
979    enum InputTargetWaitCause {
980        INPUT_TARGET_WAIT_CAUSE_NONE,
981        INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY,
982        INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY,
983    };
984
985    InputTargetWaitCause mInputTargetWaitCause;
986    nsecs_t mInputTargetWaitStartTime;
987    nsecs_t mInputTargetWaitTimeoutTime;
988    bool mInputTargetWaitTimeoutExpired;
989    sp<InputApplicationHandle> mInputTargetWaitApplication;
990
991    // Contains the last window which received a hover event.
992    const InputWindow* mLastHoverWindow;
993
994    // Finding targets for input events.
995    void resetTargetsLocked();
996    void commitTargetsLocked();
997    int32_t handleTargetsNotReadyLocked(nsecs_t currentTime, const EventEntry* entry,
998            const InputApplication* application, const InputWindow* window,
999            nsecs_t* nextWakeupTime);
1000    void resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout,
1001            const sp<InputChannel>& inputChannel);
1002    nsecs_t getTimeSpentWaitingForApplicationLocked(nsecs_t currentTime);
1003    void resetANRTimeoutsLocked();
1004
1005    int32_t findFocusedWindowTargetsLocked(nsecs_t currentTime, const EventEntry* entry,
1006            nsecs_t* nextWakeupTime);
1007    int32_t findTouchedWindowTargetsLocked(nsecs_t currentTime, const MotionEntry* entry,
1008            nsecs_t* nextWakeupTime, bool* outConflictingPointerActions,
1009            const MotionSample** outSplitBatchAfterSample);
1010
1011    void addWindowTargetLocked(const InputWindow* window, int32_t targetFlags,
1012            BitSet32 pointerIds);
1013    void addMonitoringTargetsLocked();
1014    void pokeUserActivityLocked(const EventEntry* eventEntry);
1015    bool checkInjectionPermission(const InputWindow* window, const InjectionState* injectionState);
1016    bool isWindowObscuredAtPointLocked(const InputWindow* window, int32_t x, int32_t y) const;
1017    bool isWindowFinishedWithPreviousInputLocked(const InputWindow* window);
1018    String8 getApplicationWindowLabelLocked(const InputApplication* application,
1019            const InputWindow* window);
1020
1021    // Manage the dispatch cycle for a single connection.
1022    // These methods are deliberately not Interruptible because doing all of the work
1023    // with the mutex held makes it easier to ensure that connection invariants are maintained.
1024    // If needed, the methods post commands to run later once the critical bits are done.
1025    void prepareDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
1026            EventEntry* eventEntry, const InputTarget* inputTarget,
1027            bool resumeWithAppendedMotionSample);
1028    void enqueueDispatchEntryLocked(const sp<Connection>& connection,
1029            EventEntry* eventEntry, const InputTarget* inputTarget,
1030            bool resumeWithAppendedMotionSample, int32_t dispatchMode);
1031    void startDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
1032    void finishDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
1033            bool handled);
1034    void startNextDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
1035    void abortBrokenDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
1036    void drainOutboundQueueLocked(Connection* connection);
1037    static int handleReceiveCallback(int receiveFd, int events, void* data);
1038
1039    void synthesizeCancelationEventsForAllConnectionsLocked(
1040            const CancelationOptions& options);
1041    void synthesizeCancelationEventsForInputChannelLocked(const sp<InputChannel>& channel,
1042            const CancelationOptions& options);
1043    void synthesizeCancelationEventsForConnectionLocked(const sp<Connection>& connection,
1044            const CancelationOptions& options);
1045
1046    // Splitting motion events across windows.
1047    MotionEntry* splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds);
1048
1049    // Reset and drop everything the dispatcher is doing.
1050    void resetAndDropEverythingLocked(const char* reason);
1051
1052    // Dump state.
1053    void dumpDispatchStateLocked(String8& dump);
1054    void logDispatchStateLocked();
1055
1056    // Add or remove a connection to the mActiveConnections vector.
1057    void activateConnectionLocked(Connection* connection);
1058    void deactivateConnectionLocked(Connection* connection);
1059
1060    // Interesting events that we might like to log or tell the framework about.
1061    void onDispatchCycleStartedLocked(
1062            nsecs_t currentTime, const sp<Connection>& connection);
1063    void onDispatchCycleFinishedLocked(
1064            nsecs_t currentTime, const sp<Connection>& connection, bool handled);
1065    void onDispatchCycleBrokenLocked(
1066            nsecs_t currentTime, const sp<Connection>& connection);
1067    void onANRLocked(
1068            nsecs_t currentTime, const InputApplication* application, const InputWindow* window,
1069            nsecs_t eventTime, nsecs_t waitStartTime);
1070
1071    // Outbound policy interactions.
1072    void doNotifyConfigurationChangedInterruptible(CommandEntry* commandEntry);
1073    void doNotifyInputChannelBrokenLockedInterruptible(CommandEntry* commandEntry);
1074    void doNotifyANRLockedInterruptible(CommandEntry* commandEntry);
1075    void doInterceptKeyBeforeDispatchingLockedInterruptible(CommandEntry* commandEntry);
1076    void doDispatchCycleFinishedLockedInterruptible(CommandEntry* commandEntry);
1077    bool afterKeyEventLockedInterruptible(const sp<Connection>& connection,
1078            DispatchEntry* dispatchEntry, KeyEntry* keyEntry, bool handled);
1079    bool afterMotionEventLockedInterruptible(const sp<Connection>& connection,
1080            DispatchEntry* dispatchEntry, MotionEntry* motionEntry, bool handled);
1081    void doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry);
1082    void initializeKeyEvent(KeyEvent* event, const KeyEntry* entry);
1083
1084    // Statistics gathering.
1085    void updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry,
1086            int32_t injectionResult, nsecs_t timeSpentWaitingForApplication);
1087};
1088
1089/* Enqueues and dispatches input events, endlessly. */
1090class InputDispatcherThread : public Thread {
1091public:
1092    explicit InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher);
1093    ~InputDispatcherThread();
1094
1095private:
1096    virtual bool threadLoop();
1097
1098    sp<InputDispatcherInterface> mDispatcher;
1099};
1100
1101} // namespace android
1102
1103#endif // _UI_INPUT_DISPATCHER_H
1104