1/*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ANDROID_VECTOR_H
18#define ANDROID_VECTOR_H
19
20#include <new>
21#include <stdint.h>
22#include <sys/types.h>
23
24#include <cutils/log.h>
25
26#include <utils/VectorImpl.h>
27#include <utils/TypeHelpers.h>
28
29// ---------------------------------------------------------------------------
30
31namespace android {
32
33template <typename TYPE>
34class SortedVector;
35
36/*!
37 * The main templated vector class ensuring type safety
38 * while making use of VectorImpl.
39 * This is the class users want to use.
40 */
41
42template <class TYPE>
43class Vector : private VectorImpl
44{
45public:
46            typedef TYPE    value_type;
47
48    /*!
49     * Constructors and destructors
50     */
51
52                            Vector();
53                            Vector(const Vector<TYPE>& rhs);
54    explicit                Vector(const SortedVector<TYPE>& rhs);
55    virtual                 ~Vector();
56
57    /*! copy operator */
58            const Vector<TYPE>&     operator = (const Vector<TYPE>& rhs) const;
59            Vector<TYPE>&           operator = (const Vector<TYPE>& rhs);
60
61            const Vector<TYPE>&     operator = (const SortedVector<TYPE>& rhs) const;
62            Vector<TYPE>&           operator = (const SortedVector<TYPE>& rhs);
63
64            /*
65     * empty the vector
66     */
67
68    inline  void            clear()             { VectorImpl::clear(); }
69
70    /*!
71     * vector stats
72     */
73
74    //! returns number of items in the vector
75    inline  size_t          size() const                { return VectorImpl::size(); }
76    //! returns whether or not the vector is empty
77    inline  bool            isEmpty() const             { return VectorImpl::isEmpty(); }
78    //! returns how many items can be stored without reallocating the backing store
79    inline  size_t          capacity() const            { return VectorImpl::capacity(); }
80    //! sets the capacity. capacity can never be reduced less than size()
81    inline  ssize_t         setCapacity(size_t size)    { return VectorImpl::setCapacity(size); }
82
83    /*!
84     * set the size of the vector. items are appended with the default
85     * constructor, or removed from the end as needed.
86     */
87    inline  ssize_t         resize(size_t size)         { return VectorImpl::resize(size); }
88
89    /*!
90     * C-style array access
91     */
92
93    //! read-only C-style access
94    inline  const TYPE*     array() const;
95    //! read-write C-style access
96            TYPE*           editArray();
97
98    /*!
99     * accessors
100     */
101
102    //! read-only access to an item at a given index
103    inline  const TYPE&     operator [] (size_t index) const;
104    //! alternate name for operator []
105    inline  const TYPE&     itemAt(size_t index) const;
106    //! stack-usage of the vector. returns the top of the stack (last element)
107            const TYPE&     top() const;
108
109    /*!
110     * modifying the array
111     */
112
113    //! copy-on write support, grants write access to an item
114            TYPE&           editItemAt(size_t index);
115    //! grants right access to the top of the stack (last element)
116            TYPE&           editTop();
117
118            /*!
119             * append/insert another vector
120             */
121
122    //! insert another vector at a given index
123            ssize_t         insertVectorAt(const Vector<TYPE>& vector, size_t index);
124
125    //! append another vector at the end of this one
126            ssize_t         appendVector(const Vector<TYPE>& vector);
127
128
129    //! insert an array at a given index
130            ssize_t         insertArrayAt(const TYPE* array, size_t index, size_t length);
131
132    //! append an array at the end of this vector
133            ssize_t         appendArray(const TYPE* array, size_t length);
134
135            /*!
136             * add/insert/replace items
137             */
138
139    //! insert one or several items initialized with their default constructor
140    inline  ssize_t         insertAt(size_t index, size_t numItems = 1);
141    //! insert one or several items initialized from a prototype item
142            ssize_t         insertAt(const TYPE& prototype_item, size_t index, size_t numItems = 1);
143    //! pop the top of the stack (removes the last element). No-op if the stack's empty
144    inline  void            pop();
145    //! pushes an item initialized with its default constructor
146    inline  void            push();
147    //! pushes an item on the top of the stack
148            void            push(const TYPE& item);
149    //! same as push() but returns the index the item was added at (or an error)
150    inline  ssize_t         add();
151    //! same as push() but returns the index the item was added at (or an error)
152            ssize_t         add(const TYPE& item);
153    //! replace an item with a new one initialized with its default constructor
154    inline  ssize_t         replaceAt(size_t index);
155    //! replace an item with a new one
156            ssize_t         replaceAt(const TYPE& item, size_t index);
157
158    /*!
159     * remove items
160     */
161
162    //! remove several items
163    inline  ssize_t         removeItemsAt(size_t index, size_t count = 1);
164    //! remove one item
165    inline  ssize_t         removeAt(size_t index)  { return removeItemsAt(index); }
166
167    /*!
168     * sort (stable) the array
169     */
170
171     typedef int (*compar_t)(const TYPE* lhs, const TYPE* rhs);
172     typedef int (*compar_r_t)(const TYPE* lhs, const TYPE* rhs, void* state);
173
174     inline status_t        sort(compar_t cmp);
175     inline status_t        sort(compar_r_t cmp, void* state);
176
177     // for debugging only
178     inline size_t getItemSize() const { return itemSize(); }
179
180
181     /*
182      * these inlines add some level of compatibility with STL. eventually
183      * we should probably turn things around.
184      */
185     typedef TYPE* iterator;
186     typedef TYPE const* const_iterator;
187
188     inline iterator begin() { return editArray(); }
189     inline iterator end()   { return editArray() + size(); }
190     inline const_iterator begin() const { return array(); }
191     inline const_iterator end() const   { return array() + size(); }
192     inline void reserve(size_t n) { setCapacity(n); }
193     inline bool empty() const{ return isEmpty(); }
194     inline void push_back(const TYPE& item)  { insertAt(item, size(), 1); }
195     inline void push_front(const TYPE& item) { insertAt(item, 0, 1); }
196     inline iterator erase(iterator pos) {
197         ssize_t index = removeItemsAt(pos-array());
198         return begin() + index;
199     }
200
201protected:
202    virtual void    do_construct(void* storage, size_t num) const;
203    virtual void    do_destroy(void* storage, size_t num) const;
204    virtual void    do_copy(void* dest, const void* from, size_t num) const;
205    virtual void    do_splat(void* dest, const void* item, size_t num) const;
206    virtual void    do_move_forward(void* dest, const void* from, size_t num) const;
207    virtual void    do_move_backward(void* dest, const void* from, size_t num) const;
208};
209
210// Vector<T> can be trivially moved using memcpy() because moving does not
211// require any change to the underlying SharedBuffer contents or reference count.
212template<typename T> struct trait_trivial_move<Vector<T> > { enum { value = true }; };
213
214// ---------------------------------------------------------------------------
215// No user serviceable parts from here...
216// ---------------------------------------------------------------------------
217
218template<class TYPE> inline
219Vector<TYPE>::Vector()
220    : VectorImpl(sizeof(TYPE),
221                ((traits<TYPE>::has_trivial_ctor   ? HAS_TRIVIAL_CTOR   : 0)
222                |(traits<TYPE>::has_trivial_dtor   ? HAS_TRIVIAL_DTOR   : 0)
223                |(traits<TYPE>::has_trivial_copy   ? HAS_TRIVIAL_COPY   : 0))
224                )
225{
226}
227
228template<class TYPE> inline
229Vector<TYPE>::Vector(const Vector<TYPE>& rhs)
230    : VectorImpl(rhs) {
231}
232
233template<class TYPE> inline
234Vector<TYPE>::Vector(const SortedVector<TYPE>& rhs)
235    : VectorImpl(static_cast<const VectorImpl&>(rhs)) {
236}
237
238template<class TYPE> inline
239Vector<TYPE>::~Vector() {
240    finish_vector();
241}
242
243template<class TYPE> inline
244Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) {
245    VectorImpl::operator = (rhs);
246    return *this;
247}
248
249template<class TYPE> inline
250const Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) const {
251    VectorImpl::operator = (static_cast<const VectorImpl&>(rhs));
252    return *this;
253}
254
255template<class TYPE> inline
256Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) {
257    VectorImpl::operator = (static_cast<const VectorImpl&>(rhs));
258    return *this;
259}
260
261template<class TYPE> inline
262const Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const {
263    VectorImpl::operator = (rhs);
264    return *this;
265}
266
267template<class TYPE> inline
268const TYPE* Vector<TYPE>::array() const {
269    return static_cast<const TYPE *>(arrayImpl());
270}
271
272template<class TYPE> inline
273TYPE* Vector<TYPE>::editArray() {
274    return static_cast<TYPE *>(editArrayImpl());
275}
276
277
278template<class TYPE> inline
279const TYPE& Vector<TYPE>::operator[](size_t index) const {
280    LOG_FATAL_IF(index>=size(),
281            "%s: index=%u out of range (%u)", __PRETTY_FUNCTION__,
282            int(index), int(size()));
283    return *(array() + index);
284}
285
286template<class TYPE> inline
287const TYPE& Vector<TYPE>::itemAt(size_t index) const {
288    return operator[](index);
289}
290
291template<class TYPE> inline
292const TYPE& Vector<TYPE>::top() const {
293    return *(array() + size() - 1);
294}
295
296template<class TYPE> inline
297TYPE& Vector<TYPE>::editItemAt(size_t index) {
298    return *( static_cast<TYPE *>(editItemLocation(index)) );
299}
300
301template<class TYPE> inline
302TYPE& Vector<TYPE>::editTop() {
303    return *( static_cast<TYPE *>(editItemLocation(size()-1)) );
304}
305
306template<class TYPE> inline
307ssize_t Vector<TYPE>::insertVectorAt(const Vector<TYPE>& vector, size_t index) {
308    return VectorImpl::insertVectorAt(reinterpret_cast<const VectorImpl&>(vector), index);
309}
310
311template<class TYPE> inline
312ssize_t Vector<TYPE>::appendVector(const Vector<TYPE>& vector) {
313    return VectorImpl::appendVector(reinterpret_cast<const VectorImpl&>(vector));
314}
315
316template<class TYPE> inline
317ssize_t Vector<TYPE>::insertArrayAt(const TYPE* array, size_t index, size_t length) {
318    return VectorImpl::insertArrayAt(array, index, length);
319}
320
321template<class TYPE> inline
322ssize_t Vector<TYPE>::appendArray(const TYPE* array, size_t length) {
323    return VectorImpl::appendArray(array, length);
324}
325
326template<class TYPE> inline
327ssize_t Vector<TYPE>::insertAt(const TYPE& item, size_t index, size_t numItems) {
328    return VectorImpl::insertAt(&item, index, numItems);
329}
330
331template<class TYPE> inline
332void Vector<TYPE>::push(const TYPE& item) {
333    return VectorImpl::push(&item);
334}
335
336template<class TYPE> inline
337ssize_t Vector<TYPE>::add(const TYPE& item) {
338    return VectorImpl::add(&item);
339}
340
341template<class TYPE> inline
342ssize_t Vector<TYPE>::replaceAt(const TYPE& item, size_t index) {
343    return VectorImpl::replaceAt(&item, index);
344}
345
346template<class TYPE> inline
347ssize_t Vector<TYPE>::insertAt(size_t index, size_t numItems) {
348    return VectorImpl::insertAt(index, numItems);
349}
350
351template<class TYPE> inline
352void Vector<TYPE>::pop() {
353    VectorImpl::pop();
354}
355
356template<class TYPE> inline
357void Vector<TYPE>::push() {
358    VectorImpl::push();
359}
360
361template<class TYPE> inline
362ssize_t Vector<TYPE>::add() {
363    return VectorImpl::add();
364}
365
366template<class TYPE> inline
367ssize_t Vector<TYPE>::replaceAt(size_t index) {
368    return VectorImpl::replaceAt(index);
369}
370
371template<class TYPE> inline
372ssize_t Vector<TYPE>::removeItemsAt(size_t index, size_t count) {
373    return VectorImpl::removeItemsAt(index, count);
374}
375
376template<class TYPE> inline
377status_t Vector<TYPE>::sort(Vector<TYPE>::compar_t cmp) {
378    return VectorImpl::sort((VectorImpl::compar_t)cmp);
379}
380
381template<class TYPE> inline
382status_t Vector<TYPE>::sort(Vector<TYPE>::compar_r_t cmp, void* state) {
383    return VectorImpl::sort((VectorImpl::compar_r_t)cmp, state);
384}
385
386// ---------------------------------------------------------------------------
387
388template<class TYPE>
389void Vector<TYPE>::do_construct(void* storage, size_t num) const {
390    construct_type( reinterpret_cast<TYPE*>(storage), num );
391}
392
393template<class TYPE>
394void Vector<TYPE>::do_destroy(void* storage, size_t num) const {
395    destroy_type( reinterpret_cast<TYPE*>(storage), num );
396}
397
398template<class TYPE>
399void Vector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
400    copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
401}
402
403template<class TYPE>
404void Vector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
405    splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
406}
407
408template<class TYPE>
409void Vector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
410    move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
411}
412
413template<class TYPE>
414void Vector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
415    move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
416}
417
418}; // namespace android
419
420
421// ---------------------------------------------------------------------------
422
423#endif // ANDROID_VECTOR_H
424